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Supplementary Figure 1 | Size fractionation, cDNA normalization and error correction in the hybrid sequenc-
ing workflow. 
a. Histograms show the distribution of PacBio read length in the four libraries fractionated by cDNA size. 
From left to right, the expected size ranges are: <1kb, 1~2kb, 2~3kb, and >3kb. b. Boxplots show the distribu-
tion of normalized PacBio read counts per gene derived from genes of different length range in the four size-
fractionated libraries. In all four libraries, there were more PacBio reads derived from genes of expected length. 
c. Histogram shows that the gene expression dynamic range in rat hippocampus spanning seven orders of 
magnitude, as measured by the Illumina sequencing of the non-normalized library. d. Histogram shows that the 
number of PacBio reads per gene spanned three orders of magnitude, considerably decreased from the true 
gene expression dynamic range in rat hippocampus. e. Similar to Figure 1b, but the ratio of PacBio read count 
over gene expression level estimated by Illumina sequencing data was plotted against gene expression ranks. 
Each dot represents a gene, and the smoothed curve representing the overall trend is shown in blue. f. An 
example shows the performance of error correction. g. The alignment coverage (i.e. the ratio of alignment 
length over read length) before and after error correction was plotted against gene expression levels. h. Align-
ment precision at canonical splice sites was increased after error correction. b,g. Box edges represent quartiles, 
whiskers represent extreme data points no more than 1.5 times the interquartile range. Source data for panels
c-e are provided in a Source Data file.
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Supplementary Figure 2
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 4 

 
Supplementary Figure 2 | Features of our FLT collection.  
a. Similar to Figure 3a, but the number of isoforms per gene in our FLT was compared to mouse 
RefSeq and Ensembl annotation. b. Similar to Figure 3a, but the number of isoforms per gene 
in our FLT was compared to human RefSeq and Ensembl annotation. c. The distribution of 
(alternative) exon length, alternative exon positions in our FLT compared to rat RefSeq and 
Ensembl annotation. d. The distribution of (alternative) intron length, alternative intron 
positions in our FLT compared to rat RefSeq and Ensembl annotation. e. The divisibility by 3 
of the exon length in 5´UTR, CDS, and 3´UTR. In CDS, there was a significant enrichment of 
3-divisibile cassette exons (Fisher’s exact test). f. The PhastCons scores at splicing sites in our 
FLT compared to that in rat RefSeq and Ensembl annotation. g. The PhastCons scores on 
skipped exons/retained introns and their flanking regions in our FLT compared to that in rat 
RefSeq and Ensembl annotation. h. The PhastCons scores on tandem UTRs in our FLT 
compared to that in rat RefSeq and Ensembl annotation. i. In our FLT as well as in mouse and 
human Ensembl annotation, the number of isoforms per gene was positively correlated with the 
maximum transcript length and the maximum number of exons. Box edges represent quartiles, 
whiskers represent extreme data points no more than 1.5 times the interquartile range. 
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Supplementary Figure 3 | Transcript isoform diversity and co-occurrence of alternative RNA 
processing events.  
a. Isoform expression level was plotted against the number of alterative events derived from 
the closest RefSeq transcripts. The annotated isoforms in general had higher expression levels. 
Box edges represent quartiles, whiskers represent extreme data points no more than 1.5 times 
the interquartile range. b. Similar to Figure 3c, but all isoforms in our FLT were considered. c. 
Similar to Figure 3d, but all isoforms in our FLT were considered. d. Separating the co-
occurrence of alternative events at the transcript ends into distal and proximal ones. Shown 
were isoforms with TPM > 1 (left) and all isoforms (right). e. Separating the co-occurrence of 
alternative 5´ and 3´ splice sites into upstream and downstream ones. Shown were isoforms 
with TPM > 1 (left) and all isoforms (right). f. Similar to Figure 3c, but all isoforms were 
compared to the major isoforms in the FLT for analyzing alternative events. c-f. Line type: 
enrichment or depletion of the co-occurrence; line width: the ratio between observed co-
occurrence and expected co-occurrence; line color: -log10(P values) of the enrichment or 
depletion (one-tailed binomial tests).  
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Supplementary Figure 6
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Supplementary Figure 6 | Characteristics of different ORF types. 
a. Boxplots compare the expression levels of ORFs in different types. b. Boxplots compare 
the translational efficiency of ORFs in different types. c. Boxplots compare the length of 
ORFs in different types. d. Boxplots compare the ORFscores of ORFs in different types. e. 
Boxplots compare the PhyloCSF of ORFs in different types, as well as the annotated ncRNAs 
in RefSeq (red). Box edges represent quartiles, whiskers represent extreme data points no 
more than 1.5 times the interquartile range.
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Supplementary Figure 7 | Characteristics of ORFs validated by MS-based proteomics data. 
a. Similar to Figure 6a, but the FDR threshold at 0.01 was based on the estimation using only 
the FLT database. b. The number of PSMs, c. the number of peptides, and d. the number of 
unique peptides were plotted against the ORFscores in each ORF category. Except for the 
RefSeq-annotated ORFs where all peptides were used, in the other ORF categories only the 
FLT-specific peptides were used. Pearson’s correlation coefficients are indicated in each plot at 
the top left. 
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Rpp14 
Novel ORF: FLT5062, FLT5063 

Nudt13  
Novel ORF: FLT5388, FLT5389, FLT5390 

 

MLKMWSGLQRRLWQHRVVPTGQCFRCVHMKVGDRAELSRAFTQQD
VATFSELTGDANPLHLSEDFAKHTRFGKTVVHGVLINGLISALLGTKM
PGPGCVFLSQEIKFPAPLYIGEVVLASAEVKRLKQSVAVVEVSCCVIES
KKTVMEGLVKIMVPGAPRS  

 

MAHQKRQLVPATMETEARASSLLPQQPRQHTRHCHLRTTQTLQGGGL
TDGTLCEELREGADAGVWV 

 
Datafile:161119_1266_AlDoerrb_N25_t0_212min_Mann_3uL_a.raw  
Spectrum number:38689 
RT: 81.4417 min 

 
Datafile:161119_1266_AlDoerrb_N25_t0_212min_Mann_3uL_a.raw 
Spectrum number: 23353 
RT: 53.7640 min 

 

 

 

 
 
Datafile:160611_1207_AlDoerr_N16_t0_212min_Mann_3uL_b.raw 
Spectrum Number :64480 
RT: 127.4874 min 

Datafile:160611_1207_AlDoerr_N16_t0_212min_Mann_3uL_c.raw  
Spectrum number 60341 
RT: 119.8085 min 

 
 

 

 
DataFile:160611_1207_AlDoerr_N16_t0_212min_Mann_3uL_c.raw 
Spectrum Number: 70239 
RT: 137.8314 min 
 

 

 

 

DataFile:161119_1266_AlDoerrb_N25_t0_212min_Mann_3uL_a.raw  
Spectrum Number: 57864 
RT: 118.9186 min 

 

 

 

 

RefSeq ORF
MSLYCGTFFRRKSFGCYRLLSTYVTKARYLFELKEDDEACRKAQQTGL
FYLFHDLDPLLQESGHRYLVPRLSRAELEGLLGKFGQDSQRIEDSVLVG
CSNEQEAWFALDLGLKSASSVRASLPKSEMEAELGGSFVKLRQALLQL
NSVDSSLLFTAQALLRWHDGHQFCSKSGQPTQKNMAGSKRVCPSNNII
YYPQMAPVVITLVSDGARCLLARQSSFPRGLYSALAGFCDIGERVEEAV
HREVAEEVGLEVENIQYSASQHWPFPNSSLMIACHATVKPGHTEIQVNL
KELEAAAWFSLDEVATALRRKGSFAQQQREASPLMLPPKLAVAHHMI
KEWVEKQSRSSLAA 

Supplementary Figure 8

Supplementary Figure 8 | Annotated 
spectra for the peptides presented in Fig. 
6c,d. 
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Supplementary Figure 9

Supplementary Figure 9 | The percentage of rat genes expressed (≥ 0.1 FPKM) in hippocampus 
covered by our FLT across different gene length. 
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 13 

 

 

Supplementary Table 1 | PacBio sequencing data summary.  

Libraries <1kb 1~2kb 2~3kb ≥3kb Total 

# SMRT cells 23 21 20 31 95 

# raw reads 568,636 777,440 1,034,557 1,694,533 4,075,116 

 

 

 

Supplementary Table 2 | List of primers used in this study.  
PacBio library preparation  

Name Sequence (5´ --> 3´) 

SMRT-PCR AAGCAGTGGTATCAACGCAGAGTAC 
  

5´CAGE   

Name Sequence (5´ --> 3´) 

N15-oligo TACACGACGCTCTTCCGATCTNNNNNNNNNNNNNNN 

cap GN5 up* CAGACGTGTGCTCTTCCGATCTGNNNNN-P 

cap N6 up* CAGACGTGTGCTCTTCCGATCTNNNNNN-P 

cap 5´adaptor 

down* 
P-AGATCGGAAGAGCACACGTCTG-NH2 

cap forward 

primer 
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATC 

cap reverse 

primer** 

GATCGGAAGAGCACACGTCTGAACTCCAGTCACNNNNNNATCTCGTATGCCGTCTTC

TGCTTG 

 

*   cap GN5 up / cap N6 up and cap 5´ adaptor down form double stranded 5ʹ linkers 

** the underlined N(6) comprises sample multiplex barcodes 
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