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Fig. S1 . vdW free energies of low-dimensional compact

molecules. vdW interaction free energies of (a) a fullerene or (b) a

carbyne wire, each with a gold plate, comparing results with phonons

at zero (blue) or room (red) temperatures with those without phonons

(green).

Having presented the power laws of the vdW interaction

free energies in the main text, we now present the free energies

themselves for the systems considered.

For the compact molecular systems of fullerene [Fig. 1(a)]

or a carbyne wire [Fig. 1(b)], we find free energies that do not

exceed 10−18 J in magnitude. However, for carbyne at room

temperature, the nonmonotonic power law at small separation

ensures that the force on the wire due to the gold plate may ex-

ceed 10−11 N, which may be measurable, though this would

require a way to stably suspend a long carbyne wire in vac-

uum; this is contrast to the fullerene, whose monotonic power

laws and small size ensure that forces are too small to feasibly

measure.

For infinite pristine graphene above a gold plate [Fig. 2(a)],

we find that the RMB free energies (per unit area) at zero

and room temperature coincide at small separation but diverge

from each other at larger separations. This is in contrast to

the RPA free energies at zero versus room temperature, which

never coincide with each other. This is a reflection of the abil-
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ity of the material model for graphene in the RPA framework

to capture intrinsic finite temperature effects like excitation

of electrons away from the Dirac point, whereas the material

model used in the RMB framework is computed only at zero

temperature, and only the effects of temperature on long-range

EM interactions via the Matsubara summation are directly

captured. Additionally, the RMB power law at zero tempera-

ture decreases and then increases again for z > 10 nm, which

is why the RMB free energy at zero temperature eventually

approaches the RPA free energy at zero temperature; no such

coincidence is observed for the RMB and RPA free energies

at room temperature.

For pristine graphene or BN supercells above a gold

plate [Fig. 2(b)], we see insignificant differences in the RMB

free energies (per unit area), evinced by the overlapping lines

for the corresponding cases in each system. Additionally, the

room temperature power laws for both graphene and BN su-
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Fig. S2. vdW free energies of two-dimensional materials. (a) vdW 

interaction free energies per unit area of an infinite sheet of pristine 

graphene with a gold plate, comparing RMB (solid) and RPA 

(dashed) results at zero (blue) or room (red) temperatures. (b) vdW 

interaction free energies per unit area of supercells of graphene (solid) 

or BN (dashed) of approximate size 11 nm ×  10 nm, comparing 

results with phonons at zero (blue) or room (red) temperatures with 

those

 

without

 

phonons

 

(green).
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percells show bumps around z ≈ 3 nm, reflecting the non-

monotonicity of the corresponding power laws at those sep-

arations. This is similar to the case of carbyne, but different

from infinite graphene. It is worth noting that at z = 1 nm,

the free energies for the graphene supercell are larger than

their counterparts for infinite graphene by 1.5% and 3.8% at

zero and room temperatures, respectively; these suggest con-

vergence of the finite supercells to the infinite results at such

small separations. By contrast, at z = 10 nm, these free ener-

gies for the graphene supercell are smaller than their counter-

parts for infinite graphene by 10.6% at zero temperature and

0.4% at room temperature. The separation z = 10 nm is large

enough for the finite size of the supercell to become relevant,

and the deviations at zero temperature free energies reflects

this. The much smaller deviation in the room temperature free

energies at this separation is because the room temperature

power law for the supercell exhibits nonmonotonic behavior

for z < 10 nm due to the confluence of material effects, low

dimensionality, and finite size, whereas this does not occur for

infinite graphene at room temperature, demonstrating qualita-

tive divergence of the supercell behavior from that of infinite

graphene at room temperature for larger separations.

We expand on the issue of nonmonotonic vdW interaction

power laws at finite temperature between carbyne and a gold

plate, specifically regarding whether this is an artifact of the

overlap of enlarged Gaussian basis functions with the plate.

Strictly speaking, for a wire parallel to a conducting plane,

modeling the latter via a local macroscopic susceptibility be-

comes questionable for z < σ0(0), as we expect the atom-

ism and spatially dispersive response of the latter to matter

more for such small separations. Such an issue is not rel-

evant when considering interactions between two molecules

in vacuum. We further explore this by comparing the RMB

interaction power laws (in the presence of phonons) of a sin-

gle carbyne wire above the gold plate, equivalent to a wire

interacting with its correlated image, against that of two par-

allel, uncorrelated wires interacting in vacuum. In particular,

we study wires comprising either 250, 500, or 1000 atoms at

zero [Fig. 3(d)] and room [Fig. 3(e)] temperatures. At zero

temperature, the power laws for a single wire above the plate

are all monotonic even at small z, because the free energy is

not sensitive to the nonmonotonic integrand for z < σ0(0);
essentially, the wire is interacting with its correlated image,

which dramatically changes the phonon polaritons emerging

from the long-range EM couplings, compared to those of the

wire in vacuum. In contrast, the power laws for two wires

of at least 500 atoms in vacuum show nonmonotonicity for

z > 10 nm, which is larger than σ0(0) and hence cannot be

attributed to overlapping Gaussian basis functions. At room

temperature, the power laws for a single wire above the plate

show nonmonotonicity only for z not much greater than σ0(0)
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Fig. S3 . Nonmonotonicity and temperature deviations due to

phonon-induced nonlocal response in carbyne at short distance

from the gold plate Power laws for the vdW interactions of one

parallel carbyne wire with a gold plate (solid) or two such wires in

vacuum (dashed) for wires made of 250 (magenta), 500 (blue), or

1000 (black) atoms, at T = 0 (a) or T = 300 K (b).

for every wire length, while the power laws for two wires in

vacuum show two maxima for z < 20 nm, with the maxima

at larger z corresponding to the aforementioned maxima vis-

ible for two wires even at zero temperature and occurring in

the absence of overlapping Gaussian widths. Thus, it is clear

that as nonmonotonic vdW interaction power laws can be ob-

served at room temperature for separations both on the order

or larger than the corresponding Gaussian smearing widths,

and is therefore not an artifact of overlapping response func-

tions or the lack of atomism in our description of the plate.

The internuclear couplings KI that enter the response V of

every molecular system we test are derived from density func-

tional theory (DFT) calculations in the following way. Un-

der the Born–Oppenheimer approximation, we find the elec-

tron density minimizing the electronic energy for a fixed set

of nuclear coordinates, and iteratively vary the nuclear coor-

dinates until the total energy is minimized to determine the

ground state (relaxed) structure. This is done with periodic

boundary conditions enforced particularly for carbyne and

graphene. We retain only nearest neighbor internuclear cou-

plings in graphene and second-nearest neighbor couplings in

carbyne and solve KIxI = ω2MIxI for the two atom basis

with periodic boundary conditions, producing the phonon dis-

persions for graphene and carbyne in Fig. 4. The graphene

phonon dispersion generally agrees well with prior theoretical
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Fig. S4 . Phonon dispersions of carbyne and graphene. The

bands are computed along the Brillouin zone edge using internuclear

couplings derived from density functional theory. Top: All 4 distinct

bands, namely the longitudinal (L) and transverse (T) acoustic (A)

and optical (O) bands for carbyne; both TA and TO bands are doubly

degenerate (denoted ×2). Bottom: All 6 bands for graphene, dis-

tinguishing in-plane transverse (T) and out-of-plane transverse (Z)

bands which are no longer degenerate.

and experimental work [Refs. 19–22 in main text], and the

carbyne phonon dispersion generally agrees well with prior

theoretical work [Refs. 23–25 in main text] (though experi-

mental results for carbyne are lacking) [Fig. 4]; in any case,

the exact values of the phonon frequencies, especially for op-

tical branches at higher frequencies, are less relevant to van

der Waals (vdW) interactions, where Wick rotation to imag-

inary frequency ensures that as the separation increases, the

behavior at low frequency and long wavelength matters most

when determining interaction power law behaviors.

At low frequency and long wavelength, while our model

does correctly predict the linear dispersions and associated

group velocities of the longitudinal (and in-plane transverse

for graphene) acoustic phonon modes, it predicts linear dis-

persion for the out-of-plane transverse acoustic (ZA) mode,

which differs from prior predictions of quadratic dispersion

of the ZA mode as |k| → 0. This is because in both atomistic

and continuum treatments of mechanical deformations in car-

byne and graphene [Refs. 19, 25–29 in main text], nontrivial

out-of-plane internuclear couplings must be present to at least

fourth-nearest neighbors (which is equivalent to the require-

ment that coefficients of spatial derivatives higher than first-

order must be present in the continuum case) for quadratic

dispersion to be present, whereas our calculations and oth-

ers which only account for couplings to nearest or second-

nearest neighbors will fail to capture this; in both carbyne

and graphene, our model does not show significant changes

to the dispersion in the limit |k| → 0 when second-nearest

neighbor couplings are accounted for compared to account-

ing for only nearest neighbors, while we were unable to attain

an adequate relative convergence for third- and higher-nearest

neighbors in our DFT calculations of carbyne and graphene,

though we stress that as KI can in principle encode couplings

between arbitrary pairs of nuclei, this is a problem with our

particular computations, not a drawback of the RMB method

itself. The linear versus quadratic behavior is a significant dif-

ference given the sensitive dependence of vdW interactions to

response properties at low frequency and long wavelength: a

linear acoustic phonon branch would have a phonon density of

states (DOS) that in the limit |k| → 0 respectively approaches

a nonzero constant in 1 spatial dimension or vanishes linearly

with frequency as in 2 spatial dimensions, while a quadratic

branch would respectively have a square root singularity or

have a nonzero constant phonon DOS in the corresponding

limits, so our model underestimates the contribution of ZA

phonon modes to the delocalized response and to vdW inter-

action power laws in turn. Despite these deficiencies, we use

values of KI obtained from our DFT calculations rather than

empirically fitted parameters for specific subsystems so that

we may have a consistent comparison of results obtained for

compact molecules like fullerenes. Moreover, for the specific

case of graphene, our use of nuclear damping coefficients BI

corresponding to relaxation rates γI = 1013 rad/s will smear

out the details of the phonon dispersion for ω < γI, making

those particular details less relevant for qualitative or quanti-

tative prediction of vdW interactions.

We point out that the need for higher-nearest neighbor cou-

plings to accurately capture the quadratic dispersion of out-of-

plane acoustic phonon modes in the limit |k| → 0 in extended

low-dimensional carbon allotropes is indirectly indicative of

Dobson type-C nonadditivity, namely the inherent quantum

delocalization of electronic states. In particular, while such

delocalization will change the details of the electronic re-

sponse at high frequencies, such high-frequency resonant be-

havior is less relevant to vdW interactions at the mesoscopic

scale of tens of nanometers. By contrast, if such delocal-

ized electron states interact with coupled nuclear degrees of

4
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Fig. S5 . Graphene interaction power laws in the continuum

RPA model. Power laws for the vdW interactions of parallel infinite

graphene with a gold plate, at zero (blue) or room (red) temperatures

with (fine dashed) or without (coarse dashed) doping. The doping

density is 1013 cm
−2.

freedom over longer length scales, thereby mediating internu-

clear interactions that may be nontrivial even at the level of

fourth-nearest neighbors, the resulting qualitative changes to

the phonon dispersion at low frequency in the limit |k| → 0
will likely have a much more dramatic impact on vdW in-

teractions at the mesoscale, particularly at finite temperature.

Once again, we emphasize that the RMB method can account

for higher-nearest neighbor couplings as long as properly con-

verged data can be provided when constructing KI, but we

leave the resolution of such details to future work.

We compare the vdW interaction power laws for the RPA

model of graphene above a gold plate at zero or room temper-

ature, with or without electronic doping [Fig. 5]; the doping

density is 1013 cm−2. With this concentration of dopants, the

electronic response is dominated by the free charge carriers

particularly at small frequency and long wavelength. As a re-

sult, the power law with doping is less negative than without,

and approaches the behavior of a typical metal. It is interest-

ing to note that while the undoped power law remains a con-

stant -3 for all z, the doped power law increases (becomes less

negative) as z increases; this is in contrast to typical Casimir

energy power laws which become more negative as separa-

tions increase to make retardation more relevant, though the

doped power law does return to -3 for z & 10 µm.

shows the expected power law dependence of

the vdW interaction free energy for a 0-dimensional dipole,

Dimensionality T → 0 T → ∞
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Power laws versus dimensionality for perfect conductors.

vdW interaction free energy power laws, in the limits T → 0 and

T → ∞, for a 0-dimensional dipole, 1-dimensional perfectly con-

ducting wire (whose radius is much smaller than the separation), or

2-dimensional perfectly conducting plate, each parallel to a perfectly

conducting plate at separation z.

a 1-dimensional perfectly conducting thin wire, or a 2-

dimensional perfectly conducting plate, each at separation z
parallel to a perfectly conducting plate, in the limits T → 0 or

T → ∞ [Refs. 30–31 in main text]. Note that the T → ∞ is

effectively the classical thermodynamic limit where quantum

fluctuations become irrelevant. We point out that the fullerene

follows the 0-dimensional behavior above a perfect conduct-

ing plate. While we are unable to probe sufficiently large sepa-

rations or wire lengths to test this, we expect an infinitely long

carbyne wire to asymptotically behave like a 1-dimensional

perfectly conducting thin wire. Finally, graphene and hexag-

onal BN are not perfect conductors despite the unusual Dirac

cone electronic structure of graphene, so we do not expect

their power laws to behave like those of perfectly conducting

plates.
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