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Fig. S1. Gradient improvement for high pH SCX enrichment.

A) Workflow of high pH SCX enrichment (1). LN229 cells were lysed in 8M urea and digested with
trypsin. From 1 mg of protein, five fractions are produced by the SCX procedure and were
subsequently run on a Q Exactive Plus MS. The data was searched on Proteome Discoverer 2.2

and methyl peptides were subject to a strict 1% methyl FDR. The number of PSMs for two

gradients tested is shown in the table in E).




B) Density plots of PSM retention times for methyl and nonmethyl PSMs run on the “Long” SCX
gradient used from Wang et al.. PSMs from all 5 fractions were combined and their retention times
plotted. The average density of nonmethyl PSMs and methyl PSMs was 275 PSM / min and 15
PSMs / min, respectively.

C) Original “Long” gradient and a new proposed “Short” gradient for SCX. Wang et al. did not
collect spectra for the first 20 min during sample loading, but because we found that methyl PSMs
were eluting during this sample loading phase, we did collect spectra during this phase of the LC
gradient.

D) Density plot of methyl PSM retention time for methyl PSMs captured by the “Long” and “Short”
SCX gradients. PSMs from all 5 fractions were combined and their retention times plotted for each
gradient. The average density of “Long” and “Short” gradient methyl PSMs was 15 PSM / min and
19 PSMs / min, respectively.

E) Summary of spectra identified by each gradient. Each of the five SCX fractions are shown
individually. The numbers of methyl and nonmethyl PSMs were used to calculate the percent
enrichment for each fraction. The number of MMA, Kme1, DMA, Kme2, PSMs, and mixed methyl
PSMs are shown. Mixed PSMs contained a mixture of methyl marks on the same peptide (e.g.,
MMA and DMA). The percolator g-value cutoff used to estimate the methyl FDR is also shown for

each technique.
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Fig. S2. Gradient improvement for MMA IAP enrichment.

A) Workflow of MMA IAP enrichment. LN229 cells were lysed in 8M urea and digested with trypsin.
10 mg of protein were incubated with commercial anti-MMA antibodies conjugated to agarose

beads, washed, and eluted, and subsequently run on a Q Exactive Plus MS. The data was



searched on Proteome Discoverer 2.2 and methyl peptides were subject to a strict 1% methyl
FDR. The number of PSMs for two gradients tested is shown in the table in E).

B) Density plots of PSM retention times for methyl and nonmethyl PSMs run on an in-house
“Standard” gradient, similar to other IAP methods (2). The average density of nonmethyl and
methyl PSMs was 22 PSM / min and 12 PSMs / min, respectively.

C) In-house “Standard” proteomics gradient and a new proposed “Slow” gradient for MMA 1AP.
The “Slow” gradient extends the length of the gradient slightly but uses a slower ramp of
acetonitrile.

D) Density plot of methyl PSM retention time for methyl PSMs captured by the “Standard” and
“Slow” IAP LC gradients. The average density of methyl PSMs for the “Standard” and “Short” LC
gradients was 12 PSM / min and 13 PSMs / min, respectively.

E) Summary of spectra identified by each gradient. The numbers of methyl and nonmethyl PSMs
were used to calculate the percent enrichment for each fraction and IAP. The number of MMA,
Kme1, DMA, Kme2, Kme3, and mixed PSMs are shown. Mixed PSMs contained a mixture of
methyl marks on the same peptide (e.g., MMA and DMA). The percolator g-value cutoff used to

estimate the methyl FDR is also shown for each technique.
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Fig. S3. Andromeda identifies ADMA through neutral loss of dimethylamine

A) Workflow diagram of the steps used to validate Andromeda searches for the neutral loss of
dimethylamine in a synthetic ADMA dataset (3) (PXD009449). Roughly 140 synthetic peptides
contained a single, non-terminal dimethyl ADMA.. Starting from the Andromeda output msms.txt,
peptides that exhibited neutral loss were annotated with either ADMA (dimethylamine) and/or
SDMA neutral loss (methylamine) (4-6). We then required that each neutral loss ion be
accompanied by the original b/y ion (e.g., y6* was kept if and only if y6 was also present). Our
rationale for this filter was that neutral loss ions are typically weaker than the original b/y ion, so
neutral loss ions not accompanied by the original b/y ion are likely to be false positive
identifications. After this filtering, 73 peptides showed ADMA neutral loss and 6 peptides showed
evidence of both ADMA and SDMA neutral losses. For the 6 ambiguous peptides, the mean
Andromeda Score of the PSMs was calculated for all ADMA and SDMA PSMs. The boxplot in A)
shows that for 6 of 7 synthetic methylated peptides their mean Andromeda Scores allowed clear
assignment of ADMA. Only one ambiguous peptide which had similar Andromeda scores for
ADMA and SDMA neutral loss PSMs could not be assigned. An identical process was used to
process the synthetic SDMA dataset which also contained roughly 140 peptides. As a control, the
unmodified synthetic dataset was also searched on Andromeda and no
methylamine/dimethylamine neutral losses were detected (data not shown). For our own data,
because MMA can also produce a neutral loss of methylamine, we imposed an additional
restriction for mixed peptides containing both MMA and SDMA that that the SDMA site be
localizable by the neutral loss ions. If the SDMA site could not be localized by neutral loss ions,
the neutral loss was rejected. All reported neutral loss masses are charge +1.

B) Example calculation for one synthetic ADMA peptide, YCLTAPNYRLK. MS2 spectra of
YCLTAPNYRLK were searched for ADMA and/or SDMA neutral losses. Spectra that contained
neutral losses were subjected to the requirement that a neutral loss/original y ion pair must be

present for the neutral loss to be considered. YCLTAPNYRLK had 26 PSMs with ADMA neutral



losses and only 1 PSMs with SDMA neutral losses. The ADMA PSMs had an average Andromeda
score of 116, whereas the SDMA PSM had a score of 73.8. Because ADMA PSMs were
substantially more numerous (26 to 1) and the ADMA Andromeda scores were much higher than
the SDMA Andromeda score suggested that YCLTAPNYRLK is ADMA modified. All reported

neutral loss masses are charge +1.
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Fig. S4. Quantification of mixed methyl arginine SCX peptides

A) Volcano plot of quantified mixed methyl arginine peptides identified by SCX from 293T cells
expressing shControl or shPRMT1. Mixed peptides contained both an MMA site and a DMA site
on the same peptide. LFQ values were logz transformed, median normalized, and subjected to a
permutation t-test in Perseus with g < 0.05, and Sy = 0.5. Filled diamonds represent peptides that

have a g-value < 0.05.
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Fig. S5. Lysine methylation is minimally affected by knockdown of PRMT1.
A) Volcano plot of quantified methyl lysine peptides enriched by SCX on 293T cells expressing
shControl and shPRMT1. LFQ values were log. transformed, median normalized, and subjected

to a Perseus permutation-based t-test to asses significance with parameters q < 0.05 and Sp =



0.5. Filled symbols represent a g-value < 0.05. Only one site, HMGN2 K40, was found to
significantly change upon PRMT1 knockdown.
B) Similar to A) but for PanK IAP enriched methyl lysine peptides. No significant changes were

observed for PanK IAP upon knockdown of PRMT1.
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Fig. S6. Missed cleavage patterns of quantified methyl peptides demonstrate methylation
changes upon PRMT1 knockdown.

Quantified SCX peptides with missed cleavage variants from 293T cells expressing either
shPRMT1 or shControl are displayed, along with log. fold change of shPRMT1/shControl,
permutation t-test g-values, and neutral losses if present. Examination of missed cleavage
peptides improved confidence in methylation changes upon PRMT1 knockdown. (top) The missed
cleavage peptide G3BP1 R447(DMA);R460(SDMA) was downregulated in PRMT1 knockdown

cells, but the fully tryptic peptide G3BP1 R460(SDMA) was upregulated in PRMT1 knockdown



cells. This suggests that R447 was demethylated in PRMT1 knockdown cells, leading to cleavage
at R447 and therefore increased abundance of the G3BP1 R460(SDMA) peptide. We did not
observe neutral losses to assign R447 as either ADMA or SDMA modified. (middle) The missed
cleavage peptide FUS R216(SDMA);R218(DMA) was downregulated in PRMT1 knockdown cells,
but the fully cleaved peptide FUS R218(DMA) was upregulated in PRMT1 knockdown cells. This
suggests that FUS R216(SDMA) was demethylated in PRMT1 knockdown cells, leading to
cleavage at R216 and therefore increased abundance of tryptic peptide FUS R218. (bottom) The
missed cleavage peptide CNBP R32(DMA);R34(DMA) was downregulated in PRMT1 knockdown
cells, but both the fully cleaved peptide CNBP R34(DMA) and the missed cleavage peptide CNBP
R32(DMA) were upregulated in PRMT1 knockdown cells. This suggests that CNBP exists in
doubly dimethylated form in shControl cells but in either of two singly dimethylated forms in

shPRMT1 cells.
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