Supplementary Information

Establishment of a novel human CIC-DUX4 sarcoma cell line, Kitra-SRS, with autocrine IGF-1R activation and metastatic potential to the lungs

Sho Nakai¹, Shutaro Yamada², Hidetatsu Outani¹, Takaaki Nakai³, Naohiro Yasuda¹, Hirokazu Mae¹, Yoshinori Imura⁴, Toru Wakamatsu⁴, Hironari Tamiya⁴, Takaaki Tanaka⁴, Kenichiro Hamada¹, Akiyoshi Tani⁵, Akira Myoui¹, Nobuhito Araki⁶, Takafumi Ueda⁷, Hideki Yoshikawa¹, Satoshi Takenaka^{1*}, Norifumi Naka^{1, 4}

¹ Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan

² Department of Orthopaedic Surgery, Yao Municipal Hospital, 1-3-1 Ryugecho, Yao, Osaka 581-0069, Japan

³ Department of Orthopaedic Surgery, Kawachi General Hospital, 1-31 Yokomakura, Higashiosaka, Osaka 578-0954, Japan

⁴ Musculoskeletal Oncology Service, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan

⁵ Compound Library Screening Center, Osaka University Graduate School of Pharmaceutical Sciences,
1-6 Yamadaoka, Suita, Osaka 565-0871, Japan

⁶ Department of Orthopaedic Surgery, Ashiya Municipal Hospital, 39-1 Asahigaokacho, Ashiya, Hyogo 659-8502, Japan

⁷ Department of Orthopaedic Surgery, Osaka National Hospital, 2-1-14 Hoenzaka, Chuo-ku, Osaka 540-0006, Japan

*Corresponding author: Satoshi Takenaka Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan, Phone: +81-6-6879-3552; Fax: +81-6-6879-3559 E-mail: s.takenaka.0816@ort.med.osaka-u.ac.jp

Supplementary Figure S1. Scatter plots showing the correlation of gene expression between samples of the primary tumour (left) and the correlation between samples of Kitra-SRS cells (right). R represents the correlation coefficient. Green and red lines indicate absolute log-fold-change >1 and >3, respectively.

Supplementary Figure S2. FISH analysis of Kitra-SRS cells. The yellow arrows indicate probes for the 19q13.2 region; the green arrows, a split of one copy of each probe.

Supplementary Figure S3. Full-length blots of p-IGF-1R β (Tyr⁹⁸⁰), p-IGF-1R β (Tyr^{1135/1136}), IGF-1R β , p-IR β , IR β and β -actin protein expression for Figure 5b. Kitra-SRS cells were treated with 0-100 nM insulin for 10 min and then subjected to western blotting with the anti-p-IR β antibody. Insulin was used as a positive control.

Supplementary Figure S4. Full-length blots of cleaved PARP and β -actin protein expression for Figure 6c.

Supplementary Figure S5. Full-length blots of p-IGF-1R β (Tyr⁹⁸⁰), p-IGF-1R β (Tyr^{1135/1136}), IGF-1R β , p-AKT, AKT and β -actin protein expression for Figure 6d.

Supplementary Figure S6. Full-length blots of p-IGF-1R β (Tyr⁹⁸⁰), p-IGF-1R β (Tyr^{1135/1136}), IGF-1R β , p-AKT, AKT and β -actin protein expression for Figure 6e.

Vehicle mouse 1

Vehicle mouse 3

Vehicle mouse 5

Vehicle mouse 4

Supplementary figure S7. HE staining of lungs in vehicle-treated mice. Scale bars: 100µm.

Supplementary Figure S8. A negative control for Ki-67 immunostaining.

Supplementary Figure S9. Full-length blots of p-IGF-1R β (Tyr⁹⁸⁰), p-IGF-1R β (Tyr^{1135/1136}), IGF-1R β , p-AKT, AKT and β -actin protein expression for Figure 7g.

50 kDa -

25 kDa 🗕

50 kDa

25 kDa —

Microsatellite (Chromosome)	Kitra-SRS (P50)	Tumor Tissue	
Amelogenin	X, X	Χ, Χ	
D21S11	29, 32.2	29, 32.2	
D5S818	10, 12	10, 12	
D13S317	8, 10	8, 10	
D7S820	11, 12	11, 12	
D16S539	9	9	
vWA	16, 18	16, 18	
TH01	7, 9	7, 9	
TPOX	8, 9	8, 9	
CSF1PO	12	12	

Supplementary Table S1. STR analysis.

Cells were compared to a tumor tissue from the patient. P indicates a passage number of a cell line.

Supplementary Table S2. Detection of CIC-DUX4 from RNA-seq data.

	CIC(4525)-DUX4L2(1075)
Kitra-SRS	CIC(4376)-DUX4L4(1014)
	CIC(4505)-DUX4L12(977)

Numbers in parentheses represent the nucleotide position at the breakpoint junction in the reference cDNA sequence of each gene; *CIC* (NM_015125), *DUX4L2* (NM_001127386), *DUX4L4* (NM_001177376), and *DUX4L12* (NG_012776).

Primer name	Primer sequence (5'->3')
CIC4120(ref)	TGAGTTGCCTGAGTTTCG
DUX4RTr2	TGAGGGGTGCTTCCAGCG
CIC-fl	ACCATGTATTCGGCCCACAGG
DUX4-fl	TCCTAAAGCTCCTCCAGCAGAG
pENTER1A-F	CTACAAACTCTTCCTGTTAGTTAG
pENTER1A-R	ATGGCTCATAACACCCCTTG
CIC770F	AAGGAGAAGCAGAAGTACCACGAC
CIC1522F	GTTTTCACCTGTGATCCGTTCCTC
CIC2309F	CCTGCCACTGTCACTAACCTACTG
CIC3046F	CAGAATCACCTATGTGCAGTCAGC
CIC3838F	CAGCAAATTCCCCAGCTCATCTTC
CIC4523F	GCCCGCTATGCAGACATCTTTC

Supplementary Table S3. Primer sequences for the RT-PCR.

Supplementary Table S4. *DUX4* pseudogenes identical to the *DUX4* component of *CIC-DUX4* transcript of Kitra-SRS cells from Ensemble Genome Browser 95: <u>http://www.ensembl.org/index.html.</u>

Subject name	Gene	Genomic Location
ENST00000611059.1	DUX4L15	10:133760834-133761125
ENST00000554103.2	DUX4L13	10:133754225-133754516
ENST00000622460.1	DUX4L10	10:133744307-133744598
ENST00000619712.1	DUX4L20	10:133684645-133684936
ENST00000622058.1	DUX4L21	10:133681346-133681637
ENST00000618238.1	DUX4L22	10:133678036-133678327
ENST00000615195.1	DUX4L23	10:133674726-133675017
ENST00000617576.2	DUX4L24	10:133671427-133671718
ENST00000624915.1	DUX4L25	10:133668128-133668419
ENST00000566884.2	DUX4L4	4:190082095-190082386

Supplementary Table S5. Karyotype results of 10 metaphase cells on Kitra-SRS cells at passage 20 in M-FISH analysis.

Karyotype results	Cell number
48, XX, del(1)(p32), +8, t(12;19)(q13;q13), +20	6
48, XX, +8, t(12;19)(q13;q13), +20	2
47, XX, del(1)(p32), +8, t(12;19)(q13;q13), -15, +20	1
47, XX, del(1)(p32), t(12;19)(q13;q13), +20	1

Supplementary Table S6. Karyotype results of 20 metaphase cells on Kitra-SRS cells at passage 100 in G-banding.

Karyotype results	Cell number
47,XX,del(1)(p?),+8,der(12)add(12)(p13)t(12;19)(q13;q13.1),	15
der(19)t(12;19)(q13;q13.1)	
49,XX,+1,del(1)(p?)x2,+8,t(12;19)(q13;q13.1),+20	1
48,XX,del(1)(p?),+8,t(12;19)(q13;q13.1),+20	1
48,XX,del(1)(p?),+8,+der(12)t(12;19)(q13;q13.1),	1
t(12;19)(q13;q13.1),+20	ľ
48,XX,del(1),+3,+8,der(12)add(12)t(12;19)(q13;q13.1),	1
add(17)(q11.2),der(19)t(12;19) (q13;q13.1)	ľ
49,XX,del(1),+8,der(12)add(12)t(12;19)(q13;q13.1),	1
+?19,der(19)t(12;19),+20	

Supplementary Table S7. Incidence of lung metastasis in Kitra-SRS-inoculated mice.

	Metastasis +
1×10 ⁷ cells (n=5)	4/5 (80%)
1×10 ⁸ cells (n=5)	3/5 (60%)

	Cell viability (%)		
	Kitra		
Mitoxantrone HCI	-3.2		
Penfluridol	0.1		
Alexidine HCI	0.5		
Auranofin	0.5		
Terfenadine	1.2		
Ponatinib (AP24534)	2		
Carfilzomib (PR-171)	2.3		
Emetine	2.3		
Idarubicin HCI	3.2		
Daunorubicin HCl	3.5		
Bortezomib (PS-341)	3.6		
9-Aminoacridine	3.9		
Crystal Violet	4.2		
Doxorubicin (Adriamycin)	6.6		
Epirubicin HCI	7		
Topotecan HCI	7.8		
Camptothecin	8.3		

Supplementary Table S8. Seventeen drugs that inhibited more than 80 % cell viability in Kitra-SRS cells among 1134 FDA-approved drugs.

Supplementary Table S9. Antibodies.

Target	Clone/ product name	Source	Supplier	Concentration/ Dilution	Blocking buffer
Immunohistochemistry					
CD99	O13	mouse monoclonal	Nichirei Biosciences	a diluted antibody	-
bcl-2	124	mouse monoclonal	Nichirei Biosciences	a diluted antibody	-
WT1	#83535	rabbit monoclonal	Cell Signaling Technology	1:100	-
Ki-67	#9027	rabbit monoclonal	Cell Signaling Technology	1:400	-
normal rabbit IgG	148-09551	-	Wako	1:1000	-
normal mouse IgG	sc-2025	-	Santa Cruz	1:1000	-
Immunoblotting					
IGF-1Rβ	#3027	rabbit monoclonal	Cell Signaling Technology	1:1000	5% milk in TBST
phospho-IGF-1Rβ (Tyr980)	#4568	rabbit monoclonal	Cell Signaling Technology	1:1000	5% milk in TBST
phospho-IGF-1Rβ (Tyr1135/1136)	#3024	rabbit monoclonal	Cell Signaling Technology	1:1000	5% milk in TBST
IRβ	#3025	rabbit monoclonal	Cell Signaling Technology	1:1000	5% milk in TBST
phospho-IRβ (Tyr1185)	ab62321	rabbit monoclonal	Abcam	1:2000	5% milk in TBST
AKT	#4691	rabbit monoclonal	Cell Signaling Technology	1:1000	5% milk in TBST
phospho-AKT	#4060	rabbit monoclonal	Cell Signaling Technology	1:1000	5% milk in TBST
cleaved PARP	#9542	rabbit monoclonal	Cell Signaling Technology	1:1000	5% milk in TBST
β-actin	#4970	rabbit monoclonal	Cell Signaling Technology	1:1000	5% milk in TBST
horseradish peroxidase (HRP)-coupled goat anti-rabbit IgG	#7074	-	Cell Signaling Technology	1:1000	-
HRP-coupled horse anti-mouse IgG	#7076	-	Cell Signaling Technology	1:1000	-