

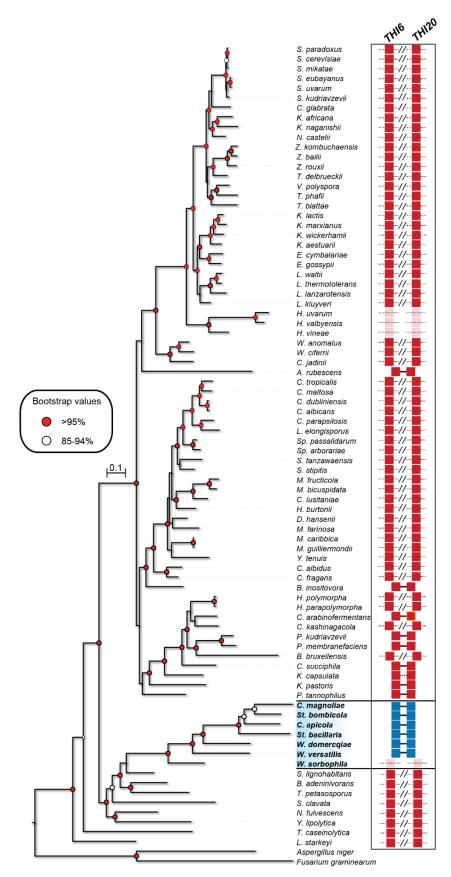
Supplementary Information for

Multi-layered horizontal operon transfers from bacteria reconstruct a thiamine salvage pathway in yeasts

Carla Gonçalves and Paula Gonçalves* *corresponding author Email: pmz@fct.unl.pt

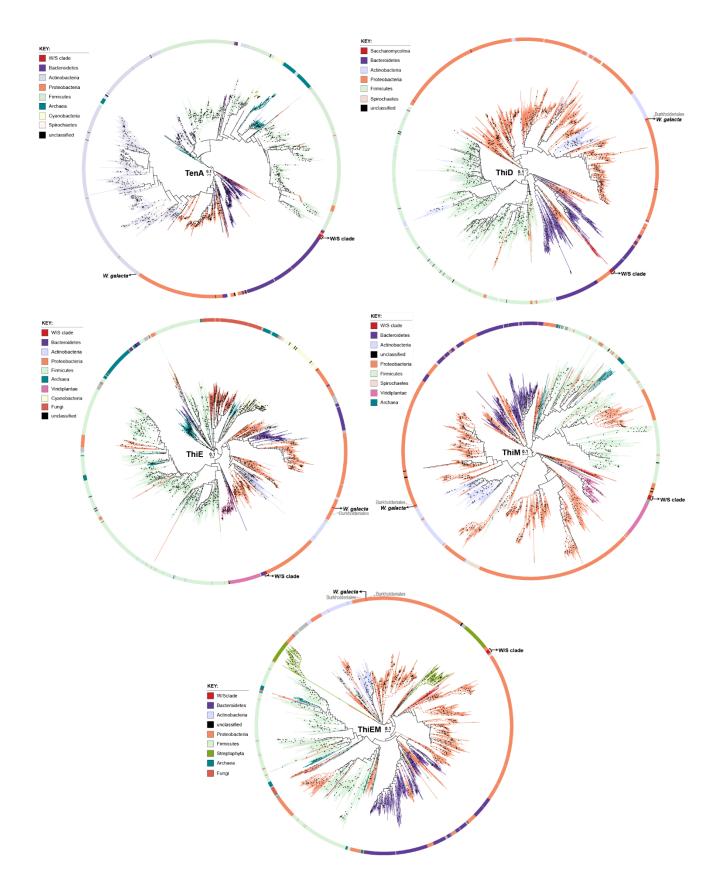
This PDF file includes:

Supplementary text: Methods for the construction of preliminary phylogenies Figures S1 to S6 Tables S1 to S4 SI References

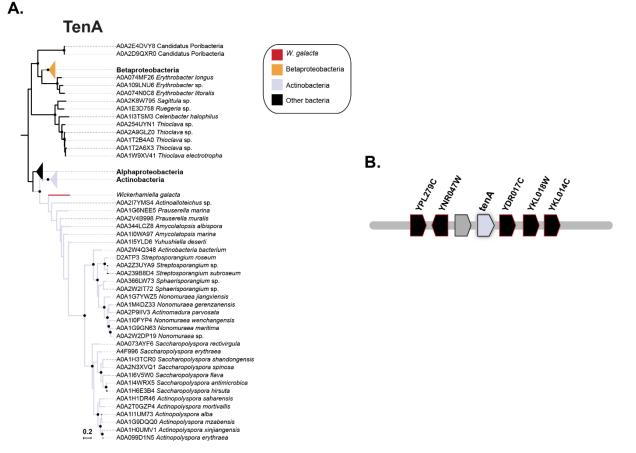

Other supplementary materials for this manuscript include the following:

Datasets S1 to S3 Phylogenetic analyses related files can be accessed in Figshare (DOI: 10.6084/m9.figshare.9800636)

Methods for the construction of preliminary phylogenies presented in Figure S2 and S5.


For the preliminary phylogenies presented in Figure S2, the top 5.000 BLASTp hits on NCBI (Refseg database) were selected using St. bombicola proteins as queries and an e-value cut off of 1e⁻¹⁰. tenA, thiD, thiE and thiM (recovered as thiEM because these genes are fused in all W/S-clade species) sequences from other W/Sclade species were retrieved by tBLASTx in local genome databases and the proteins were subsequently predicted in AUGUSTUS (web interface) using Saccharomyces cerevisiae as reference. Sequences with more than 95% similarity were removed with CD-HIT v4.6.7 (1) and the remaining sequences were aligned with MAFFT v7.222 (2) using an iterative refinement method (L-INS-i). For TenA, ThiD, ThiE and ThiM, poorly aligned sequences were removed with trimAlv1.2 (3) using its "gappyout" option. For the alignment comprising the fused ThiEM protein which encodes the ThiE and ThiM domains, columns with gaps in more than 10% of the sequences were removed (-gt 0.9). If this strategy removed more than 40% of the columns in the original alignment, at least 60% were conserved by adding the necessary number of columns in decreasing order of scores (-cons 60). In this way it was ensured that both ThiE and ThiM portions were conserved in the alignment. Phylogenies were constructed in IQ-TREE v1.6.10 (4) with 1.000 ultrafast bootstrap (5) replicates and with selection of the best fitting model. In all cases, W/S-clade sequences grouped with bacteria in the preliminary phylogenies and W. galacta groups with different bacteria than other W/S-clade species, suggesting an independent origin.

For the preliminary phylogeny of YImB presented in Figure S5A, the top 5.000 BLASTp hits on NCBI (Refseq database) were selected using *St. bombicola* putative YImB as query and an e-value cutoff of $1e^{-10}$. Sequences with more than 95% similarity were removed with *CD-HIT* v4.6.7 (1) and the remaining sequences were aligned with *MAFFT* v7.222 (2) using an iterative refinement method (L-INS-i). For the final phylogeny presented in Figure S5B, only the top 750 hits in UniprotKB (reference_proteomes) were selected with the addition of the closest related hits in *Bacillus subtilis* which include the characterized YImB protein (6). Sequences with more than 98% similarity were removed with *CD-HIT* v4.6.7 (1) and the remaining sequences were aligned with *MAFFT* v7.222 (2) using an iterative refinement method (L-INS-i). Phylogenies were constructed in *IQ-TREE* v1.6.10 (4) with 1.000 ultrafast bootstrap (5) replicates and with the selection of best fitting model.


Fig. S1. Distribution of *THI6* **and** *THI20* **homologues in the Saccharomycotina.** The maximum likelihood (ML) tree is the one depicted in Gonçalves C. et al., 2018 (7). A tBLASTx in local genome databases (see Table S4, which includes the respective accession numbers) was performed (*E*-value < e⁻³). A BLASTp in

NCBI was performed with the top hits and whenever the top BLASTp hits corresponded to the identity of the query gene, the gene was considered as being present. Physical linkage was asserted by inspecting if the top hits for *THI6* and *THI20* were contiguously located. The red and blue squares represent homologues of fungal origin (top BLASTp hits corresponded to fungal proteins) and bacterial origin (top BLASTp hits corresponded to fungal proteins) and bacterial origin (top BLASTp hits corresponded to bacterial proteins), respectively. Faded squares denote absent genes (e-value > e⁻³). Physical linkage between *THI6* and *THI20* is represented by a black line linking the two squares while "//" means that the genes are distantly located in the respective genome. For *Candida arabinofermentans* several paralogues of *THI20* were detected and one of the paralogues is in cluster with *THI6* while the others are located in other genomic regions. In *Kuraishia capsulata THI6* and *THI20* are separated by three genes.

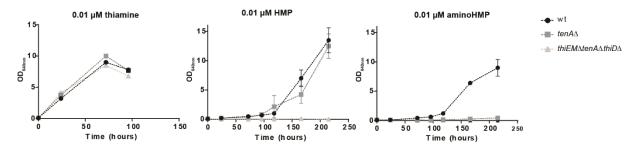


Fig. S2. Preliminary phylogenies of Thi proteins. The top 5.000 hits on NCBI (Refseq database) were selected using *St. bombicola* proteins as queries. Taxonomic classification (Phylum for Bacteria and Kingdom/Domain for other organisms) was automatically assigned using a customized *E*-utilities script provided by Entrez Direct and is presented in the key on the left next to the respective phylogenetic tree.

Lineages with less than 20 representatives are colored in grey. All phylogenies were midpoint rooted and visualized in iTOL v4 (8).

Fig. S3. Maximum likelihood phylogeny of proteins closely related to TenA from *W. galacta.* (A) Phylogeny constructed with the top 750 BLASTp hits in UniprotKB. Branches with support higher than 95% (ultrafast bootstrap) are indicated by black circles. (B) Gene organization in the vicinity of *tenA* from *W. galacta.* Genes are represented by arrows denoting relative transcriptional direction. Genes from fungal origin are outlined in red while genes with dubious annotations are represented in grey. The closest related genes in *S. cerevisiae* are shown on top of the arrows.

Fig. S4. Growth curves for wt and *THI* deletion mutants (*tenA* Δ and *thiEM* Δ *tenA* Δ *thiD* Δ) grown in YNB medium without aminoacids and without thiamine supplemented with 0.01 µM of thiamine, 0.01 µM of HMP or 0.01 µM of aminoHMP, as indicated. Cultures were pre-grown in the respective media for one to four days (depending on the lag-phase) until late exponential phase was reached and were subsequently inoculated in the same medium to an OD_{640nm} of 0.2. Growth was monitored for 220 hours at 30°C with shaking (180 r.p.m.).

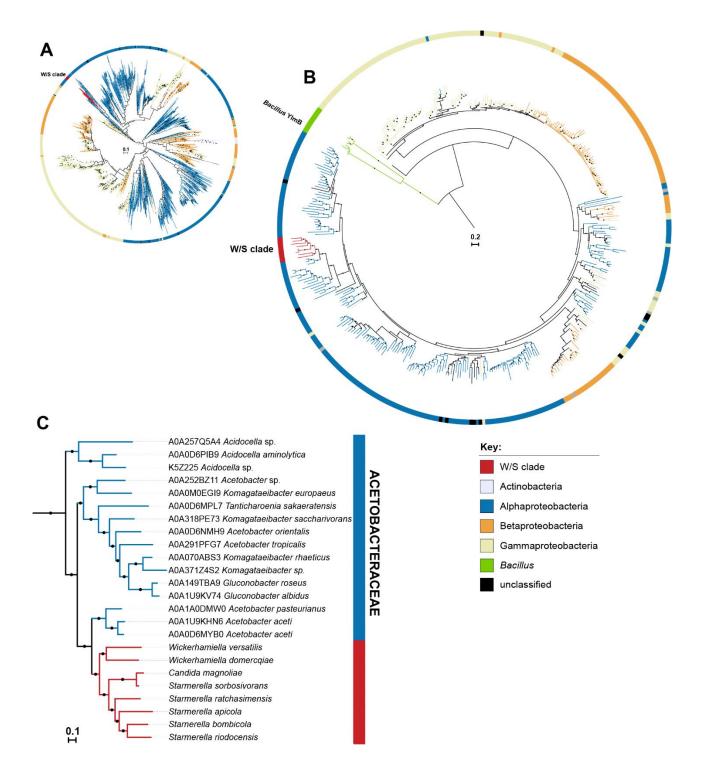


Fig. S5. Maximum likelihood phylogeny of proteins closely related to putative YImB from W/S-clade species. (A) Preliminary phylogeny constructed with the top 5.000 hits to putative YImB from *St. bombicola*. Complete (B) and pruned (C) ML phylogeny constructed with the top 750 hits to putative YImB from *St. bombicola* with the addition of functionally characterized YImB proteins from *Bacillus subtilis* (indicated in green). Branches with support higher than 95% (ultrafast bootstrap) are indicated by black dots. Phylogenies were midpoint rooted and visualized in iTOL v4 (8) and branches are colored according to the taxonomic classification as indicated in the key.

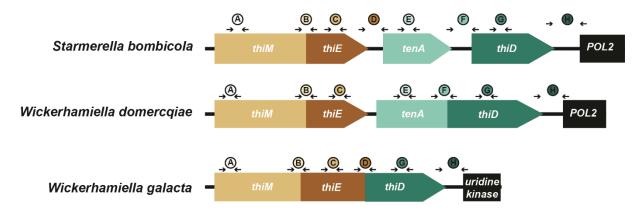


Fig. S6. Primer pairs used for RT-qPCR. Primer sequences and efficiencies are shown in Table S3.

Supplementary Tables

Table S1. Complete list of fungal taxa, abbreviated species names and genome databases and accession numbers of RNA polymerase proteins used to construct the species tree (Figure 1A and Figure S1). Abbreviated species names are given for each species as used in the phylogeny. W/S-clade species are highlighted in blue. Species used as outgroups are highlighted in orange.

Species	Abbreviated names	Strain(s)	Genome database
Aspergillus niger	A. niger	CBS 513.88	BROAD/JGI
Fusarium graminearum (Gibberella zeae)	F. graminearum	PH-1	SGD/BROAD
Blastobotrys adeninivorans	B. adeninivorans		NCBI
Ascoidea rubescens	A. rubescens	NRRL Y17699	JGI
Babjeviella inositovora	A. inositovora	NRRL Y-12698	JGI
Candida tenuis	C. tenuis	NRRL Y-1498	JGI
Candida albicans	C. albicans	WO-1	SGD/BROAD
[Candida] apicola	C. apicola	NRLL Y-50540	NCBI
Candida arabinofermentans	C. arabinofermentans	NRRL YB-2248	JGI
Candida caseinolytica	C. caseinolytica	NRRL Y-17796	JGI
Candida dubliniensis	C. dubliniensis	CD36	SGD/YGOB
Candida glabrata	C. glabrata	CBS 138	SGD/YGOB
[Candida] magnoliae	C. magnoliae	PYCC 2903	NCBI
Candida parapsilosis	C. parapsilosis	CDC317	BROAD/NCBI
Candida tanzawaensis	C. tanzawaensis	NRRL Y-17324	JGI
Candida tropicalis	C. tropicalis	MYA-3404	SGD/BROAD
Clavispora lusitaniae	C. lusitaniae	ATCC 42720	BROAD/NCBI
Cyberlindnera jadinii	C. jadinii	NBRC 0988	NCBI
Debaryomyces hansenii	D. hansenii	CBS767	SGD/NCBI
Dekkera bruxellensis	D. bruxellensis	AWRI1499	NCBI
Eremothecium cymbalariae	E. cymbalariae	DBVPG#7215	NCBI/YGOB
Eremothecium gossypii	E. gossypii	ATCC 10895	SGD/NCBI
Hyphopichia burtonii	H. burtonii	NRRL Y-1933	JGI
Kazachstania africana	K. africana	CBS 2517	YGOB
Kazachstania naganishii	K. naganishii	CBS 8797	YGOB
Kluyveromyces aestuarii	K. aestuarii	ATCC 18862	NCBI
Kluyveromyces lactis	K. lactis	NRRL Y-1140	SGD/YGOB
Kluyveromyces wickerhamii	K. wickerhamii	UCD 54-210	NCBI
Komagataella pastoris	K. pastoris	GS115 + CBS 7435	SGD/NCBI
Lachancea kluyveri	L. kluyveri	NRRL Y-12651	SGD/YGOB
Lachancea thermotolerans	L. thermotolerans	CBS 6340	SGD/YGOB
Lachancea waltii	L. waltii	NCYC 2644	SGD/YGOB
Lipomyces starkeyi	L. starkeyi	NRRL Y-11557	JGI
Lodderomyces elongisporus	L. elongisporus	NRRL YB-4239	BROAD/NCBI
Metschnikowia bicuspidata	M. bicuspidata	NRRL YB-4993	JGI
Meyerozyma guilliermondii	M. guilliermondii	ATCC 6260	BROAD/NCBI
Millerozyma farinosa	M. farinosa	CBS 7064	SGD/NCBI

Species	Abbreviated names	Strain(s)	Genome database
Nadsonia fulvescens var. elongata	N. fulvescens	DSM 6958	JGI
Naumovozyma castellii	N. castellii	CBS 4309	YGOB
Ogataea polymorpha	O. polymorpha	NCYC 495 leu1.1	JGI
Ogataea parapolymorpha	O. parapolymorpha	DL-1	NCBI
Pachysolen tannophilus	P. tannophilus	NRRL Y-2460	JGI/NCBI
Pichia kudriavzevii	P. kudriavzevii	M12	NCBI
Pichia membranifaciens	P. membranifaciens	NRRL Y-2026	JGI
Saccharomyces cerevisiae	S. cerevisiae	S288c	SGD/BROAD
Saccharomyces eubayanus	S. eubayanus	FM1318	NCBI
Saccharomyces kudriavzevii	S. kudriavzevii	IFO 1802	SSS Website
Saccharomyces mikatae	S. mikatae	IFO 1815	SSS Website SGD/BROAD
Saccharomyces paradoxus	S. paradoxus	NRRLY-17217	SSS Website NCBI
Saccharomyces uvarum	S. uvarum	CBS 7001	SSS Website SGD/BROAD
Saprochaete clavata	Sa. clavata	CNRMA 12.647	NCBI
Scheffersomyces stipitis	S. stipitis	CBS 6054	JGI/NCBI
Spathaspora passalidarum	S. passalidarum	NRRL Y-27907	JGI/NCBI
Starmerella bacillaris	St. bacillaris	PYCC 3044	NCBI
Starmerella riodocensis	St. riodocensis	NRRL Y-27859	NCBI (Y1000+ project)
Starmerella ratchamatensis	St. ratchamatensis	CBS 10611	NCBI (Y1000+ project)
Starmerella sorbosivorans	St. sorbosivorans	CBS 8768	NCBI (Y1000+ project)
Starmerella bombicola	St. bombicola	PYCC 5882	NCBI
Sugiyamaella lignohabitans	Su. lignohabitans	NRRL YB-1473	NCBI
Tetrapisispora blattae	T. blattae	CBS 6284	YGOB
Tetrapisispora phaffii	T. phafii	CBS 4417	YGOB
Torulaspora delbrueckii	T. delbrueckii	CBS 1146	YGOB
Trichomonascus petasosporus	T. petasosporus	NRRL YB-2093	JGI
Vanderwaltozyma polyspora	V. polyspora	DSM 70294	YGOB/NCBI
Wickerhamiella domercqiae	W. domercqiae	PYCC 3067	NCBI
Wickerhamiella cacticola	W. cacticola	NRRL Y-27362	NCBI (Y1000+ project)
Wickerhamiella hasegawae	W. hasegawae	JCM 12559	NCBI (Y1000+ project)
Wickerhamiella galacta	W. galacta	NRRL Y-17645	NCBI (Y1000+ project)
Wickerhamiella occidentalis	W. occidentalis	NRRL Y-27364	NCBI (Y1000+ project)
Wickerhamiella pararugosa	W. pararugosa	NRRL Y-17089	NCBI (Y1000+ project)
Wickerhamiella versatilis	W. versatilis	JCM 5958	RIKEN
Wickerhamomyces anomalus	W. anomalus	NRRL Y-366	JGI
Yarrowia lipolytica	Y. lipolytica	CLIB122	SGD/NCBI
Zygosaccharomyces bailii	Z. bailii	CLIB 213	NCBI
Zygosaccharomyces kombuchaensis	Z. kombuchaensis	CBS 8849	Local database
Zygosaccharomyces rouxii	Z. rouxii	CBS 732	SGD/JGI

Table S2. Information concerning strains and	genome assemblies used in this work.
--	--------------------------------------

Species	Genome assembly reference	Information was included in:
Sugiyamaella lignohabitans CBS10342	ASM164002v2	Figure 1B
Wickerhamiella galacta NRRL Y-17645	ASM304524v1	Figure 1B, Figure 2, Figure 4
Wickerhamiella hasegawae JCM 12559	ASM412510v1	Figure 1B
Wickerhamiella pararugosa NRRL Y-17089	ASM412523v1	Figure 1B
Wickerhamiella occidentalis NRRL Y-27364	ASM412509v1	Figure 1B
Wickerhamiella sorbophila DS02	ASM225199v2	Figure 1B
Wickerhamiella versatilis JCM 5958	JCM_5958_assembly_v001	Figure 1B, Figure 2, Figure 3
Wickerhamiella domercqiae PYCC 3067	ASM303370v1	Figure 1B, Figure 2, Figure 3
Starmerella sorbosivorans CBS 8768	ASM412500v1	Figure 1B, Figure 2, Figure 3
Candida magnoliae PYCC 2903	ASM303343v1	Figure 1B, Figure 2, Figure 3
Starmerella bacillaris PYCC 3044	ASM303376v1	Figure 1B, Figure 2, Figure 3
Starmerella apicola NRRL Y-50540	ASM100541v1	Figure 1B, Figure 2, Figure 3
Starmerella ratchamatensis CBS 10611	ASM412497v1	Figure 1B, Figure 2, Figure 3
Starmerella riodocensis NRRL Y-27859	ASM412495v1	Figure 1B, Figure 2, Figure 3
Starmerella bombicola PYCC 5882	ASM303378v1	Figure 1B, Figure 2, Figure 3
Dysgonomonas mossii DSM22836	ASM37640v1	Figure 2
Mangrovibacterium marinum DSM 28823	ASM304662v1	Figure 2
Caballeronia udeis ES_PA-B7	ASM361007v1	Figure 2
Burkholderia novacaledonica LMG 28615T	LMG28615	Figure 2
Peptostreptococcus russellii RT-10B	ASM301205v1	Figure 2
Veillonella dispar DORA_11	GCA_000508585.1	Figure 2

Table S3. Primers used for Real Time PCR. Efficiencies of each primer pair were calculated using five tenfold DNA dilutions.

Name	Sequence 5'-3'	Purpose	Primer Efficiency (%)	
qPCR_thiD_Fw	AGATACTGATGGCACTCTCATCG	primers for qRT-PCR of thiD from St. bombicola		
qPCR_thiD_Rv	GTGAACTGGGCCATGACCTC	primers for qRT-PCR of thiD from St. bombicola	101	
qPCR_thiE_Fw	TTATGGCGTCGGAGCCTACC	TGGCGTCGGAGCCTACC primers for qRT-PCR of <i>thiM</i> portion from <i>SL bombicola</i>		
qPCR_thiE_Rv	CGAGTAGTGGCTTCAGATGTGTC	primers for qRT-PCR of thiM portion from St. bombicola	99,6	
qPCR_thiEfim_Fw	GAAGCGTGCAAAGCAATTAGTGG	primers for qRT-PCR of thiE portion from St. bombicola		
qPCR_thiEfim_Rv	CAGCTTTTGGGTCTTCTGCCAG	primers for qRT-PCR of thiE portion from St. bombicola	92,5	
qPCR_tenA_Fw	GCTGAGCAGGAATTGCACGAC	primers for qRT-PCR of tenA from St. bombicola		
qPCR_tenA_Rv	GCGCATAGGGATGTTCGACG	primers for qRT-PCR of tenA from St. bombicola	94,5	
qPCR_thiM718_Fw	CAGTTGCTGGAGAGCTCGCTG	primers for qRT-PCR of the fragment in between thiM and thiE from St. bombicola		
qPCR_thiE1024_Rv	GGAACATGGAACTCATCGCATACC	primers for qRT-PCR of the fragment in between thiM and thiE from St. bombicola	95,7	
qPCR_Pol2_Fw	TGACGGCAGAGGCTATCTTGTC	primers for qRT-PCR of POL2 from St. bombicola		
qPCR_Pol2_Rv	CGTTAAACGTAGCGATGACAGTGG	primers for qRT-PCR of POL2 from St. bombicola	94,1	
qPCR_thiD_779Fw	GTAGAGGTCATGGCCCAGTTCA	primers for qRT-PCR of the fragment in between thiD and POL2 from St. bombicola		
qPCR_Pol2_82Rv	TGGCATCCAACATGTCCGTCAG	primers for qRT-PCR of the fragment in between thiD and POL2 from St. bombicola	94,5	
qPCR_Wicdom_tenA334_Fw	CTAAGGTGTGCTGCAGTTGAGC	primers for qRT-PCR of tenA from W. domercqiae		
qPCR_Wicdom_tenA545Rv	GTGGCTGCTGCAAGCTCATCG	primers for qRT-PCR of tenA from W. domercqiae	94,8	
qPCR_Wicdom_thiD850Fw	CTGGTGCGTTTGTCCAAGCTC	primers for qRT-PCR of thiD from W. domercqiae		
qPCR_Wicdom_thiD1089Rv	TGCAAGCGGAATTAAGCGATCACG	primers for qRT-PCR of thiD from W. domercqiae	93,1	
Wicdom_thiM67Fw	GCGGTAGCATCTAACTACGCTG	primers for qRT-PCR of thiM portion from W. domercqiae	94.3	
Wicdom_thiM308Rv	GCCACTAGAGCTCTGCATGTATC	primers for qRT-PCR of thiM portion from W. domercqiae		
Wicdom_thiE1116Fw	TCTTGGACTCAGCGTGGGATC	primers for qRT-PCR of thiE portion from W. domercqiae		
Wicdom_thiE1364Rv	GCTACTCCAGCAGCACCTGTG	primers for qRT-PCR of thiE portion from W. domercqiae	97.4	
Wicdom_thiM684Fw	TGGTGTTGCCGGTGAGCTTGC	primers for qRT-PCR of the fragment in between thiM and thiE from W. domercqiae		
Wicdom_thiE953Rv	CTTGACCTCAACCGCGCGAG	primers for qRT-PCR of the fragment in between thiM and thiE from W. domercqiae	108.3	
Wicdom_tenA518_Fw	CATGCGATGAGCTTGCAGCAGC	primers for qRT-PCR of the fragment in between tenA and thiD from W. domercqiae		
Wicdom_thiD790_Rv	CGTCTGAGAATACACTCCAAGCG	primers for qRT-PCR of the fragment in between tenA and thiD from W. domercqiae	86,7	
Wicdom_POL2_661Fw	CGTCTCGCAATTGATCTTGATGTGC	primers for qRT-PCR of POL2 from W. domercqiae		
Wicdom_POL2_915Rv	CAATGTCCTGACTTACTAGCTCACG	primers for qRT-PCR of POL2 from W. domercqiae	90.0	
Wicdom_tenAthiD_1451Fw	GCTGCGTCGGATCAACAACTGG	primers for qRT-PCR of the fragment in between thiD and POL2 from W. domercqiae		
Wicdom_POL2_36Rv	CGCGATGAAAGACGCGACGC	primers for qRT-PCR of the fragment in between thiD and POL2 from W. domercqiae	94,4	
Wgalacta_thiM266Fw	GTCTCCATTCGTGCGGCCATTG	primers for qRT-PCR of thiM portion from W. galacta		
Wgalacta_ThiM485Rv	CGTCTTCAGAGCTAACAGCGC	primers for qRT-PCR of thiM portion from W. galacta	94,9	
Wgalacta_thiE312Fw	GCTCGATGGTCTGGCAGAGAT	primers for qRT-PCR of thiE portion from W. galacta		
- Wgalacta_thiE503Rv	GCTTCAAGTTGACTACCTGCCG	primers for qRT-PCR of <i>thiE</i> portion from <i>W. galacta</i>	100,5	
- Wgalacta_thiD527Fw	GGCATCTACCATCAGACCTTACTAG	primers for qRT-PCR of thiD from W. galacta		
Wgalacta_thiD700Rv	CCTTGACGGATTGTGCAAGGC	primers for qRT-PCR of thiD from W. galacta	101,6	
- Wgalacta_thiM798Fw	GGAGCAGCTGACTTTGAGCG	primers for qRT-PCR of the fragment in between thiM and thiE from W. galacta	105,6	
- Wgalacta_thiE81Rv	CGAGTGCCACGTCTACGTCG	primers for qRT-PCR of the fragment in between <i>thiM and thiE</i> from <i>W. galacta</i>		
Wgalacta_thiE312Fw	GCTCGATGGTCTGGCAGAGAT	primers for qRT-PCR of the fragment in between <i>thiD and thiE</i> from <i>W. galacta</i>		
Wgalacta_thiD105Rv	CACGCTGAGACCATAAGCTCC	primers for qRT-PCR of the fragment in between <i>thiD and thiE</i> from <i>W. galacta</i>	92,5	
Wgalacta_thiD750Fw	TGTAGGTCATGGAACTGGTCCG	primers for qRT-PCR the fragment between thiD and uridine kinase from <i>W. galacta</i>		
Wgalacta_uridineRv	GCCACTCCCTGAACATCCAGC	primers for qRT-PCR the fragment between thiD and uridine kinase from W. galacta	116.9	

Table S4. Primers used for the disruption of *THI* genes in *St. bombicola* PYCC 5882.

Name	Sequence 5'-3'	Purpose	
thiE_upNotl_Fw	TATCATGCGGCCGCGTGATACCTGGCATCAG	Amplification of the upstream and downstream regions of thiEM	
thiE_downNcol_Rv	ATGATACCATGGGGATTCCAGCACCTCC		
thiE_transf_Fw	TGAGTGGATTCTCAGGATC	Amplification of final construction for thiEM deletion	
thiE_transf_Rv	GGCAATGGAAAGTGCTG		
tenAthiD_upstreamSphI_Fw	CGGGCACGATGCATTC	Amplification of the upstream and downstream regions of thiD	
tenAthiD_downstream_Kpnl_Rv	ATGATAGGTACCCACAGGTTGTGCACGC		
thiD_transf_Fw	TAGCTCTCATTGCTGCC	Amplification of final construction for thiD deletion	
thiD_transf_Rv	AATTAGATCGCGACGCGT		
tenAKO_Kpnl_Rv	GACTTAGGTACCGAGTGCCATCAGTATCTTC	Amplification of the upstream and downstream regions of tenA	
tenA_603_Smal_Fw	GACTTACCCGGGGATGACCGAGGCATTTGT		
tenA_transf_Fw	GGTTACAGATCCAGAGC	Amplification of final construction for tenA deletion	
tenA_transf_Rv	GAGTGCCATCAGTATCTTC		
thiE_upNotl_Fw	TATCATGCGGCCGCGTGATACCTGGCATCAG	Amplification of the upstream and downstream regions of the entire operon	
tenAthiD_downNotl_Rv	ATGATAGCGGCCGCTCACGAGCATATGGAGTC		
thiE_transf_Fw	TGAGTGGATTCTCAGGATC	Amplification of final construction for the deletion of the entire operon	
THIope_transf_Rv	CTTCGCTACCGATATCG		

References

- 1. W. Li, A. Godzik, Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. *Bioinformatics (Oxford, England)* **22**, 1658-1659 (2006).
- 2. K. Katoh, D. M. Standley, MAFFT: iterative refinement and additional methods. *Methods in molecular biology* (*Clifton, N.J.*) **1079**, 131-146 (2014).
- 3. S. Capella-Gutierrez, J. M. Silla-Martinez, T. Gabaldon, trimAl: a tool for automated alignment trimming in largescale phylogenetic analyses. *Bioinformatics (Oxford, England)* **25**, 1972-1973 (2009).
- 4. L.-T. Nguyen, H. A. Schmidt, A. von Haeseler, B. Q. Minh, IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. *Molecular biology and evolution* **32**, 268-274 (2015).
- 5. D. T. Hoang, O. Chernomor, A. von Haeseler, B. Q. Minh, L. S. Vinh, UFBoot2: Improving the Ultrafast Bootstrap Approximation. *Molecular biology and evolution* **35**, 518-522 (2017).
- 6. A. H. Jenkins, G. Schyns, S. Potot, G. Sun, T. P. Begley, A new thiamin salvage pathway. *Nature chemical biology* **3**, 492-497 (2007).
- 7. C. Goncalves *et al.*, Evidence for loss and reacquisition of alcoholic fermentation in a fructophilic yeast lineage. *eLife* **7** (2018).
- I. Letunic, P. Bork, Interactive Tree Of Life (iTOL) v4: recent updates and new developments. *Nucleic Acids Res* 47, W256-w259 (2019).