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Transparent Methods 

Baseline tissue-specific dataset  

All tissue-specific models described in this work were trained and evaluated following the exact 

procedure of the Basset network (Kelley et al., 2016), using DNase-seq peak data from 164 sample types 

obtained from ENCODE (Consortium, 2012) and Roadmap Epigenomics (Kundaje et al., 2015) projects. 

Greedy merging of overlapping peaks across all DNase-seq data samples allowed us to create a universal 

set of potential accessibility sites. For each site, a binary vector was used to label its accessibility state in 

each of the 164 cell types. Data was then split by genomic site so that 70,000 peak locations were held out 

for validation, 71,886 for testing, and the remaining 1.8 million sites were used for training. The model 

input was a 600 base pair window of the DNA sequence centered at a site of interest, represented as one-

hot encoding.  

Baseline tissue-specific model implementation 

We used TensorFlow (Abadi et al., 2015) to implement the Basset architecture for our baseline.  We used 

Adam (Kingma and Ba, 2014) instead of RMSProp (Tieleman and Hinton, 2012) to optimize network 

parameters. We also found that use of a dynamic decay rate (that increased over the course of training) for 

updating moving averages in batch normalization (Ioffe and Szegedy, 2015) led to a model with 

competitive performance more quickly than when using a fixed decay.  No other significant deviations 

from the original implementation were included. 

When improving on the baseline model with convolutional layer factorizations, we focused experiments 

on factorizations that maintained the effective region of influence of the original layers and did not 

significantly increase the overall number of network parameters. 

ENCODE DNase-seq and RNA-seq dataset 



Data from the ENCODE project was initially collected at the start of 2017 for all cell or tissue types for 

which RNA-seq and DNase-seq measurements were both available. In order to capture a greater diversity, 

gene quantifications from RNA-seq files with the following ENCODE labels were collected: “RNA-seq”, 

“polyA mRNA”, “polyA depleted”, “single cell”. All files with “ERROR” audit flags were rejected. We 

kept files with “insufficient read depth,” and “insufficient read length” warnings. Despite being below 

ENCODE project standards, we believe the available read depths and lengths in warning situations were 

likely to be less of an issue when it comes to differentiating cell types (Conesa et al., 2016), and preferred 

to accept more potential noise in favor of a larger diversity of sample types. 

The final step of data preparation involved assigning associations between specific RNA-seq and DNase-

seq files within the same tissue type. In cases where there existed multiple exact matches of "biosample 

accession” identifiers between the two file types, associations were restricted to such exact matches. If 

exact accessions did not match, two file types were associated if it could be verified that they originated 

from the same tissue sample, cell line, or patient. This eliminated several tissue types for which no such 

correspondences existed. Both technical and biological replicates were treated as independent samples of 

the same tissue since we wanted to put the burden of learning non-invertible aspects of noise due to the 

measurement process on the neural network model. 

The dataset was refined in late 2017, as several samples that had been part of our training and testing data 

were revoked by the ENCODE consortium due to quality concerns and updates. The final dataset 

consisted of 74 unique tissue types, distributed among partitions as discussed earlier (Table 2). The 

validation set was held constant, while the training and test sets included two variations. 

We utilized the same greedy merge methodology described in Basset (Kelley et al., 2016) on all DNase-

seq samples in our training sets to obtain a set of all potential sites of accessible DNA along the whole 

genome. 



We used a fixed length of 600 base pairs (bp) centered at DHS peaks to define each site. Blacklisted sites 

at which measurements were suggested to be unreliable were excluded (Kundaje, 2016). This led to a 

total of 1.71 million sites of interest in the case of the held-out tissue data partition, and 1.75 million sites 

in the tissue overlap data partition. Using all sites across all available DNase-seq files, this produced a 

total 338.7 million training examples in the held-out tissue split. 

As in other recent work on DNA-based prediction tasks (Alipanahi et al., 2015, Kelley et al., 2016, Singh 

et al., 2016, Quang and Xie, 2016) the sequence for each genomic site was obtained from human genome 

assembly hg19/GRCh37. 

Training the expression informed model 

During training data was balanced per batch due to a 14:1 ratio of negative to positive examples. Each 

batch sampled an equal amount of accessible and non-accessible sites without replacement, such that one 

pass through all available negative training examples constituted multiple randomly permuted passes 

through all positive training examples. In situations where a DNase-seq file had more than a single 

matching RNA-seq file, sites from that DNase-seq file were randomly assigned to one of the multitude of 

corresponding RNA-seq expression vectors each time they were selected for a training batch. 

To generate a validation set that was manageable to evaluate frequently we selected 40,000 random 

samples from each of accessible and non-accessible sites per validation DNase-seq file. This resulted in a 

set of 440,000 validation examples that were used to estimate ROC AUC throughout training. 

However, upon stopping we also evaluated prediction performance across whole genomes (all potential 

DHSs) of all validation samples (Supplemental Table S2). In cases where multiple RNA-seq file matches 

existed, predictions across the entire genome were evaluated once for every possible DNase-seq and 

RNA-seq file pair. Whole genome evaluation gave a better characterization of performance on the 

intended application, especially as captured by PR AUC, which is less misleading in the presence of data 

imbalance. Results on the test sets were evaluated across whole genomes following the same procedure. 



The total number of examples (all sites across all samples) for validation was 20.5 million and 22.2 

million for testing in the held-out tissue partition.  

All RNA-seq expression data used to train and test models was in units of log2(TPM + 1). There were 

many possible strategies for selecting the subset of genes for our input signature, but to initially avoid 

optimizing in this space, we relied on the prior work of the Library of Integrated Network-based Cellular 

Signatures (LINCS) and used their curated L1000 list of genes (LINCS, 2018). To ensure that the models 

could be applied later to cancer genomes in TCGA we converted all L1000 gene names into Ensembl 

gene identifiers and kept only those genes that were available in both ENCODE and TCGA TOIL RNA-

seq files. After this refinement, our final input L1000 gene list consisted of 978 genes. 

Expression informed model architecture and hyperparameters 

We trained several alternative versions of our model and reported validation results over the course of 

training in Supplemental Figure S3 and Supplemental Figure S4.  

The tissue-specific models demonstrated that multi-task outputs could share common convolutional layers 

and provide an accurate prediction of DNA accessibility across distinct sample types. Thus, we expected 

that if an input vector was discriminative of cell type it was likely to be sufficient to integrate it into the 

network after the convolutional layers. We evaluated adding a fully connected layer (depth = 500) before 

concatenating the vector of L1000 gene RNA-seq data to output from the convolutional layers, but found 

that it performed consistently worse (Supplemental Figure S3) than direct concatenation without the fully 

connected layer (Figure 1D). 

Transfer learning consistently shortened the training time across model variants, and we found that using 

weights learned from the corresponding data partitions before final cleanup of revoked files was more 

effective on the validation set than was transfer of convolutional layer weights from the best tissue-

specific model. However, our most impactful changes were increasing the batch size (from 128 to 512, 

and finally to 2048), and decreasing the learning rate (from 0.001 to 0.0001). 



The tissue-specific models had multi-task outputs so that each training sample provided an information-

rich gradient based on multiple labels for backpropagation. Since using RNA-seq inputs eliminated the 

need for multi-task outputs, each sample now only provided gradient feedback based on a single output. 

The batch size increase was intended to compensate for this change in output dimension to produce a 

more useful gradient for each batch. 

The learning rate decrease, on the other hand, was guided by the observation that training was reaching a 

point of slow improvement before even a single full pass through all negative training examples. Our new 

dataset was also significantly larger than that used to train tissue-specific models. 

We initialized our final expression-informed model (Figure 1D) with weights learned from the first 

iteration of the dataset, before erroneous revoked files were removed. In turn, those models were 

initialized with convolutional layer parameters from our best performing tissue-specific factorized 

convolutions model (Figure 1C). An effective batch size of 2048 was used for training (2 GPUs 

processing distinct batches of 1024), with an Adam (Kingma and Ba, 2014) learning rate of 0.0001 and a 

0.25 fraction of positive to negative samples in every batch. 

Expression informed model evaluation on ENCODE and genomic site annotations 

ENCODE test set results were summarized in two ways: as a mean of AUC scores computed per whole 

genome sample (mean tissue type AUC in Tables 3 and 4), and as a single AUC score computed by 

considering predictions for all sites across all whole genome samples together (overall AUC in Tables 3 

and 4).  Only the latter was reported for performance analysis by genomic site type. 

Two key sources were used to assign functional labels to accessibility prediction sites for performance 

breakdown. Exon, intragenic, and intergenic regions were derived from annotations defined by 

GENCODE v19 (Harrow et al., 2012). Promoter and promoter flank, and enhancer region annotations 

were obtained from the Ensembl Regulatory Build (Zerbino et al., 2015). 



When investigating correlation of training similarity to test sample performance, since the modulating 

factor between predictions applied to different tissues is the input RNA-seq data, distance between test 

samples, 𝑡, and the training set, 𝑇, was computed as d(𝑡, 𝑇)	=	min
,∈.

‖𝒓, − 𝒓2‖, where 𝒓2 is a test sample’s 

vector of log2(TPM + 1) expression levels for all L1000 genes. 

Predicting DNA accessibility in TCGA 

We applied our best expression informed model trained on the held-out tissue ENCODE partition to 

predict accessibility in TCGA. We restricted our predictions to promoter and promoter flank sites, since 

performance at those sites was high across all tests. 

TOIL RNA-seq transcripts per million (TPM) gene expression data was used to obtain L1000 input gene 

signatures for all processed TCGA samples (Vivian et al., 2017, TOIL RNA-seq recompute, 2016). All 

expression values were converted from log2(TPM + 0.001) to log2(TPM + 1) before use.  

For landscape views of accessibility and mutation impact analysis (Figure 3) we considered only samples 

with WGS available, and used mutation calls from an internal tool. For each sample site affected by at 

least one mutation, the change in predicted accessibility was computed before and after each mutation 

was applied, independently for SNPs and INDELs (Figure 3B). In order to apply t-SNE to generate the 

per-site landscape view (Figure 3D) we represented each site by a vector of binary accessibility decisions 

at that position across all selected TCGA samples with all mutations applied. All mutations were also 

applied when generating the per-patient t-SNE visualization (Figure 3F). 

Accessibility in LUAD 

To assess the uniqueness in perspective of accessibility versus RNA-seq, all LUAD samples for which we 

had WGS data were clustered into two groups via K-means. For this, four data sources were used: 

accessibility predictions for promoter and promoter flank sites, TOIL log2(TPM + 1) RNA-seq gene 

expression data, HiSeqV2 log2(normalized count + 1) RNA-seq gene expression data (TCGA Genome 



Characterization Center, 2017) and TOIL log2(TPM + 1) RNA-seq gene expression data for all genes in 

the L1000 gene set used as inputs to our expression informed model. For the first three datatypes, we 

clustered samples based on the top 5% most variable sites (for accessibility) or genes (for TOIL and 

HiSeqV2) across the LUAD cohort, following the logic that the most highly variable sites may highlight 

the most dramatic differentially active pathways. For the L1000 genes, clustering was based on the entire 

set of gene expression levels. To show the difference quantitatively between cluster assignments across 

data types we used adjusted mutual information (Vinh et al., 2010) (Figure 4B). 

Exploration of pathway enrichment between the accessibility clusters was performed using Enrichr 

(Kuleshov et al., 2016). Genes for enrichment analysis were selected by first eliminating all genes below 

a standard deviation threshold of 0.33 (in TOIL data) across the LUAD cohort (in HiSeqV2 data the 

equivalently selected standard deviation threshold was 1.0). This threshold was selected to include the 

main peak of gene standard deviation and exclude the peak around zero (Supplemental Figure S5), 

comprised of genes with little change or very low levels of expression. All remaining genes were then 

compared with a two-sided t-test between the two clusters and p-values were adjusted with Benjamini 

Hochberg (BH) correction. Due to the low number of WGS samples in either cluster (21 samples in C0 

and 20 samples in C1) a more permissive false discovery rate of 0.25 was chosen as the cutoff for 

differential expression. In TOIL data, this procedure returned 512 genes upregulated in C0 and 857 genes 

upregulated in C1. In HiSeqV2 data, the same process yielded 344 upregulated genes in C0 and 339 in 

C1. 

For comparison of tumor mutational burden (TMB) across clusters, TMB was computed as the total count 

of missense and nonsense mutations in each WGS sample. 

When the patient analysis set was expanded to include all LUAD samples without WGS mutation 

information, clustering based on promoter and promoter flank accessibility predictions was repeated with 

the same procedure as before (Figure 4D). 



To investigate whether the accessibility space appeared continuous along the dimensions of most variance 

across LUAD we used Principal Component Analysis (PCA) applied to all promoter and flank 

accessibility predictions to project each sample onto the first three principal components (Figure 4F). 

Correlating accessibility count with gene expression 

Total accessibility count used to investigate gene correlations was computed as the total number of 

promoter and promoter flank sites predicted to be accessible after applying the binary decision threshold 

(at 80% precision) defined on ENCODE data. Again, only genes whose standard deviation was above 

0.33 were considered for correlation analysis. Both Pearson and Spearman measures were evaluated, and 

the threshold for both measures was an absolute value above 0.4. All genes satisfying the threshold were 

analyzed for KEGG pathway enrichment with Enrichr (666 genes for Pearson correlation, and 418 genes 

for Spearman) (Supplemental Table S4 and S5) 

Accessibility analysis in immune cell driven clusters 

LUAD samples were clustered into two groups using K-means on vectors of lymphoid (21 cell types) and 

myeloid (13 cell types) xCell estimates (Aran et al., 2017), revealing a survival difference (Supplemental 

Figure S6C). We noticed that a plane orthogonal to the first principal component (PC1) partitioned cluster 

labels when xCell vectors were reduced to three dimensions with PCA (Supplemental Figure S6A and B). 

To exclude cases of near ambiguous label assignment and focus on more prominent differences we 

removed samples within a small margin at the midpoint between clusters (in PC1). Margin size was equal 

to the standard deviation of the smallest cluster in the PC1 dimension (Supplemental Figure S6D and E). 

After ignoring margin samples, the survival difference of patients between clusters increased in 

significance (logrank test p = 6.7e-4) (Supplemental Figure S6F).  

Total methylation for all LUAD samples was computed as the sum of values at all sites measured by the 

Infinium HumanMethylation450 BeadChip, available from TCGA (TCGA, 2016). Total accessible site 



count considered all promoter and promoter flank sites, with binary class assignment based on the 80% 

precision threshold (Figure 5B). 

For further analysis of accessibility, only sites previously determined as facultative were considered and 

all with low standard deviation (< 0.135) across LUAD (N = 512) were eliminated, to ignore cohort 

specific constitutive sites with some tolerance for noise. The threshold was selected so that at minimum 

10 accessibility values at a site had to be distinct from the site’s values across the whole cohort 

(Supplemental Figure S7A). 

Each accessibility prediction site was assigned to its nearest gene, according to distance in base pairs, as 

defined by GENCODE v19 (Harrow et al., 2012). We considered only accessibility sites within 50,000 

base pairs as having a valid correspondence to a gene (Supplemental Figure S7B). Significantly 

differentiated accessibility sites were then used to vote for candidate upregulated genes in each cluster. A 

very conservative significance threshold (two sided t-test BH adj. p < 1.0e-5) was selected so as to only 

focus on the most striking accessibility differences. Each site was allowed to contribute a single vote to its 

corresponding gene according to the cluster in which the site was more accessible. 

Genes with a consistent direction of upregulation votes were considered cluster-specific candidate genes 

to test for differential expression (532 genes in X0 and 2250 genes in X1). From the candidate genes for 

each cluster that also had significant (two sided t-test BH adj. p < 0.01) differential expression (190 in X0 

and 835 in X1) we identified the group in each cluster that was consistent (123 in X0, and 536 in X1) and 

inconsistent (67 in X0, and 299 in X1) with the direction of increased accessibility. All four sets were 

then tested for KEGG pathway enrichment via Enrichr (Supplemental Table S6 and S7). 

Predicting immune state from promoter and promoter flank accessibility 

To train an ensemble of distinct models to discriminate immune hot from immune cold we used three fold 

cross validation; independently partitioning hot (X0 from immune cell based clustering) and cold (X1 

from immune cell clustering) samples randomly to maintain an equal ratio across each fold. Training on 



different random subsets of data enhanced robustness when dealing with training label uncertainty. Each 

classifier was an RBF kernel SVM with 𝐶 = 3.5, and 𝛾 = 8
9:

, where 𝑁 was the number of features and 𝜎 

was the standard deviation of feature values across the training set. Additionally, training samples were 

balanced by weights inversely proportional to class frequency, and Platt scaling (Platt, 1999) was used to 

obtain probability estimates from SVM classification. During ensemble classifier application we excluded 

all samples that did not have a mean probability of at least 0.5 for the ensemble’s majority class 

prediction. 

Input features to the classifier were binary accessibility predictions for a set of 484 sites comprised from 

the union of all immune hot (X0) sites consistent with gene expression and immune cold (X1) sites 

inconsistent with expression, as obtained from analysis of the xCell driven LUAD clusters. These sites 

were chosen both for their association with significant differences in expression of corresponding genes 

and the enrichment of those gene sets for immune relevant pathways. 

Expanding the application domain of the immune activity classifier to previously unprocessed TCGA 

cohorts involved first applying our expression informed convolutional neural network model to all 

promoter and promoter flank sites in the new data. As previously, when expanding our LUAD sample 

size to non-WGS data, we used only the reference genome (hg19/GRCh37) and TOIL log2(TPM + 1) 

RNA-seq gene expression data for all predictions. Predictions that incorporated mutation information 

were included only for samples in our original six cohorts for which WGS was available. 

Validating TCGA predictions with measured ATAC-seq peaks 

The list of pan-cancer peaks, TCGA sample identifiers, and the normalized ATAC-seq insertion counts 

within the pan-cancer peak set were obtained from supplemental material of the empirical investigation of 

chromatin accessibility in TCGA (Corces et al., 2018) at: https://gdc.cancer.gov/about-

data/publications/ATACseq-AWG . To visualize distributions of ATAC-seq peaks for our clustering-

based constitutive and facultative site labels, we computed the mean values within KIRC, KIRP, LUAD, 



and LUSC cohorts individually for each pan-cancer peak that corresponded uniquely to our promoter and 

promoter flank sites with at least 70% overlap (Figure 7A). This was not restricted to TCGA samples for 

which we had also made predictions. But when looking at normalized count distributions for prediction 

decisions made by our accessibility classifier (Figure 7B,C) we did restrict analysis only to samples where 

both ATAC-seq was performed and our predictions were available. For every TCGA sample, each 

accessibility prediction site with a matching pan-cancer ATAC-seq peak contributed a single datum to the 

distribution plots. So every matched TCGA sample whose numbers are listed in Figure 7B,C contributed 

61,342 data points. We validated matched samples for all cohorts to which we had previously applied our 

immune activity classifier with the exception of SARC, for which no ATAC-seq measurements were 

available, and GBM, for which none of the TCGA samples measured matched those for which we had run 

predictions. As in all previous TCGA analyses the classification decision threshold for binarizing 

accessibility predictions was based on an 80% precision (20% false discovery rate) threshold on the 

ENCODE held out tissue test set.  

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplemental Figures 

 
Supplemental Figure S1. Training of tissue-type-specific model architectures. Related to Figure 1 and 
Table 1. The mean ROC AUC across 164 cell types in the validation set versus training epoch is shown. 
The result obtained by the pre-trained model provided by the authors of Basset is shown for reference, but 
since the number of training epochs was not reported, an arbitrary range was selected for display. We 
explored independent factorization of the second convolutional layer of the baseline model, and achieved 
the best performance when both the first and second convolutional layers were factorized. 

 



 
Supplemental Figure S2. t-SNE embedding of ENCODE dataset partitioning in RNA-seq and DNase-
seq space. Related to Tables 2, 3, 4, and Figure 2. Sample distribution is illustrated by t-SNE embedding 
of the tissue overlap data partitions (training1 and test1) based on (A) RNA-seq log2(TPM + 1) 
expression data and (B) DNase-seq peaks, as well as the held-out tissues data partitions (training2 and 
test2) based on (C) RNA-seq and (D) DNase-seq. The original ENCODE sample type labels are also 
shown for t-SNE embedded (E) RNA-seq and (F) DNase-seq samples, illustrating that samples of similar 
tissue or function often appear in proximity to each other across both data types. 
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Supplemental Figure S3. Overall ROC AUC for the small validation set. Related to Figures 1, 2, and 
Tables 3, 4. The ROC AUC for the small validation set over number of passes through all positive 
examples (positive epochs) for several expression informed model architectures is shown. We 
experimented with adding a fully connected (FC) layer of depth 500 before concatenating (concat) gene 
expressions with outputs from the convolutional (conv) layers. However, increasing the batch size and 
initializing the convolutional layers with weights from our final tissue-specific model (transfer) improved 
performance most. Models trained on the tissue overlap set (train1) showed similar validation 
performance as those trained on the held-out tissue set (train2) with the same hyperparameters. This 
evaluation was done before the final dataset revision which revoked several suspected low quality 
samples, yet still provided valuable feedback for model selection. 

 



 
Supplemental Figure S4. Overall ROC AUC for the small validation set over positive training epochs 
for models trained after the final dataset revision. Related to Figures 1, 2, and Tables 3, 4. A further 
increase in batch size as well as a decreased learning rate (lr) led to additional significant improvements. 
Changing the fraction of positive samples per training batch (from p:n=0.5 to p:n=0.25) also slightly 
improved both ROC AUC as well as PR AUC in whole genome validation. Transfer of weights learned 
before final revoking of data (Figure S3) was a more effective initialization than weight transfer from our 
final tissue-specific model. Finally, we again confirmed that the same hyperparameters led to good 
validation performance across both training partitions: tissue overlap (train1) and held-out tissue (train2). 

 

 

 

 

 

 



 
Supplemental Figure S5. Histograms of gene expression standard deviations. Related to Figure 4. (A) 
Histogram of gene expression standard deviations across LUAD WGS samples in TOIL RNA-seq 
log2(TPM + 1) data along with the selected threshold (0.33) in orange is shown. (B) Gene expression 
standard deviations across the same samples in HiSeqV2 log2(normalized count+1) data and the selected 
threshold (1.0) in orange (B) are also shown. In both cases the thresholds eliminate genes with little 
change across samples or very low levels of expression, and keep all genes that constitute the main peak 
of values. 
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Supplemental Figure S6. Adding a margin between immune cell based clusters in LUAD samples. 
Related to Figure 5. (A) All LUAD samples are shown with respect to the first three principal components 
(PC1-3) of their lymphoid and myeloid xCell estimates, colored according to labels assigned from k-
means clustering. (B) Plotting the labeled data according to only the first principal component clearly 
shows the location of a separating plane between the clusters. The points excluded by introducing a 
margin at the scale of the smaller cluster’s standard deviation along PC1 are shown (D) and (E). The 
impact on survival between X0 and X1 is shown by Kaplan-Meier plots before (C) and after (F) the 
margin was introduced. Kaplan-Meier plots are annotated with group size (N), logrank test p-values and 
hazard ratio (HR) based on a Cox proportional hazards (CoxPH) model regression using class assignment 
as the only explanatory variable. 
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Supplemental Figure S7. Histograms of accessibility and site to gene distance standard deviations. 
Related to Figure 5. (A) A histogram of the standard deviation of accessibility classifications in LUAD of 
promoter and promoter flank sites previously identified as facultative (40,823 sites) based on t-SNE 
across our initial set of six TCGA cohorts is shown. The threshold (< 0.135), in orange, identifies a subset 
of 25,093 sites facultative in LUAD. (B) The second histogram shows the site to nearest gene distances 
for all accessibility sites that also satisfy BH adjusted p < 1.0e-5 from a two-sided t-test between the 
LUAD immune cell driven clusters (3246 sites). Only sites within 50k base pairs (orange) were 
considered when voting for gene accessibility. 
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Supplemental Figure S8. Example immune cell and checkpoint gene distributions across predicted hot 
and cold tumors. Related to Figure 6. Examples of xCell estimates and checkpoint gene expression levels 
compared across multiple cohorts for tumors classified by our 3 SVM ensemble as hot or cold, with group 
size shown (N). All x-axis labels are ordered by significance based on a two-sided t-test between tumors 
classified as hot and cold. Only the top 21 most significant xCell estimates from lymphoid and myeloid 
cell categories are shown. (A) The LUAD xCell estimate and (B) checkpoint gene distributions 
demonstrate how application of the classifier affected significance ordering from the raw training data 
illustrated in Figure 5. (C,D) SKCM provides an example of a distinct cohort in which immune hot 
patients exhibited longer survival. (E,F) LUSC demonstrates one case where immune activity appears to 
have no effect. (G,H) Finally, KIRC shows a case where immune active patients have significantly worse 
survival, and also exhibits a curious lack of difference between levels of CD274 (also called PD-L1) and 
PDCD1LG2 (also called PD-L2) compared to other cohorts split by our accessibility based immune 
activity classifier. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Tables 



Supplemental Table S1. Number of DNase-seq files by tissue name per dataset partition, including 
tissue overlap (TO) and held-out tissue (HOT) sets. Related to Tables 2, 3, 4, and Figure 2. 

 



Supplemental Table S2. Whole genome validation results for our expression-informed model trained on 
tissue overlap (TO) and held-out tissue (HOT) sets. Related to Tables 2, 3, and 4. 

 
 

Supplemental Table S3. Enhancer results across held-out tissue test set whole genomes. Related to Table 
6 and Figure 2. 

 
 

 

 

 

 

 

 

 



Supplemental Table S4. Pathway enrichment (Enrichr) results with adjusted p < 1.0e-4 for all 418 genes 
correlated with total promoter and promoter flank accessibility in LUAD with ïSpearman correlationï > 
0.4. Related to Figure 4. 

 
 

Supplemental Table S5. Pathway enrichment (Enrichr) results with adjusted p < 1.0e-6 for all 666 genes 
correlated with total promoter and promoter flank accessibility in LUAD with ïPearson correlationï > 
0.4. Related to Figure 4. 

 
 



Supplemental Table S6. Top pathway enrichment (Enrichr) results for genes whose expression was 
consistent with increased accessibility in the immune active (X0) group of LUAD patients identified by 
xCell clustering. Related to Figure 5. 

 
 

Supplemental Table S7. Pathway enrichment (Enrichr) results (adj. p < 0.05) for genes whose 
expression was inconsistent with increased accessibility in the immune cold (X1) group of LUAD 
patients identified by xCell clustering. Related to Figure 5. 

 


