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Previous work (extended)

Genome-based transcript assembly is a central problem in transcriptomics, and entails piecing
together the RNA-seq read alignments to infer the exon-intron structure of the expressed genes
and transcripts along the genome. Multiple transcript assembly methods were reported since
the revolutionary introduction of RNA sequencing *. Virtually all of these methods use a two
step approach, first building a graph representation of a gene and its splice variants from RNA-
seq read alignments, and then traversing the graph to select a subset of transcripts that are
likely present in the sample (see ? and references therein). To build a representative structure
for the gene, Cufflinks * uses an overlap graph in which reads are vertices and two reads (read
pairs) are connected if they overlap and have compatible splice patterns. Scripture * and
IsoLasso ° build connectivity graphs, in which the set of vertices consists of all genomic
positions, and two positions are connected by an edge if they are adjacent in the genome or are
the endpoints of an intron. More recent tools, including iReckon ® CLASS’, CLASS2 8 CIDANE °,
StringTie *° and Scallop ** have preferentially employed splice or subexon graphs due to their
compactness and intuitive nature. In such representations, exons (subexons) are vertices and
edges are introns connecting the exons. (In a subexon graph, consecutive subexons within an
exon are additionally connected.) Lastly, TransComb ** employs a junction graph, where the
nodes represent edges in an initial splicing graph and edges connect two incident edges in the
splicing graph. While these diverse data structures can encode similar sets of transcripts, step 2,
transcript selection, is determinant for the program’s accuracy performance. For instance,
Cufflinks’ minimum partition algorithm selects a mathematically minimum number of
transcripts, which limits the number of splice isoforms that can be reported. Several methods,
including IsolLasso, SLIDE, iReckon and CIDANE, employ ‘best fit’ linear-programming or
expectation maximization-based approaches to select a subset of transcripts that optimize an
objective function, often with a regularization penalty to reduce the number of transcripts
reported. Other popular approaches include dynamic programming optimization to solve a
SET_COVER problem for the set of transcripts and splice patterns (constraints) (CLASS2),
network flow optimization algorithms (Traph *3, StringTie, FlipFlop **), ‘combing’ for a
PATH_COVER in a weighted junction graph (TransComb), or iteratively decomposing a splice
graph into phase-preserving paths, namely paths that can be uniquely associated with one
transcript, with linear programming algorithms (Scallop).




All of the above methods generate a set of partial transcripts (transfrags) for a given RNA-seq
samples. Since most experiments involve multiple RNA-seq samples, transfrags from all samples
are further ‘merged’ into more complete exon-intron structures to determine a consensus set
of transcripts, or meta-annotations. Existing meta-assemblers include Cuffmerge, included with
the Cufflinks package, StringTie-merge from the StringTie package, and more recently TACO *°.
TACO builds a ‘path’ graph from the input transcripts, where a ‘path’ is a sequence of
consecutive splice junctions (partial transcript) represented as a vertex and two vertices are
connected if they have compatible junction patterns, and iteratively selects the most abundant
paths (isoforms). Despite the importance of meta-annotations for subsequent quantification
and differential gene expression analyses, however, there has been relatively little effort in
designing mathematically rigorous meta-assemblers. Lastly, only a small number of studies
have focused on simultaneous multi-sample transcript assembly. These include CLIIQ ', an
early protoype algorithm that uses an integer linear programing (ILP) approach with variables
the full set of isoforms; MiTie */, which builds a splicing graph representing the gene and
maximizes a likelihood function using mixed integer programming with a regularization penalty;
and ISP *®, which solves an LP or ILP problem iteratively on a weighted connectivity graph
derived from the input samples. While marking significant conceptual advances, they scale
poorly (MiTie) or otherwise have limited performance in detecting splicing variation (ISP), as
demonstrated in *°.
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Supplementary Figure 1. Overview of the PsiCLASS algorithm. Step 1. Build sample-level
subexon graphs from aligned reads and splice reads. PsiCLASS builds a subexon graph for each
sample by clustering overlapping read alignments into regions, dividing regions into subexons
at splice junctions (inferred from spliced reads), and connecting with edges subexons that are
adjacent within the same region or connected by an intron. Step 2. Build and refine a global
subexon graph, by merging sample-level subexon graphs and employing intron and subexon
filters that evaluate information simultaneously across all samples. Step 3. Enumerate or select
a set of candidate transcripts using dynamic programming across all samples. Step 4. Select a
subset of transcripts in each sample, using a greedy strategy that iteratively select an optimal
transcript (with global subexon graph-based dynamic programming). Step 5. Select a unified set
of meta-annotations from among the sample-level transcripts, with voting.
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Supplementary Figure 2. Performance evaluation of PsiCLASS and existing reference methods
at the level of meta-annotations on simulated data. Methods tested include combinations of
three single-sample assemblers (Cufflinks, StringTie and Scallop) and two meta-assemblers
(TACO and StringTie(ST)-merge), and two multi-sample integrated methods (ISP and FlipFlop),
where TACO and ST-merge were used to aggregate the outputs from individual samples into a
unified set of meta-annotations. Below, the shape of the point represents the single-sample
assembly tool used, and the color represents the aggregation method. For PsiCLASS, the red
curve shows the variation in performance as the weighted voting cutoff varies among0, 1, 2, 4,
8, 16 (right to left). PsiCLASS produces the highest precision and its sensitivity is comparable
with the best of the other methods. Recall = TP/(TP+FN), Precision = TP/(TP+FP). Source data are
provided as a Source Data file.
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Supplementary Figure 3. Comparison of transcript assembly methods at the sample-level and
for different alignment tools. Each point represents the performance of the stated method on
one of the 25 simulated samples. The shape of the mark represents the transcript assembly
method (StringTie, Scallop and PsiCLASS), and the color indicates the RNA-seq alignment tool
(Hisat2 and STAR). All methods perform similarly with the two alignment methods, with Hisat2
leading to a slight increase in performance. When assembly methods are compared, PsiCLASS
(with Hisat2) using a global subexon graph leads to improved accuracy at sample level, with the
highest per sample average recall, 28% higher than StringTie and 16% higher than Scallop, and
precision comparable to StringTie and Scallop.




<
-
=1
=2 0]
o | O
o
; O
=3 ! o)

© o™
c s
s ©
0 o
(6]
o
-
o <

o

N

o

O PsiCLASS
o StringTie
Scallop+TACO
Q
o
\ \ \ \ \ \
0.0 0.2 0.4 0.6 0.8 1.0
Recall

Supplementary Figure 4. Performance of methods on simulated data based on gene splicing
complexity. Genes were divided into low (1 transcript/gene; 680 genes, 680 transcripts),
medium (2 transcripts/gene; 166 genes, 332 transcripts) and high (3 or more transcripts/gene;
106 genes, 431 transcripts) complexity and methods were evaluated for each group. PsiCLASS is
the best performer on the high and medium complexity genes (two leftmost groups), whereas
StringTie has the best overall performance on the low complexity group, followed closely by
PsiCLASS. Source data are provided as a Source Data file.
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Supplementary Figure 5. Performance of PsiCLASS with heterogeneous collections of data.
Three different methods were tested for their ability to generate meta-annotations from single-
, two- and multi-condition experiments, using GTEx RNA-seq data from six tissues (cortex,
frontal cortex, cerebellum, heart, liver and lung): i) PsiCLASS with voting on all samples in a
single and/or multi-tissue collection; ii) PsiCLASS with TACO on all samples in a single and/or
multi-tissue collection; and iii) PsiCLASS on all samples of a given tissue, followed by meta-
assembly between tissue collections with TACO. Source data are provided as a Source Data file.
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Supplementary Figure 6. Performance evaluation of combination methods on simulated and
real data: (A) all method combinations, meta-annotations, simulated data (25 samples); (B) all
method combinations, meta-annotations, Geuvadis data (25 samples); (C) all method
combinations, meta-annotations, total RNA from human liver (73 samples); and (D) all method
combinations, meta-annotations, mouse hippocampus samples, healthy and with induced
epileptic seizures (44 samples). For PsiCLASS, the weighted voting cutoff is varied among 0, 1
(default), 2, 4, 8, 16 (shown right-to-left, as red curves). The default cutoff (1.0) was used when
voting was applied to all other programs. PsiCLASS’s performance is robust with the
aggregation method. Also, voting drastically improves over traditional aggregation methods
(TACO, ST-merge) for all single-sample assemblers. Source data are provided as a Source Data file.
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Supplementary Figure 7. Effect of voting - performance at full-length transcript level (A) and
partial transcript-level (B), for the three single-sample assemblers with the voting aggregation
method. (A) Performance when the weighted voting cutoff varies (0, 1, 2, 4, 8, 16; right-to-left).
PsiCLASS maintains a slight edge in full-length reconstructed transcripts over the other single-
sample assemblers for cutoff values >=1.0 (default). When no filter is used (cutoff 0.0; union set
of transcripts), StringTie and Scallop have significantly higher sensitivity, however at a sharp
drop in precision, with PsiCLASS offering the best tradeoff. (B) Recall and precision when
requiring a minimum transcript coverage fraction (MinCoverage), for the default voting
parameter (1.0). A predicted transcript is deemed to match a reference transcript at coverage
cutoff c if its intron chain is a sub-chain containing more than (or equal to) a fraction c of the
reference transcript’s introns. Source data are provided as a Source Data file.
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Supplementary Figure 8. Effect of feature selection - performance at intron and internal exon
level for the three single-sample assemblers with the voting aggregation method. PsiCLASS

captures 10-40% more introns, and 10-50% more internal exons. Source data are provided as a
Source Data file.
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Supplementary Figure 9. Effect of shared subexon graph — performance in terms of
completeness of gene model, for the three single-sample assemblers with the voting

aggregation method. PsiCLASS builds more complete gene models, as reflected in the number
of (reference) genes with full-length transcripts (7-25% more than StringTie and 3-31% more

than Scallop), and captures more known (reference) genes (4-10% more than StringTie and 2-
46% more than Scallop), as classified by Cuffcompare against the reference set of annotations
for each experiment. Source data are provided as a Source Data file.
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Supplementary Figure 10. Effect of shared subexon graph — completeness of gene model
(examples). PsiCLASS (red) predicts full-length transcripts at the RNF215 (top) and partial
transcripts at the PLA2G6 (bottom) gene loci in the liver RNA-seq collection, whereas both
StringTie and Scallop miss the genes, when the voting aggregation method is used with all three
tools. (Panels include sample-level Scallop predictions in 3 randomly selected samples showing
partial reconstructions.) RNF215 and PLA2GA are expressed at low levels in liver
(www.proteinatlas.org).
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