Methylated Histidines Alter Tautomeric Preferences that Influence the Rates of Cu Nitrite Reductase Catalysis in Designed Peptides
Karl J. Koebke^a, Fangting Yu^a, Casey Van Stappen^a, Tyler B. J. Pinter^a, Aniruddha Deb^a, James E. Penner-Hahn^a, Vincent L. Pecoraro^{*a}
a: Department of Chemistry, University of Michigan Ann Arbor, MI 48109 **Table of Contents**

1. EXAFS Fitting Parameters at pH 5.9 for all Constructs Reported	S3
2. XANES Comparison of Cu(II) Constructs Reported	S5
3. EXAFS Signal Comparison at pH 5.9	S6
4. Example Cu(II) Titration for K _D Determination	S7
5. Example Cu(I) Titration for K _D Determination	S8
6. Electron Paramagnetic Resonance Spectra and Fits	S9
7. UV-Vis Spectra of Cu(II)(TRIW-εmH)3 and Cu(II)(TRIW-δmH)3	

1. EXAFS Fitting Parameters at pH 5.9 for all constructs reported

Sample	Model	Cu-N R (Å)	Cu-N σ ² (Å ²)	Cu-O R (Å)	Cu-O σ ² (Å ²)	F
			1 x10 ⁻³		1 x 10 ⁻³	
Cu(I)(TRIW- _{δm} H)₃	CuN ₂	1.93	5.5	N/A	N/A	95
	CuN₃	1.94	7.2	N/A	N/A	58
	CuN ₂ O	1.93	8.7	1.95	2.8	52
	CuN₃O	1.94	7.6	1.92	17.8	50
Cu(I)(TRIW- _{δm} H L19A) ₃	CuN ₂	1.89	8.1	N/A	N/A	53
	CuN₃	1.89	10.4	N/A	N/A	41
	CuN ₂ O	1.89	10.5	1.90	9.0	38
	CuN₃O	1.89	10.3	1.46	94.8	39
Cu(I)(TRIW- _{ɛm} H) ₃	CuN ₂	1.90	9.4	N/A	N/A	45
	CuN₃	1.90	11.8	N/A	N/A	54
	CuN ₂ O	1.89	9.1	2.02	31	42
	CuN₃O	1.90	10.9	2.16	8.0	47

Table S1. Cu(I) EXAFS fitting parameters for all constructs reported in main manuscript. Only the parameters that were refined are shown. Histidine outer-shell paths are calculated using a rigid imidazole group as a model (denoted by "N" in the model designation). Fits were performed using all outer-shell paths.

Sample	Model	Cu-N	Cu-N σ^2 (Å ²)	Cu-O	Cu-) σ ² (Å ²)	F
		R (Å)	1 x 10 ⁻³	R (Å)	1 x 10 ⁻³	
Cu(II)(TRIW-H)₃	CuN ₂ O ₂	1.935	9.6	1.990	12.0	160
	CuN₃	1.937	8.1	N/A	N/A	188
	CuN ₃ O ₁	1.910	7.9	2.023	1.04	103
	CuN ₃ O ₂	1.916	11.4	1.987	7.0	121
Cu(II)(TRIW- _{δm} H)₃	CuN ₂ O ₂	1.912	12.8	1.962	4.2	125
	CuN₃	1.937	7.5	N/A	N/A	177
	CuN ₃ O ₁	1.913	10.5	1.980	1.3	113
	CuN ₃ O ₂	1.942	7.8	1.923	21.2	150
Cu(II)(TRIW- _{ɛm} H) ₃	CuN ₂ O ₂	1.929	11.3	1.974	4.7	131
	CuN₃	1.951	7.4	N/A	N/A	250
	CuN ₃ O ₁	1.943	10.4	1.972	2.9	157
	CuN ₃ O ₂	1.935	23.1	1.966	3.5	145.2

Table S2. Cu(II) EXAFS fitting parameters for all constructs reported in main manuscript. Only the parameters that were refined are shown. Histidine outer-shell paths are calculated using a rigid imidazole group as a model (denoted by "N" in the model designation). Fits were performed using all outer-shell paths.

Figure S1. EXAFS and the Fourier Transform of EXAFS of Cu(I) bound forms of all constructs reported at pH 5.9. Fits were created using the best fit models reported in main manuscript (Cu^I(Imid)₃ for all constructs)

Figure S2. EXAFS and the Fourier Transform of EXAFS of Cu(II) bound forms of TRIW-H, TRIW-δmH, and TRIW-εmH at pH 5.9. Fits were created using the best fit models reported in main manuscript (Cu^{II}(Imid)₃O₁ for TRIW-H and TRIW-δmH and Cu^{II}(Imid)₂O₂ for TRIW-εmH)

2. XANES Comparison of Cu(II) Constructs Reported

Figure S3. Cu(II) XANES at pH 5.9 of methylated His constructs reported compared to that of TRIW-H

3. EXAFS Signal Comparison at pH 5.9

Figure S4. Cu(I) EXAFS at pH 5.9 of methylated His constructs reported compared to that of TRIW-H

Figure S5. Cu(II) EXAFS at pH 5.9 of methylated His constructs reported compared to that of TRIW-H

4. Example Cu(II) Titration for K_D determination

Figure S6. Titration of 140nM (TRIW-εmH)₃ in 50mM MES at pH 5.9 with Cu(II). Titration was monitored via tryptophan fluorescence quenching. Data points are depicted in black while the fit is depicted in red.

5. Example Cu(I) Titration for K_D determination

Figure S7. Titration of 100 μ M (TRIW-_{em}H)₃ and 50 μ M Cu(I) in 50mM MES at pH 5.9 with bathocuproine disulfonate.

6. Electron Paramagnetic Resonance Spectra and Fits

Figure S8. EPR spectra and fits for Cu(II)(TRIW-H)3, Cu(II)(TRIW-δmH)3, and Cu(II)(TRIW-εmH)3 at pH 5.9. Fits were done using SpinCount.

7. UV-Vis Spectra of Cu(II)(TRIW-_{Em}H)₃ and Cu(II)(TRIW-_{6m}H)₃

Figure S9. Electronic absorption spectra at pH 5.8 of 300 μ M Cu(II) in the presence of 300 μ M (Black) (TRIW- ϵ mH)₃ or (red) (TRIW- δ mH)₃.