Supplementary information

Effects of knocking out three anthocyanin modification genes on the blue pigmentation of gentian flowers

Keisuke Tasaki^{1,2}, Atsumi Higuchi¹, Aiko Watanabe¹, Nobuhiro Sasaki^{1,3}, Masahiro Nishihara^{1*}

¹ Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan

² Present address: Tokyo University of Agriculture, Atsugi, Kanagawa 243-0034, Japan
³ Present address: Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan

Supplementary Table S1

Supplementary Table S2

Supplementary Figure S1

Supplementary Figure S2

Supplementary Figure S3

Supplementary Table S1. Primers used in this study

Primer Name	Sequence	Index	Note
Direct sequnce primer sets			
#61_Cas9U1898	AAGAAAGGCTCAAGACCTACGCTCAT	-	Forward primer
#62_Cas9L2260	TCGATCACGATGTTCTCAGGCTTATG	-	Reverse primer
Gt5GT_U667	AAAGAGCACCTGGAAGCACTTG	-	Forward primer / Used for sequencing reaction
Gt5GT_L1147	GCTCAGTTTCAGGTGCTAAAGC	-	Reverse primer
#144_Gt5/3'AT-U6	GCAAATCCAAATGGTGAAGG	-	Forward primer / Used for sequencing reaction
#145_Gt5/3'AT-L573	ATAGGCCCAAGCATTGATGA	-	Reverse primer
#149_Gt3'GT-U2	TGGATCAGCTTCACGTTTTC	-	Forward primer
#150_Gt3'GT-L514	GCACCACAAAAGGGTCAGAA	-	Reverse primer / Used for sequencing reaction

Amplicon sequence primers

1st PCR primer sets

#368_Alb.Gt5/3'ATtar1,3_D50X	ACACTCTTTCCCTACACGACGCTCTTCCGATCtATAAGATGCAGTCCCTTCTGTTT	-	Forward primer
#369_Alb.Gt5/3'ATtar1,3_D70X	TGACTGGAGTTCAGACGTGTGCTCTTCCGATCtGCAATTGAATGATGTGCCGT	-	Reverse primer
#372_Alb.Gt5GTtar1,2_D50X	ACACTCTTTCCCTACACGACGCTCTTCCGATCtAGAAGAAACTCCTCCGACCA	-	Forward primer
#373_Alb.Gt5GTtar1,2_D70X	TGACTGGAGTTCAGACGTGTGCTCTTCCGATCtCACCCACAAGAATGGATGG	-	Reverse primer
#426_Alb.Gt3'GTtar1,3_D50X	ACACTCTTTCCCTACACGACGCTCTTCCGATCtACAACAACTCCGCCATTTTC	-	Forward primer
#427_Alb.Gt3'GTtar1,3_D70X	TGACTGGAGTTCAGACGTGTGCTCTTCCGATCtGCAAAAGAACTTGACCCATGA	-	Reverse primer

2nd PCR forward primers

D	501	AATGATACGGCGACCACCGAGATCTACACTATAGCCTACACTCTTTCCCTACACGACG TATAGCCT	
D	502	AATGATACGGCGACCACCGAGATCTACACATAGAGGCACACTCTTTCCCTACACGACG ATAGAGGC	
D	503	AATGATACGGCGACCACCGAGATCTACACCCTATCCTACACTCTTTCCCTACACGACG CCTATCCT	
D	504	AATGATACGGCGACCACCGAGATCTACACGGCTCTGAACACTCTTTCCCTACACGACG GGCTCTGA	
D	505	AATGATACGGCGACCACCGAGATCTACACAGGCGAAGACACTCTTTCCCTACACGACG AGGCGAAG	
D	506	AATGATACGGCGACCACCGAGATCTACACTAATCTTAACACTCTTTCCCTACACGACG TAATCTTA	
D	507	AATGATACGGCGACCACCGAGATCTACACCAGGACGTACACTCTTTCCCTACACGACG CAGGACGT	
D	508	AATGATACGGCGACCACCGAGATCTACACGTACTGACACACTCTTTCCCTACACGACG GTACTGAC	

2nd PCR reverse primers

D701	CAAGCAGAAGACGGCATACGAGATCGAGTAATGTGACTGGAGTTCAGACGTGT	ATTACTCG	
D702	CAAGCAGAAGACGGCATACGAGATTCTCCGGAGTGACTGGAGTTCAGACGTGT	TCCGGAGA	
D703	CAAGCAGAAGACGGCATACGAGATAATGAGCGGTGACTGGAGTTCAGACGTGT	CGCTCATT	
D705	CAAGCAGAAGACGGCATACGAGATTTCTGAATGTGACTGGAGTTCAGACGTGT	ATTCAGAA	
D706	CAAGCAGAAGACGGCATACGAGATACGAATTCGTGACTGGAGTTCAGACGTGT	GAATTCGT	
D707	CAAGCAGAAGACGGCATACGAGATAGCTTCAGGTGACTGGAGTTCAGACGTGT	CTGAAGCT	
D708	CAAGCAGAAGACGGCATACGAGATGCGCATTAGTGACTGGAGTTCAGACGTGT	TAATGCGC	

		Number of total	Number of	umber of				Total	Total alleles /	Non-mutated	Non-mutated	Non-mutated	Non-mutated	Non-mutated alleles /
Line	Nucleotide	fragment reads	Fragment	Allele 1	Allele 2	Allele 3	Allele 4	alleles	total fragments	allele 1	allele 2	allele 3	allele 4	total fragments
			patterns											
Gt5GT#47	DNA	25,251	1,831	9,611	9,605	-	-	19,216	76.1%	17	0	-	-	0.07%
Gt5GT#106	DNA	59,169	1,836	18,816	30,010	-	-	48,826	82.5%	0	0	-	-	0.00%
Gt3'GT#11	DNA	74,539	2,210	20,194	35,543	-	-	55,737	74.8%	0	0	0	0	0.00%
Gt3'GT#35	DNA	21,531	1,288	7,186	7,223	-	-	14,409	66.9%	0	0	0	0	0.00%
Gt5/3'AT#50	DNA	46,338	2,243	16,376	15,213	-	-	31,589	68.2%	0	0	-	-	0.00%
Gt5/3'AT#60	DNA	19,008	2,552	7,872	6,874	-	-	14,746	77.6%	2	1	-	-	0.02%
Gt5GT#47	RNA	49,649	1,931	6,443	36,768	-	-	43,211	87.0%	0	0	-	-	0.00%
Gt5GT#106	RNA	305,289	2,281	29,042	261,382	-	-	290,424	95.1%	26	0	-	-	0.01%
Gt3'GT#11	RNA	520,911	3,405	35,543	461,515	-	-	497,058	95.4%	63	0	54	0	0.02%
Gt3'GT#35	RNA	41,466	2,063	3,004	33,855	-	-	36,859	88.9%	0	1	0	10	0.03%
Gt5/3'AT#50	RNA	33,394	3,212	19,913	11,267	-	-	31,180	93.4%	11	5	-	-	0.05%
Gt5/3'AT#60	RNA	34,795	2,046	1,272	22,102	-	-	23,374	67.2%	0	0	-	-	0.00%
WT Gt5GT	DNA	35,448	2,555	12,798	11,604	-	-	24,402	68.8%	12,798	11,604	-	-	68.8%
WT Gt3'GT	DNA	29,916	2,662	5,666	5,419	5,825	4,852	21,762	72.7%	5,666	5,419	5,825	4,852	72.7%
WT <i>Gt5/3'AT</i>	DNA	44,435	3,535	15,403	18,258	-	-	33,661	75.8%	15,403	18,258	-	-	75.8%
WT Gt5GT	RNA	88,071	2,770	50,836	26,024	-	-	76,860	87.3%	50,836	26,024	-	-	87.3%
WT Gt3'GT	RNA	62,487	2,401	4,852	2,055	28,560	22,326	31,251	92.5%	4,852	2,055	28,560	22,326	92.5%
WT Gt5/3'AT	RNA	47,659	3,678	12,453	20,721	-	-	33,174	69.6%	12,453	20,721	-	-	69.6%

Supplementary Table S2. Summary of NGS amplicon analyses of target sites

Supplementary Fig. S1 HPLC chromatograms (at 520 nm) of anthocyanins extracted from the petals of the *Gt5GT* #47 and #106, *Gt3'GT* #11 and #35, and *Gt5/3'AT* #50 and #60 lines. The WT sample and six authentic standards are the same as those described in Fig. 4.

Supplementary Fig. S2

Anthocyanin concentrations in the flower petals of the genome-edited gentian plants. Quantification was performed based on the molar absorptivity of delphinidin (ϵ mol = 27,940 at 520 nm, evaluated in 80% MeOH containing 0.1% TFA). Vertical bars show ± SE of the means of four flowers except for 5/3'AT #50, which was calculated using three flowers. Different letters indicate statistically significant differences in Tukey's HSD test (P < 0.01).

Supplementary Fig. S3

Absorption spectra of the adaxial surface of the limb area of fresh petals.

They were measured with the CM-700d spectrophotometer (Konica Minolta, Tokyo, Japan).