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Supplementary Note 1 — Exploration of the effects
of model parameters

In this section, we explore several of the parameters of the models. The goal of
this section is not an exhaustive exploration of the parameter space, but rather to
demonstrate that the dynamics are qualitatively similar for a significant portion of
this space, in the sense that the three phases described in the main text (Figures
3-5 in the main text) can be observed. It is also aimed at providing some intuition
about how the parameters control the dynamics, which we summarized as the time
of onset of the second and third phases. We do not conduct this analysis for all the
parameters in the models, but rather focus on a few which we believe such an analysis
can provide insights.

For the two-time-scales model (Equations (1)—(15) in the main text), we explore vary-
ing initial (which is also intrinsic) between-species contact rates (f12(0) and [2;(0)),
the ratio between disease transmission and introgression (c), and initial asymmetry in
within-species contact rates (511(0) # B22(0)). We do not conduct the analysis for the
scaling parameters (a;; and b;;) which adjust the relative impacts of disease burden
and tendency to return to initial conditions, since we vary the other parameters which
determine disease burden. We also do not conduct the analysis for the recovery rate
~v, which affects disease burden in a fairly straightforward way (longer recovery times
amount to more infected individuals and higher F; in Equations 9 in the main text).
For the single-time-scale model, we explored varying between-species contact rates
(Ba), the ratio between disease transmission and introgression (c), and initial asym-
metry in intrinsic population densities (N1(0) # N2(0)). Since we focus on the disease
and introgression processes, we do not vary the demographic parameters A\, K and p.
For tractability, we vary one parameter at time, using the parameters presented in
the main text as a baseline.

Two-time-scales model

In order to compare the dynamics over several parameter ranges, we summarized
the dynamics using two values, the time of onset of phase II, and the time of onset
of phase III (Figures 3 and 5 in the main text). For the time of onset of phase
I, we first defined for each of the contact rate parameters the time point, ug,;, as
the first time-step in which the absolute difference between 3;; at consecutive time
steps was lower than 1073; in other words, ug,, was defined as the lowest ¢ for which
|8i;(t) — Bi;(t —1)] < 1073, This is a discrete equivalent for finding the first time
point in which the first derivative of the contact rate is very close to 0, indicating
arrival at the stable phase. The threshold (1072) was selected so as not to be too



small and miss the stabilization of the dynamics at phase II, but not too high as to
define stability when the slope was still observably significantly different then 0. The
overall onset of phase II, u, was taken to be the maximum over the four wug,, values
(for 4,j = 1,2), meaning that we consider the onset of phase II as the first time step
in which all contact rates are considered to have arrived at the steady state.

The time of onset of phase III, w, was defined as the first time step for which disease
burden in either species was removed; in other words, the earliest ¢ for which either
Di(t) =0 or Dy(t) = 0.

Between-species contact rates

We first varied the between-species contact rates, which directly affects both the
transmission of disease in the system and the rate of adaptive introgression. We used
the parameter values in Figures 3 and 4 in the main text as a baseline, and varied f;;
(¢ # j) from 0.005 to 0.03 in increments of 0.001 (maintaining f;; = /3;;). For between-
species contact rates below 0.005, the numerical solutions of the differential equations
in Equations (3)—(8) in the main text were affected by computational precision errors
due to very low values, and we therefore restricted our range to avoid these low ranges
of transmission. We conducted this analysis for the symmetric (P(0) = P(0)) and
asymmetric cases (P(0) # P»(0)), as presented in the main text.

Supplementary Figure 1 shows the time of onset for the two phases for the different
within-species contact rates. We also show the full dynamics over time for two ex-
amples, one with between-species contact rates higher than those shown in the main
text (8;; = 0.2, in blue) and one with lower rates (f;; = 0.05, in green). This we do
to demonstrate that the dynamics are qualitatively similar to the scenarios described
in Figures 3 and 4 in the main text, in the sense that three distinct phases can be
observed (Supplementary Figure 2).

The onset of phase II increases with increased between-species contact, for both the
symmetric and asymmetric scenarios examined (Supplementary Figure 1A and 1B),
while the onset of phase III decreases for both scenarios (Supplementary Figure 1C
and 1D). Overall, since the changes in w are much larger than those in u, the length
of Phase II (w — ) is more affected by w, and therefore, for the parameter range we
examined, the length of phase II decreases with increased between-species contact.
We also show two examples of the dynamics (Supplementary Figure 2), which show
qualitatively similar dynamics to those in Figures 3 and 4 in the main text, but the
dynamics occur over different times scales, with faster dynamics in the case of high
between-species transmission (in blue) compared to that with low between-species
contact rates (in green).

The between-species contact rate parameter [3;; plays two roles in the model: (1)
Increase in f3;; is expected to increase F; (Equations (1)-(8) in the main text), and



therefore increase disease burden, D; (Equation 9 in the main text), which would
lead to a decrease in all contact rates (Equations (10)-(13) in the main text);(2)
Increase in f3;; increases the rate of introgression (Equations (14) and (15) in the
main text). At the early stages of the dynamics, when the species are strongly
impacted by epidemics, increased disease burden results in significant reductions in
between-species contact,and therefore slower introgression, leading to later onset of
phase II (Supplementary Figure 1A and 1B). However, once disease burden decreases
over time, the high intrinsic §;;(0) leads to faster introgression, reducing the time to
onset of phase III (Supplementary Figure 1C and 1D).

Ratio of introgression to disease transmission

The two-time-scales model assumes that both introgression and disease transmission
are coupled with the between-species contact rates, with a fixed parameter describing
the ratio between introgression and between-species contact, c. We varied ¢ between
10 and 5000 in increments of 10, with the other parameters kept the same as those
in Figures 3 and 4 in the main text.

Supplementary Figure 3 shows the time of onset for the two phases for the ¢ values.
We also show the full dynamics over time for two examples (Supplementary Figure 4),
one with ¢ value higher than the one described in the main text (¢ = 1000, in blue),
and one with a lower ¢ value (¢ = 10, in green). These are shown to demonstrate that
the dynamics are qualitatively similar to the scenarios described in Figures 3 and 4
in the main text, in the sense that three distinct phases can be observed.

The onset of phase II is unchanged for up to about ¢ = 1000, above which the onset
time u decreases as the ratio ¢ increases (Supplementary Figure 3). The onset of
phase III decreases with high ¢ values (Supplementary Figure 3), which is due to the
fact that a high ¢ value means faster adaptive introgression and faster overcoming of
disease burden, in both the symmetric and asymmetric cases.

The ratio between disease transmission and introgression, ¢, plays a role in Equations
(10)—(13) in the main text, where higher ¢ values lead to faster introgression. There-
fore, increasing ¢ results both in earlier onset of phase II and earlier onset of phase
III (Supplementary Figure 3).

Initial asymmetry in contact rates

In Figure 4 in the main text, we explore the consequences of initial asymmetry in
pathogen package size, P. Here we consider initial asymmetry in the intrinsic within-
species contact rate, 511(0) and (22(0). Such asymmetry could reflect, for example,
differences in population densities (within-species contacts occur at lower rates in
sparser populations), but also differences in contact tendencies of the two species. One



scenario where such differences may have occurred is if the incoming Moderns were
characterized, over a long period, with lower population densities than the resident
Neanderthals. However, this phase may have been a short transient phase for the
Moderns, in which case it would not necessarily have been influential for the dynamics
we consider.

To explore this source of asymmetry, we considered the symmetric case in Figure 3 in
the main text as a baseline and varied the within-species contact rates for species 2,
B2(0), from 0.005 to 0.05 at increments of 0.001, with the other parameters kept the
same as those in Figure 4 in the main text (in particular, 8;; = 0.05). Supplementary
Figure 5 shows the time of onset for the two phases for the f2(0) values. We also
show the full dynamics over time for two examples (Supplementary Figure 6), one
with (9(0) = 0.03 (in blue), and one with f25(0) = 0.015 (in green).

With asymmetry in within-species contact rates, the time of onset of phase II is
almost unchanged for the parameter range we investigated, but the onset of phase
IT is slightly sooner with more accentuated asymmetry (Supplementary Figure 5).
Interestingly, and perhaps counterintuitively, with such asymmetry, species 2, which
initially had lower within-species contact rates, overcomes disease burden sooner than
species 1. This is because the lower within-species contact rates translate to lower F3
values in Equations (1) and (2) in the main text. and hence lower initial disease bur-
den (Supplementary Figure 6C and 6F), which allows it to maintain higher incoming
between-species contact rates (Equations (10)—(13) in the main text, and Supplemen-
tary Figure 6A and 6D). These between-species contact rates are then translated to
higher rates of adaptive introgression (Equations (14) and (15) in the main text, and
Supplementary Figure 6B and 6E), and more rapid overcoming of disease burden.
The initial condition of 35 determines the intrinsic within-species contact rates in the
species (Equations (10)—(13) in the main text). In the model, within-species contact
rates play a role in determining the impact of diseases on the species (Equations (1)—
(9) in the main text), but do not directly affect introgression. Therefore, decreasing
the within-species contact rate of one species relative to the other, results in less
impact of disease, allowing the species to maintain higher between-species contact
rates and increases the rate of introgression. This leads to earlier onset of phase III
with lower within-species contact rate in one of the species.
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Supplementary Figure 1: Time of onset of phases II (u) and III (w) for different
between-species contact rates (8;;(0)) in the two-time-scales model. Dashed lines show
the parameter values for which we show the dynamics explicitly, in the main text in Figures 3 and 4
(red), or in Supplementary Figure 2 (green and blue). (A) Onset of phase II for the symmetric case.
(B) Omset of phase II for the asymmetric case (P;(0) = 60, P»(0) = 100). (C) Onset of phase III
for the symmetric case. (D) Onset of phase III for the asymmetric case (P;(0) = 60, P2(0) = 100).
Other than the the between-species contact rates, all other parameters are the same as those in
Figure 3 (for (A) and (C)) and Figure 4 (for (B) and (D)) in the main text.
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Supplementary Figure 2: Two examples of dynamics of the two-time-scales model for
the values of between-species contact rates (f;;) marked in Supplementary Figure 1.
(A)—(F) show the results for the symmetric case, comparable with Figure 3 in the main text, and
(G)—(L) show the results for the asymmetric case, comparable with Figure 4 in the main text. For
the panels with blue curves (corresponding to the blue line in Supplementary Figure 1), between-
species contact rates are ;;(0) = 0.02, while the rest of the parameters are the same as those in
Figures 3 and 4 in the main text. For the panels with green curves (corresponding to the green line
in Supplementary Figure 1), between-species contact rates are £;;(0) = 0.005, while the rest of the
parameters are the same as those in Figures 3 and 4 in the main text. Notice that the times scales
for the different panels are different.
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Supplementary Figure 3: Time of onset of phases II (u) and III (w) for different in-
trogression to disease transmission ratios (¢) in the two-time-scales model. Dashed lines
show the parameter values for which we show the dynamics explicitly, in the main text in Figures
3 and 4 (red), or in Supplementary Figure 4 (green and blue). (A) Onset of phase II for the sym-
metric case. (B) Onset of phase II for the asymmetric case (P;(0) = 60, P»(0) = 100). (C) Onset
of phase III for the symmetric case. (D) Onset of phase III for the asymmetric case (P;(0) = 60,
P5(0) = 100). Other than the the between-species contact rates, all other parameters are the same
as those in Figure 3 (for (A) and (C)) and Figure 4 (for (B) and (D))in the main text. Notice that
the ¢ parameter on the X-axis is plotted on a logarithmic scale.
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Supplementary Figure 4: Two examples of dynamics of the two-time-scales model for
the introgression to disease transmission ratios (c¢) values marked in Supplementary
Figure 3. (A)—(F) show the results for the symmetric case, comparable with Figure 3 in the main
text, and (G)—(L) show the results for the asymmetric case, comparable with Figure 4 in the main
text. For the panels with blue curves (corresponding to the blue line in Supplementary Figure 3),
disease transmission to introgression values are ¢ = 1000, while the rest of the parameters are the
same as those in Figures 3 and 4 in the main text. For the panels with green curves (corresponding
to the green line in Supplementary Figure 3), ¢ values are ¢ = 10, while the rest of the parameters
are the same as those in Figures 3 and 4 in the main text. Notice that the times scales for the
different panels are different.
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Supplementary Figure 6: Two examples of dynamics of the two-time-scales model for
the $22(0) values marked in Supplementary Figure 5. The results are comparable with Figure
4 in the main text. For the panels with blue curves (corresponding to the blue line in Supplementary
Figure 5), within-species contact rates in species 2 are 822(0) = 0.03, while the rest of the parameters
are the same as those in Figure 4 in the main text. For the panels with green curves (corresponding
to the green line in Supplementary Figure 5), 822(0) values are 822(0) = 0.015, while the rest of the
parameters are the same as those in Figure 4 in the main text.
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Single-time-scale model

For the single-time-scale model, we conduct a similar analysis for exploring the pa-
rameter ranges to the one described above for the two-times-scales model. We vary
one parameter at a time, using the scenarios in Figure 5 in the main text as our
baseline. We evaluate the onset of phase II (u) and phase III (w), defined in a similar
manner. Since this model is defined in continuous time, uy;, is defined as the earliest
time in which the absolute value of the derivative of N; is smaller than 1073. The
onset of phase II, u, is defined as the maximum of ux, and uy,. The onset of phase
III, w, is defined as the earliest time, £, in which the disease burden is lifted in one of
the species,i.e. either oy (t) = 0 or as(t) =0 (ws, and w,,, respectively).

Between-species contact rates

We varied the between-species transmission rate, (3., from 0.01 to 0.5 in increments
of 0.01, for the symmetric and asymmetric cases. Supplementary Figure 7 shows
the onset of the phases for different 5, values, and full dynamics for two examples
(Ba = 0.02 in blue, and S, = 0.005 in green) are shown in Supplementary Figure 8.
For the symmetric case, the onset of both phases decreases as the between-species
contact rates increase, since faster contact rates translate to faster dynamics in the
system. In the asymmetric case, the onset of phase III decreases as (3, increases, but
the onset of phase II initially increases but around 3, = 0.4 begins to increase as [,
increases. This may be due to the complex feedback between introgression, disease
transmission, and population dynamics, which may result in different dynamics at
different parts of the parameter space.

The between-species contact rate [, plays a role both in determining inter-species
transmission of disease (Equations (19) and (20) in the main text) and the rate of
introgression (Equations (21) and (22) in the main text). In general, increase in (3,
leads to faster dynamics in which the onset of both phase II and phase III occur
earlier; however, for very high £, and asymmetry in disease-related mortality rates,
complex interaction in the equations lead to non-trivial changes in the onset of the
phases (Supplementary Figure 7).

Ratio of introgression to disease transmission

We varied the introgression to disease transmission ratio from ¢ = 0.01 to ¢ = 0.3 in
increments of 0.01. In the asymmetric case (a;(0) = 0.5,a2(0) = 1), with ¢ values
above 0.3, w becomes very low, eventually even lower than u. This is because we
defined the onset of phase II, u, to be the maximum of uy, and uy,, and w to be
the minimum of w,, and w,,, and with very high rates of adaptive introgression
one species may overcome disease burden before the other species has stabilized.
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Therefore, the notion of different phases, as discussed in the main text, does not apply
to such high introgression rates. We therefore limited our range of investigation of
this parameter to ¢ values up to 0.3.

Supplementary Figure 9 shows the onset of the two phases for different ¢ values, and
two examples of the dynamics (¢ = 0.01 and ¢ = 0.3) are shown in Supplementary Fig-
ure 10. The time of onset of phase II decreased as we increased c. The same is observed
for the onset of phase III, due to higher ¢ resulting in faster adaptive introgression.
These results are similar to those observed for the two-time-scales model (Supplemen-
tary Figure 3). For the symmetric case, the dynamics in the examples we focused on
are qualitatively similar to those in Figure 5 in the main text(Supplementary Figure
10). For the asymmetric case, the dynamics have characteristics that are different
than those in Supplementary Figure 5, such as switches between whether N; > N, or
Ny > Ny, but some characteristics remain the same: high initial disease burden which
rapidly decreases as population sizes decrease (phase I), followed by a relatively stable
phase (phase IT) with relatively constant low disease burden, followed by overcoming
of disease burden of species 1 and increase in its population density (phase III).

The ratio between disease transmission and introgression, ¢, plays a role in Equations
(21) and (22) in the main text, where higher ¢ values lead to faster introgression.
Therefore, increasing ¢ results both in earlier onset of phase II and earlier onset of
phase III (Supplementary Figure 9).

Initial asymmetry in population densities

As discussed above for the two-time-scales model, a plausible source of asymmetry,
other than the characteristics of the pathogen package, is population densities. We
therefore explored this source of asymmetry by considering the symmetric case in
Figure 5 in the main text as our baseline, and varying the initial population density
of species 2, Ny(0) (initial population density of species 1 was kept as N1(0) = 2). We
kept the intrinsic demographic parameters, K, A\, and p the same for both species.
We varied the ratios between the two population densities from No(0) = 0.01 x N1(0)
to Ny(0) = 1 x N(0) in increments of 0.01.

Supplementary Figure 11 shows the onset of the two phases for different ratios of
initial population densities. Except for very high asymmetry, with species 1 being
more than 20 times more dense than species 2, the onset of phase Il decreased with
more asymmetry. The onset of phase III decreased as the asymmetry was stronger.
The examples in Supplementary Figure 12 are qualitatively similar to those in Figure
5 in the main text, with the three phases observable.

As with the two-time-scale model, for asymmetry in population density (£22(0) in the
two-time-scales model, which could be interpreted as population density), the species
that started out with the lower density, species 2, is the one that eventually overcomes
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disease burden faster, and consequently becomes denser than the other species.

The intial density of species 2, No(0), plays a role in the initial conditions of Equations
(17) and (18) in the main text. When the initial population density in species 2 is
decreased, it has less effect on species in terms of infections (Equations (17) and (18)
in the main text). This results in species 1 initially maintaining higher population
densities with lower N5(0) values (Supplementary Figure 12). This, in turns, results
in higher rates of introgression in species 2 with lower N5(0), leading to earlier onset of
phase III (Supplementary Figure 11). The onset of phase II is not simply determined
with changes of Ny(0).
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Supplementary Figure 7: Time of onset of phases II (u) and IIT (w) for different 3,
values in the single-time-scales model. Dashed lines show the parameter values for which we
show the dynamics explicitly, in the main text in Figure 5 (red), or in Supplementary Figure 8 (green
and blue). (A) Onset of phase II for the symmetric case. (B) Onset of phase II for the asymmetric
case (a1(0) = 0.5, a2(0) = 1). (C) Onset of phase III for the symmetric case. (D) Onset of phase
III for the asymmetric case (a1(0) = 0.5, a3(0) = 1). Other than the the parameter §,, all other
parameters are the same as those in Figure 5 in the main text.
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Supplementary Figure 8: Two examples of dynamics of the single-time-scale model for
the 3, values marked in Supplementary Figure 7. (A)—(F) show the results for the symmetric
case and (G)—(L) show the results for the asymmetric (a1(0) = 0.5, az(0) = 1), comparable with

Figure 5 in the main text.

For the panels with blue curves (corresponding to the blue line in

Supplementary Figure 7), between-species contact rates are b, = 0.2, while the rest of the parameters
are the same as those in Figure 5 in the main text. For the panels with green curves (corresponding
to the green line in Supplementary Figure 7), between-species contact rates are b, = 0.05, while the
rest of the parameters are the same as those in Figure 5 in the main text. Notice that the times

scales for the different panels are different.
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Supplementary Figure 9: Time of onset of phases II (u) and IIT (w) for different ¢ values
in the single-time-scales model. Dashed lines show the parameter values for which we show the
dynamics explicitly, in the main text in Figure 5 (red), or in Supplementary Figure 10 (green and
blue). (A) Onset of phase II for the symmetric case. (B) Onset of phase II for the asymmetric case
(a1(0) = 0.5, a2(0) = 1). (C) Onset of phase III for the symmetric case. (D) Onset of phase III for
the asymmetric case (a1(0) = 0.5, a2(0) = 1). Other than the parameter ¢, all other parameters are
the same as those in Figure 5 in the main text.
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Supplementary Figure 10: Two examples of dynamics of the single-time-scale model for
the ¢ values marked in Supplementary Figure 9. (A)—(F) show the results for the symmetric
case and (G)—(L) show the results for the asymmetric case (a1(0) = 0.5, a2(0) = 1), comparable
with Figure 5 in the main text. For the panels with blue curves (corresponding to the blue line in
Supplementary Figure 9), ¢ = 0.3, while the rest of the parameters are the same as those in Figure 5
in the main text. For the panels with green curves (corresponding to the green line in Supplementary
Figure 9), ¢ = 0.01, while the rest of the parameters are the same as those in Figure 5 in the main
text. Notice that the times scales for the different panels are different.
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Supplementary Figure 11: Time of onset of phases II (u) and III (w) for different N5(0)
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show the dynamics explicitly, in the main text in Figures 5 (red), or in Supplementary Figure 12
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Supplementary Figure 12: Two examples of dynamics of the single-time-scale model
for the N5(0) values marked in Supplementary Figure 11. The results are comparable with
Figure 5 in the main text. For the panels with blue curves (corresponding to the blue line in
Supplementary Figure 11), N(0) = 0.5, while the rest of the parameters are the same as those in
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Supplementary Figure 11), No(0) = 0.1, while the rest of the parameters are the same as those in
Figure 5 in the main text. Notice that the times scales for the different panels are different.
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Supplementary Note 2 — Modeling regular adap-
tation in addition to adaptive introgression

In this section we explore adding adaptation to disease due to de novo immune-related
mutations in both species, in addition to introgression.

Two-time-scales model

In the two-time-scales model, adaptation to the novel pathogen package is measured
in terms of the number of pathogens to which each of the species is vulnerable. While
introgression depends on inter-species contact rates, regular within-species adaptation
is expected to be independent of these. In many cases, adaptations are acquired by
natural selection acting on newly arisen mutations or on standing variation. The
process by which this occurs depends on several factors, including the strength of
selection, the effective population size and genetic drift, and the rate of mutation.
Modeling the population genetics of this process in the context of our model is not
a simple task. We therefore decided to make many simplifying assumption, and in-
stead of incorporating a population genetic model, we assume that beneficial immune-
related mutations, which reduce the experienced pathogen package size P, appear and
are driven to fixation at a constant rate (see [1-6] for similarly simplified models).
Moreover, although fixation through selection is not an instantaneous process, and
in intermediate steps the population would be composed of both individuals carrying
the immune-related alleles and those that do not carry them, we assume that the
time between appearance and fixation is negligible at the evolutionary time scale.
These assumptions, which may not be appropriate in many cases, allow us to model
regular adaptation as a single parameter, p,, which is the (constant) rate at which
immune-related mutations that are eventually driven to fixation in the population
convey tolerance to a single pathogen. This rate is measured according to the evolu-
tionary time-scale of this model (¢). Therefore, at each time step ¢, species i evolves
tolerance to p,P;(t) novel pathogens (with the assumption that the rate of evolution
of tolerance to each pathogen is the same, and that the evolutionary processes for
each pathogen are independent). We also assume that these rates are the same for
both species.

The equation describing the pathogen package size is a modified version of Equations
(21) and (22) in the main text, namely :

Pi(t) =max{(1—p)Pi(t—1)—cBxn(t—1),0} (1)
Py(t) =max{(1 — pa)Po(t — 1) — cBra(t — 1),0} , (2)
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and the two-time-scales model with regular adaptation is identical to the one described
in the main text but with Supplementary Equations (1) and (2) replacing Equations
(14) and (15) in the main text.

For this model, we varied the u, parameter from 0 to 0.05 in increments of 0.001, with
the other parameters remaining fixed to the baseline values of Figure 3 in the main
text. We used the same definition of time of onset of phases II and III as presented in
Appendix A to explore the effect of regular adaptation on the phases (Supplementary
Figure 13). We also show two examples of the dynamics (u, = 0.005 in green and
fte = 0.01 in blue) in Supplementary Figure 14.

The examples in Supplementary Figure 14 demonstrate that the dynamics are qualita-
tively similar to those without regular adaptation, for the parameters we investigated,
in the sense that the three phases can be observed. In Supplementary Figure 13, it
can be seen that the onset of phase II is almost unchanged with increased regular
adaptation, with a slight decrease, but the onset of phase III is earlier as the level of
regular adaptation increases. This is so since in our model, we added regular adapta-
tion in addition to adaptive introgression, in essence modeling two pathways by which
tolerance can be evolved, and therefore the species overcome disease burden sooner
than with adaptive introgression alone.

Single-time-scale model

We also incorporated regular adaptation in the single time-scale model, with the same
simplifying assumption and the same reservations. Here, we introduce a parameter
{tq, Which is the constant rate of appearance of mutations that convey tolerance to
pathogens, and which are eventually driven to fixation. Since we model population
densities explicitly in this model, and the rate of appearance of novel mutations in
the populations is proportional to population size, we model the effect of regular
adaptation as a reduction of disease-induced mortality, «;, by the rate of de novo
appearance of adaptive mutations in the population, N;uy:

day (t dou (4
Cgt( ) = —cf,Nao(t) — pN1(t) provided ay(t) > 0, otherwise O;; ) =0 (3)
das(t don(t
Oé;]f( ) — —CﬁaNl (t) — ,UbNQ (t) provided (oD (t) > O, otherwise %() =0. (4)

The single-time-scale model with regular adaptation is the same as in the main text
except that Supplementary Equations (3) and (4) replacing Equations (21) and (22)
in the main text.

We varied the pu; parameter from 0 to 0.05 in increments of 0.001, with the other
parameters remaining fixed to the baseline values of Figure 5 in the main text (sym-
metric case). We used the same definition of time of onset of phases II and III as
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presented in Appendix A to explore the effect of regular adaptation on the phases
(Supplementary Figure 15). We also show two examples of the dynamics (u, = 0.005
in green and g = 0.01 in blue) in Supplementary Figure 16.

As with the two-time-scales model, the examples for different rates of u;, show similar
dynamics with the three phases described in the main text (Supplementary Figure
16). For higher rates of regular adaptation, the onset of the second phase does not
change much in the parameter range range we investigated, but the onset of phase
IT is significantly reduced (Supplementary Figure 15). As was discussed for the two-
time-scales model, we model regular adaptation as a process which occurs in parallel
and in addition to adaptive introgression, and therefore disease burden is overcome
more rapidly with more regular adaptation.
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Supplementary Figure 14: Two examples of dynamics of the two-time-scales model
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Supplementary Note 3 — Modeling inter-species
competition

Given the physical similarity and close phylogenetic relations of Neanderthals and
Moderns, it is plausible that when they interacted in the Levant they were in compe-
tition for similar resources, and that they occupied overlapping ecological niches [7, 8].
In the models presented in the main text, we did not incorporate direct competition
between the species. In the two-time-scales model, where demography is only implic-
itly modeled, incorporating competition would present some difficulty. However, in
the single-time-scale model, demographics are explicitly modeled, and therefore, it is
easier to accommodate competition between the species in the model, and explore
how that might affect the dynamics we describe. In this section we relax the assump-
tion of no competition in the single-time-scale model, and incorporate the effect of
competition on growth rates.

For this purpose, we introduce a competition parameter ¢, which measures the niche
overlap of the two species, i.e. for ¢ = 0, the species’ niches do not overlap and
there is no competition, and for ¢ = 1, the niches are identical and inter-species
competition is the same as within-species competition [9]. In the main text, we
modeled density-dependent growth rate as a function of the intrinsic growth rate A
and the half-maximum population density K, and now we incorporate inter-species
competition:

AK

The single-time-scale model with competition is, therefore, the model described in
the main text with Supplementary Equation (5) used instead of Equation (16) in the
main text (for ¢ = 0, this model converges to the single-time-scale model presented
in the main text).

With increased competition between the species, the onset of phase II is slightly
delayed, and the onset of phase III is more substantially delayed (Supplementary
Figure 17). Therefore, competition would act to increase the duration of the second
stable phase, for the parameters we explored (Supplementary Figure 18). For the two
examples we investigated, the dynamics are qualitatively similar to those presented
in the main text, as the three phases can be observed.
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Supplementary Figure 18: Two examples of dynamics of the single-time-scale model
with competition for the values marked in Supplementary Figure 17. For the panels with
blue curves (corresponding to the blue line in Supplementary Figure 17), ¢ = 1 (full niche overlap),
while the rest of the parameters are the same as those in Figure 5 in the main text (symmetric case).
For the panels with green curves (corresponding to the green line in Supplementary Figure 17),
¢ = 0.5 (partial niche overlap), while the rest of the parameters are the same as those in Figure 5 in
the main text (symmetric case). Notice that the times scales for the different panels are different.
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