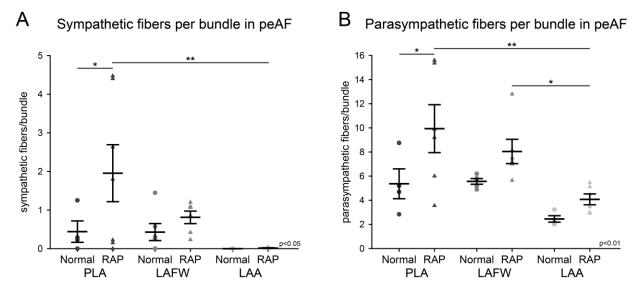

SUPPLEMENTAL MATERIAL

Region specific parasympathetic nerve remodeling in the left atrium contributes to creation of a vulnerable substrate for atrial fibrillation.


Georg Gussak¹*, Anna Pfenniger¹*, Lisa Wren¹*, Mehul Gilani¹*, Wenwei Zhang¹, Shin Yoo¹, David A Johnson¹, Amy Burrell¹, Brandon Benefield¹, Gabriel Knight¹, Bradley P. Knight¹, Rod Passman¹, Jeffrey J Goldberger², Gary Aistrup³, J. Andrew Wasserstrom¹, Yohannes Shiferaw⁴, Rishi Arora¹⁺.

*Authors contributed equally.

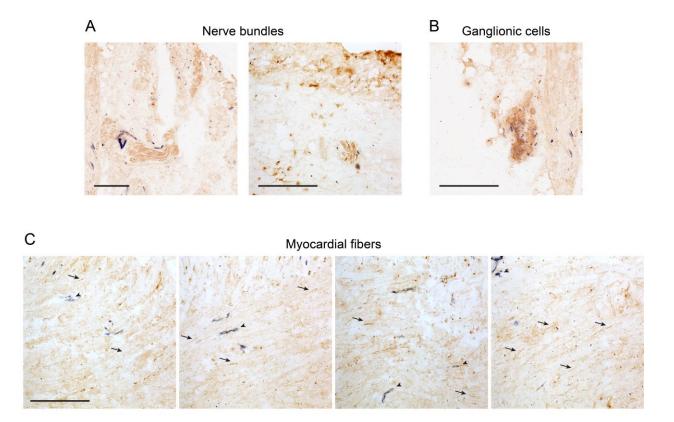

Supplemental figures

Figure S1. Autonomic innervation of the canine left atrium. (**A**) Schematic representation of the three studied regions of the left atrium: the posterior left atrium (PLA), left atrial free wall (LAFW) and left atrial appendage (LAA). A high-density electrode is represented at the regions of interest. (**B**) Combined nerve bundle size in the PLA, LAFW and LAA is shown as median with interquartile range. n=53 and N=4 for PLA, n=138 and n=6 for LAFW, and n=112 and N=5 for LAA. (**C**) Nerve bundle density in the PLA, LAFW and LAA is shown as median with interquartile range. N=3 for PLA, N=5 for LAFW, and N=4 for LAA. (**D**) Autonomic fiber content in left atrial bundles is shown as mean \pm SEM for sympathetic and parasympathetic fibers in the PLA, LAFW and LAA. For sympathetic fibers, N=4, 6 and 5 respectively and for parasympathetic fibers, N=4, 5 and 4. (**E**) Myocardial autonomic fiber density in the left atrium is shown as mean \pm SEM for spectively and for parasympathetic fibers, N=3, 6 and 6 respectively and for parasympathetic fibers, N=4, 5 and 6. One or two way ANOVA significance indicated in graphs. For values that remained non-parametric despite transformation, Kruskal-Wallis one way ANOVA on ranks was performed. * P<0.05, ** p<0.01, *** p<0.001 for pairwise comparison with Holm-Sidak or Dunn's method.

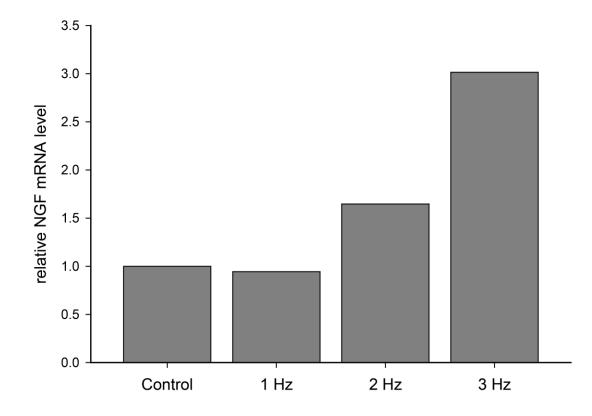


Figure S2. Autonomic fiber composition of atrial nerve bundles. (**A**) Number of sympathetic fibers in nerve bundles in the PLA, LAFW and LAA of normal dogs or after RAP is shown as mean \pm SEM. N=4, 7, 6, 6, 5 and 6, respectively. (**B**) Number of parasympathetic fibers in nerve bundles in the PLA, LAFW and LAA of normal dogs or after RAP is shown as mean \pm SEM. N=4, 6, 5, 6, 4 and 6, respectively. Two way ANOVA significance indicated in graphs. * p<0.05, ** p<0.01 for pairwise comparison with Holm-Sidak method.

Figure S3. Autonomic innervation in the rapidly paced right atrium is comparable to the left atrium. (**A**) Representative micrographs of immunohistochemistry for AChE (brown) and DBH (blue) on right atrial tissue showing nerve bundles, ganglionic cells (**B**) and myocardial fibers (**C**) after rapid atrial pacing. Examples of parasympathetic (AChE positive) fibers indicated with arrows. Examples of sympathetic (DBH positive) fibers indicated with arrowheads. Scale bars = $200\mu m$.

canine atrial cardiomycytes

Figure S4. NGF secretion by primary atrial myocytes is dependent on frequency of activation. Relative NGF mRNA level in isolated canine atrial myocytes in control conditions or after pacing at 1 Hz, 2 Hz or 3 Hz. N=1, PCR performed in duplicate.