

Supplementary Information for

11,500 Years of Human-Clam Relationships Provide Long-term Context for Intertidal Management in the Salish Sea, British Columbia

Ginevra Toniello^{*abc*}, Dana Lepofsky^{*ab1*}, Gavia Lertzman-Lepofsky^{*d*}, Anne K. Salomon^{*be*}, and Kirsten Rowell^{*f,g*}

^{*a*} Department of Archaeology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6. ^{*b*} Hakai Institute, Heriot Bay, BC, Canada, V0P 1H0.

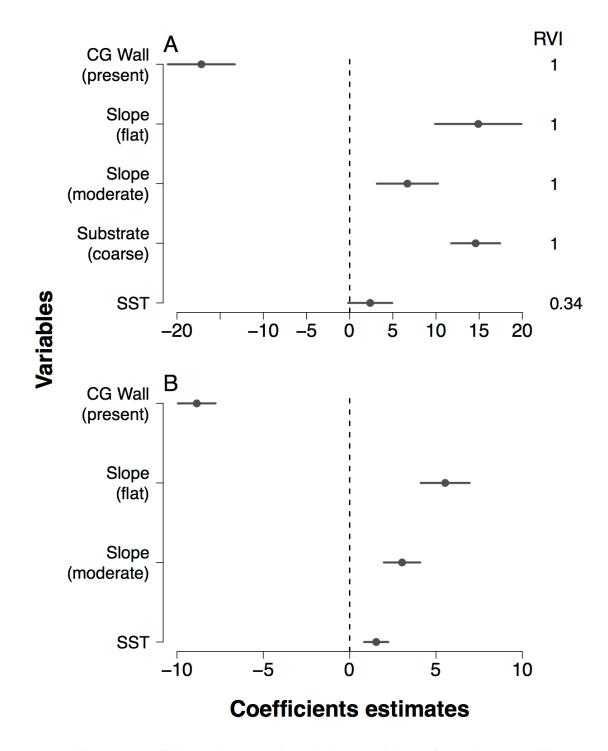
^c Treaty, Lands and Resources Department, Tsleil-Waututh Nation, North Vancouver, BC, Canada V7H2V6.

^d Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6.

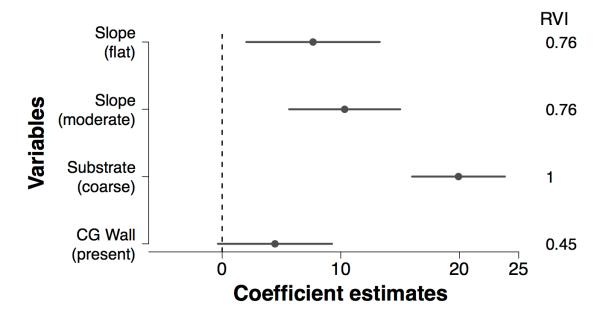
^e School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6.

^f Department of Biology, University of Washington, Seattle, WA, USA, 98195-1800

^g Environmental Studies Program, University of Colorado, Boulder, CO, USA, 80309 ¹ Corresponding Author dlepofsk@sfu.ca (778) 782-3135


Dana Lepofsky Email: *dlepofsk@sfu.ca*

This PDF file includes:


Supplementary text Figs. S1 to S2 Tables S1 to S5 Caption for Dataset S1

Other supplementary materials for this manuscript include the following:

Dataset S1 Master data spreadsheet

Fig. S1. Model average coefficient estimates and standard error with RVI for a. Size at Death b. Age at Death. Note the absence of RVI in B as there was one clear top model so no model averaging was done. CG Wall indicates that a clam garden wall is present, SST indicates sea surface temperature.

Fig. S2. Model average coefficient estimates and standard error with RVI for L_{∞} values. Model forced through zero. CG Wall indicates that a clam garden wall is present.

Attribute	Predicted Effect on Growth	How Evaluated	Rationale and Mechanisms Affecting Clam Growth
Environmental			
Substrate (coarse, fine)	Increased growth with coarse sediments (gravel- sand, and shell- hash-sand)	Field observations	Predominance of fine clay and silt substrate decreases survival [1], likely due to anoxic conditions. Coarse sand, shell, gravel and esp. shell-hash improve growth and survival [2-5]; medium grain size sediment is beneficial to metabolism [6].
Beach Slope (Steep, Moderate, Flat)	Increased growth with flatter slopes	Field observations	Shallow slopes = lower energy environments, yet higher than muddy beaches, creating clear and shallow water column, heightened phytoplankton production, and longer duration of submerged siphoning of phytoplankton by clams.
Sea Surface Temperature (SST) (°C)	Decreased growth with extreme high or low temperatures	Published literature (Kienast and McKay 2001)	Warm waters increase metabolism and phytoplankton production. Stable warm water temperatures between 8.98 - 11.85°C enhance <i>S. gigantea</i> growth [7-10]. Extreme cold temperatures/freeze events can cause mass mortalities [11].
Cultural			
Human Interaction (High, Moderate, Low) [*]	Increased growth in beaches with more interaction, but moderate harvests †	Proximity to archaeological settlement	Many human actions can increase productivity, including harvesting and especially with harvest restrictions on clam numbers and sizes (by decreasing compensatory density dependence), tilling, removal of non-human predators, altering substrate, and rock removal [12-15]. Harvesting/tilling inhibits build-up of anoxic sediments, increasing the oxygen required for metabolism. Removal of stressors such as predators and rocks increases clam survival and inhabitable areas.
Clam Garden (Present, Absent) and associated management	Increased growth with clam gardens	Field observations	Many of the above attributes, including shell hash and coarse sediment accumulation and intentional addition, reduced beach slope, and increased management of clam habitat, such as thinning (decreasing density dependent competition) will increase growth.

~

Table S1. Predicted effects of environmental and cultural parameters on butter clam growth Attributo Predicted Effect How Deficiencle and Machaniza

* Excluded from our models because of high co-linearity with other attributes.
† Some human interactions will not enhance growth rates (e.g., over harvest, trampling, displacing sediment,

leaving open holes).

- 1. Fraser, C, MacLean., and Gertrude M. Smith. (1928) Notes on the ecology of the little neck Clam, Paphia staminea Conrad. *Trans. R. Soc. Can.* 22(5):249-269.
- 2. Butman CA, Grassle JP, Webb CM (1988) Substrate choices made by marine larvae settling in still water and in a flume flow. *Nature* 333: 771-773.
- 3. Cheney DP, Mumford TF (1986) *Shellfish and Seaweed Harvests of Puget Sound*. Washington Sea Grant Program, University of Washington, Seattle, WA.
- 4. Green MA, Waldbusser GG, Hubazc L, Cathcart E, Hall J (2013) Carbonate mineral saturation state as the recruitment cue for settling bivalves in marine muds. *Estuaries and Coasts* 36(1):18-27.
- 5. Quayle DB, Bourne N (1972) The Clam Fisheries of British Columbia. Fisheries Research Board of Canada, Ottawa, ON.
- 6. de la Huz R, Lastra M, López, J (2002) The influence of sediment grain size on burrowing, growth and metabolism of Donax trunculus L. (Bivalvia: Donacidae). J. Sea Res. 47(2):85-95.
- 7. Bernard FR (1983) *Physiology and the Mariculture of Some Northeastern Pacific Bivalve Molluscs*. Can. Spec. Pub. Fish. Aquat. Sci. 63, Dept. of Fisheries and Oceans, Ottawa, ON.
- 8. Dame RF (2012) Ecology of Marine Bivalves: An Ecosystem Approach. CRC press, Boca Raton, FL.
- 9. EPA (U.S. Environmental Protection Agency) (2005) Environmental Monitoring and Assessment Program (EMAP) Database Benthic Grab Information, the Benthic Replicate Abundance data. Encyclopedia of Life. Webpage accessed September 2016 ">http://eol.org/pages/491722/details>
- 10. Goong SA, Chew KK (2001) Growth of Butter Clams, Saxidomus Giganteus Deshayes, on Selected Beaches in the State of Washington. J. Shellfish Res. 20(1):143-147.
- 11. Werner S, Rothhaupt K-O "Mass mortality of the invasive bivalve corbicula fluminea induced by a severe low-water event and associated low water temperatures" in Ecological Effects of Water-Level Fluctuations in Lakes, Wantzen KM, Rothhaupt K-O, Cantonati M, Lászlo G-T, Mörtl M, Fischer P, Eds, (Springer 2008), pp. 143-150.
- 12. Lepofsky D, Smith NF, Cardinal N, Harper J, Morris M, Gitla (White E), Bouchard R, Kennedy DID, Salomon AK, Puckett M, Rowell K, McLay E (2015) Ancient shellfish mariculture on the Northwest Coast of North America. *Am. Antiq.* 80(2):236-259.
- 13. Groesbeck A, Rowell K, Lepofsky D, Salomon AK (2014) Ancient clam gardens increased production: Adaptive strategies from the past can inform food security today. *PLOS One* 9(3): e91235.
- 14. Woods DJ, Woods D (producers) (2005) Ancient Sea Gardens. Mystery of the Pacific Northwest. AquaCulture Pictures Inc., Toronto, ON.
- 15. Turner NJ (2005) The Earth's Blanket: Traditional Teachings for Sustainable Living. D & M Publishers Inc., Vancouver, BC.

	Figure	Comparisons of time periods					
	No.	(years ago)	estimate	SE	df	t.ratio	p.value
		11,500-11,000 - 10,900-9,500	-13.68972	4.161268	117	-3.289795	2.19E-02
		11,500-11,000 - 4,200-2,900	-29.39824	4.949429	117	-5.939724	6.23E-07
Size at		10,900-9,500 - 4,200-2,900	-15.70853	4.031261	117	-3.896678	3.02E-03
Death	2a	4,200-2,900 - 2,800-2,300	24.02914	4.290767	117	5.600198	2.97E-06
		4,200-2,900 - 500-200	20.23405	4.290767	117	4.715719	1.34E-04
		4,200-2,900 - 250-100	15.92067	4.840637	117	3.288961	2.19E-02
		4,200-2,900 - Live-Collected	24.55096	4.528002	117	5.422029	6.60E-06
		11,500-11,000 - 4,200-2,900	-5.371212	1.488335	117	-3.608874	8.04E-03
		11,500-11,000 - 2,800-2,300	5.021645	1.327066	117	3.784019	4.47E-03
		10,900-9,500 - 2,800-2,300	6.895545	1.007708	117	6.842799	7.91E-09
Age at		10,900-9,500 - 500-200	5.609831	1.007708	117	5.56692	3.45E-06
Age at Death	2b	10,900-9,500 - Live-Collected	3.544355	1.097569	117	3.229278	2.62E-02
		4,200-2,900 - 2,800-2,300	10.392857	1.290269	117	8.054797	1.58E-11
		4,200-2,900 - 500-200	9.107143	1.290269	117	7.058327	2.69E-09
		4,200-2,900 - 250-100	6.916667	1.45562	117	4.751698	1.16E-04
		4,200-2,900 - Live-Collected	7.041667	1.361608	117	5.171582	1.98E-05
		11,500-11,000 - 4,200-2,900	-31.06599	7.625922	117	-4.073736	1.60E-03
Linf	3b	11,500-11,000 - 2,800-2,300	-29.62072	6.799617	117	-4.356234	1.60E-03
LIIII	50	11,500-11,000 - 500-200	-26.97115	6.799617	117	-3.966569	1.60E-03
		2,800-2,300 - Live-Collected	19.02852	6.062429	117	3.138761	1.60E-03
		500-200 - 250-100	-5.341667	1.224828	116	-4.361156	5.49E-04
		4,200-2,900 - 250-100	-6.133333	1.381793	116	-4.438679	4.07E-04
Age 1	4 b	250-100 - Live-Collected	4.829167	1.292549	116	3.736159	5.28E-03
0		2,800-2,300 - 250-100	-4.632143	1.224828	116	-3.781871	4.52E-03
		11,500-11,000 - 250-100	-5.787121	1.412848	116	-4.096068	1.48E-03
		10,900-9,500 - 250-100	-5.031667	1.156091	116	-4.352312	5.68E-04

Table S2. Significance results of comparisons of butter clam size at death, age at death, L-inf, and size at age 1 through 5 between time periods.

Age 2 4b		11,500-11,000 - 250-100 10,900-9,500 - 250-100	-8.082576 -6.071667	1.938773 1.586439	116 116	-4.168914 -3.82723	1.14E-03 3.86E-03
	4,200-2,900 - 250-100	-5.966667	1.896157	116	-3.146715	3.33E-02	
		500-200 - 250-100	-5.725	1.680764	116	-3.40619	1.54E-02
Age 3 4	4b	11,500-11,000 - 2,800-2,300	-7.042424	2.309409	117	-3.049448	4.37E-02
	40	11,500-11,000 - 250-100	-9.809091	2.590054	117	-3.787214	4.42E-03
		11,500-11,000 - 4,200-2,900	-9.804545	3.043965	115	-3.220978	2.69E-02
Age 4	4b	11,500-11,000 - 2,800-2,300	-10.074545	2.737362	115	-3.680385	6.38E-03
1150 1	-10	11,500-11,000 - 500-200	-8.668831	2.714137	115	-3.193955	2.91E-02
		11,500-11,000 - 250-100	-11.254545	3.043965	115	-3.69733	6.03E-03
Age 5 4b		11,500-11,000 - 4,200-2,900	-14.65076	3.328128	108	-4.402102	4.94E-04
	4b	11,500-11,000 - 2,800-2,300	-13.3202	3.051332	108	-4.365373	5.68E-04
	-10	11,500-11,000 - 500-200	-10.61435	3.02072	108	-3.513849	1.12E-02
		11,500-11,000 - 250-100	-13.09091	3.399708	108	-3.850598	3.67E-03

Temporal Category	Sites	Context [†]	SST	Beach	Substrate	Human	Predictions
in Yrs Ago	(N of shells)		(°C) ‡	Slope		Interaction§	
(Total N of shells)*							
11,500-11,000 (11)	EbSh-36 (4)	PB	5-7	Steep	Fine	Low	Poor
	EbSh-5 (7)	PB	5-7	Moderate	Fine	Low	
10,900-9,500 (31)	EbSh-36 (25)	PB	10-13	Steep	Coarse	Low	Good/improving
	EbSh-5 (6)	PB	10-13	Moderate	Fine	Low	
4,200-2,900 (12)	EbSh-77 (12)	PB	9-11	Moderate	Coarse	Medium	Excellent
2,800-2,300* (21)	EbSh-14 (21)	M/CG#	9-11	Moderate	Coarse	High	Excellent
500-200* (21)	EbSh-13 (21)	M/CG	10	Flat	Coarse	High	Excellent
Early Historic (12)	EbSh-13 (5)	PB/CG	10	Flat	Coarse	Medium	Good/degrading
	EbSh-5 (7)	PB/CG	10	Flat	Coarse	Medium	
Living* (16)	EbSh-13 (16)	MB/CG	10	Flat	Fine	Low	Poor

Table S3. Environmental and cultural attributes of study sites within each temporal category and predictions about growing conditions by temporal category.

*Shellfish harvested in the past and deposited in middens or harvested by the research team (Living). Since shells from middens were selected from the beach by ancient harvesters, they will tend to be biased towards larger specimens at any given age than the shells from non-midden samples. In the case of the Live-collected specimens, there are no such size biases since all encountered specimens were collected. However, because these specimens were harvested, they did not reach maximum age or size.

 $^{+}PB =$ paleo-beach, M = midden, CG = clam garden beach; MB= modern beach (i.e., active intertidal zone).

± SST = sea surface temperature, taken from Kienast and McKay 2001

§ Human interaction is inferred from number, size, and proximity of ancient settlements to the harvested beach. We assume that the closer a large shell midden, the greater the occurrence of tilling and harvesting in the intertidal.

¶ Predictions based on the assumptions that poor conditions are those where abiotic factors (grain size, water temperature, slope) are outside the preferred range for butter clams, and where there has been no human management. These conditions characterize the temporal category 11.5 to 11 ka (see Table S1).

We cannot determine independently the age of the clam garden at this site because the garden wall has been largely destroyed by industrial activity. However, based on the fact that clam gardens were being built in the area at this time, and the association of a large settlement with this location, we reason that the beach supported a clam garden during this period.

	CG Wall	Substrate	Slope	SST
Age 1 Age 2 Age 3 Age 4	0.72	0.64	1	0.43
Age 2	0.55	1	0.87	0.29
Age 3	0.63	1		
Age 4	0.6	1		
Age 5	0.51	1		

Table S4. Relative variable importance of parameters included in model averages of Size (mm) of clams ages 1 to 5.

CG Wall indicates that a clam garden wall is present, SST indicates sea surface temperature.

Response							
Variable	Model	K	logLik	AICc	ΔAICc	weight	adj-r2
Size at Age 1	CG.Wall	3	-331.91	670.02	0	0.27	0.03
Size at Age 1	Substrate	4	-331.24	670.81	0.79	0.18	0.04
	CG.Wall + Substrate	5	-330.29	671.09	1.07	0.16	0.06
Size at Age 2	CG.Wall + Substrate	5	-363.04	736.6	0	0.46	0.11
	CG.Wall + Substrate + z.SST	6	-362.24	737.2	0.61	0.34	0.12
Size at Age 2	CG.Wall + Substrate	5	-395.99	802.49	0	0.55	0.17
Size at Age 3	CG.Wall + Substrate + z.SST	6	-395.35	803.42	0.93	0.34	0.17
	CG.Wall + Substrate	5	-363.04	736.6	0	0.46	0.11
Size at Age 4	CG.Wall + Substrate + z.SST	6	-362.24	737.2	0.61	0.34	0.12
	Substrate	4	-366.06	740.46	3.86	0.07	0.06
Size at Age 5	CG.Wall + Substrate	5	-392.37	795.28	0	0.49	0.29
Size at Age 5	CG.Wall + Substrate + z.SST	6	-391.27	795.33	0.04	0.48	0.3
	Substrate	4	-481.8	971.93	0	0.42	0.27
Size at Death	CG.Wall + Substrate	5	-481.18	972.88	0.95	0.26	0.27
Size at Death	Substrate $+ z.SST$	5	-481.64	973.8	1.87	0.16	0.27
	CG.Wall + Substrate + z.SST	6	-480.57	973.85	1.93	0.16	0.28
	CG.Wall + Substrate	5	-339.33	689.17	0	0.38	0.37
A go at Doath	CG.Wall	3	-342.16	690.52	1.35	0.19	0.34
Age at Death	CG.Wall + z.SST	4	-341.33	690.99	1.82	0.15	0.35
	CG.Wall + Substrate + z.SST	6	-339.18	691.08	1.91	0.14	0.37
Linf	CG.Wall + Substrate	5	-534.31	1079.14	0	0.41	0.2
	Substrate	4	-535.72	1079.78	0.64	0.3	0.18
	CG.Wall + Substrate + z.SST	6	-534	1080.71	1.57	0.19	0.21

Table S5. Top models evaluated to within 2 Δ AICc units for each response variable, size at ages 1-5, Linf, and size and age at death.

CG Wall indicates that a clam garden wall is present, z.SST indicates standardized sea surface temperature.

Additional data (separate file) Dataset S1. Master data spreadsheet.