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The NUMA model of proteostasis collapse in cell aging

Chaperones maintain proteins and proteomes in highly folded states by binding non-native conformations at their exposed
hydrophobic regions and providing them with a faster route to folding (1). However, damaged and destabilized proteins, which
have problems folding, are known to bind to chaperones much more frequently (2), thus decreasing chaperone availability for
undamaged proteins and potentially leading to proteostasis collapse. The NUMA model is a minimal model that captures
these behaviors.

Figure 1 depicts our model. It has two planes of folding dynamics, one for undamaged protein (the top panel) and a second
for damaged protein (the bottom panel). First, here’s a brief summary. Undamaged proteins flow within the undamaged plane
as they fold and unfold, are trafficked through chaperone, or degrade or aggregate. The undamaged plane rate parameters are
given in Table S1. Damage can occur, causing an unfolded protein from the undamaged plane to transition irreversibly to the
damaged plane. Once a protein enters the damaged plane, it traffics in that plane with all the same rate parameters as it
would have had in the undamaged plane, except for one difference: damaged proteins are unable to fold. This is due to the loss
of stability suggested by experiment (3) and theory (4) upon modification of a single side chain, the most frequent form of
oxidation (Table S1). Therefore, damaged protein can either aggregate via misfolding or be degraded.

The central point of the two-plane dynamics is to express how damage events slowly and irretrievably destabilize the folding
of the proteome as the cell ages. In addition, the model supposes that this has functional consequences. Biologically, damaged
proteins hinder the cell through two parallel mechanisms: (i) loss of protein function and (ii) destabilization of the proteome
resulting in chaperone titration and aggregation, collectively creating a gain of toxic function. The NUMA model specifically
focuses on the effect of destabilization, not the loss of function. The time-dependent populations of each conformational state
of the NUMA model are given in the Equations section.

Age dependence of cell growth and protein degradation

The rates of cell growth kgr(t) and protein degradation kdeg(t) change with age, t. These dynamics play important roles in
proteostasis collapse, as they constrain the rate at which proteins are turned over and hence the rate at which damage is
diluted (growth) or cleared (degradation). But, rather than attempt to model the origins of the age dependence of kgr(t) and
kdeg(t) - which may reflect a complex trade-off between reproductive yield and longevity regulated by the germline - here we
simply take their experimental values at 20◦C as inputs and explore their consequences on proteostasis collapse (5). The data
used is shown in Fig. S1 and is approximated by an exponential function.

Folding, misfolding, aggregation, chaperoning and damage. Understanding the principles of proteostasis requires consideration
of the timescales of its processes. In our model, we have coarse-grained the folding landscape into several critical states, namely
those that are functional and native (N), unfolded (U), misfolded (M) and aggregated (A), as shown in Fig. 1. We assign
transition rates between these states that reflect typical values across the experimental literature. Here, we discuss the sources.

Stability of the native state. The folding stability, ∆G, of a protein has been shown both experimentally and theoretically to
depend on many factors, including hydrophobicity and chain length (6). Folding stability is also highly temperature-dependent,
having a roughly inverted parabolic relationship that becomes zero at the hot and cold denaturation points of roughly 50◦C and
−20◦C, respectively, and reaches a typical peak stability ∆Gmax ≈ 10 kT at intermediate temperatures T∆Gmax ≈ 10 − 20◦C
(7). This can be expressed as

∆G = ∆Gmax
[

1 − (T − T∆Gmax )2

(Tmelt − T∆Gmax )2

]
[S1]

where the values of ∆Gmax, T∆Gmax and Tmelt (hot denaturation) are given in Table S1.
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Unfolding. Proteins have finite stability and are prone to spontaneous unfolding, even when in their native conformation. The
rate of this unfolding, ku, has been determined experimentally using a number of approaches that suggest, for small proteins,
an unfolding barrier with an activation energy Ea of roughly 100kJ/mol (8). Using the Arrhenius equation

ku = ku,o e
−Ea/RT [S2]

relating the barrier crossing rate to the standard attempt frequency ku,o = 6.2 × 1012 s−1 gives ku ≈ 1 d−1 (at 20◦C). Given
that proteins typically form protein-protein complexes with a mildly stabilizing effect (9), the estimate of ku ≈ 1 d−1 serves
as an upper limit for the average unfolding rate. We found an unfolding rate of 0.4 d−1 at 20◦C provides dynamics close to
experimental data when used in combination with experimental HSP70 concentrations (Table S1).

Folding. The folding rate, kf , can be determined from the unfolding rate and the folding stability according to

kf = ku e
∆G/RT [S3]

At 20◦C, near the peak stability, an unfolding rate ku = 0.4 d−1 and folding stability ∆G = 24.5 kJ/mol give a folding rate
kf = 0.1 s−1 that corresponds to a folding time of roughly 5-10 seconds. This is comparable to the estimated cycle time of the
eukaryotic HSP70 (see Chaperoning in SI).

Misfolding. Proteins that require the help of foldases are characterized by high rates of misfolding, kum, that greatly exceed the
rate of proper folding (10), due in part to the higher number of possible misfolding states. These proteins therefore require
many chaperone binding events to fold. We assume here that misfolding is 30 times faster than folding, i.e. kum = 30 kf ,
consistent with the high number of chaperone-mediated folding cycles required for folding, as inferred in previous studies (1).

Unmisfolding. We assume that misfolded proteins have comparable folding stability to native proteins. Thus, a similar relation
to that in Eq.S3 can be written for the misfolded state. The sole difference is the 30-fold faster inter-conversion between
misfolded and unfolded structures due to the 30-fold faster misfolding rate compared to the folding rate. The unmisfolding rate
can thus be written as kmu = 30 ku. This rate, amounting to once every 2 hours (for ku = 0.4 d−1), is much slower than the
rate at which an HSP70 would detect and bind the non-native protein (Table S1), and thus does not serve as a major route to
refolding.

Aggregation. The aggregation process is modeled by two-step Finke-Watzky type kinetics (11). The nucleation kinetics are
considered to be a binary collision process where two misfolded proteins collide and form aggregate. This binary-collision
model gives a nucleation flux ka[M ]2. The value of ka is chosen to be comparable to the experimental values, but is not tightly
constrained by the available data. The growth is treated similar to nucleation where two molecules collide and form aggregate,
except that in this case one of the molecules is already aggregated (A). In other words, aggregates catalyze the conversion of
misfolded proteins to aggregate with a flux kg[M ][A].

Degradation. Proteins in their non-native states are more prone to degradation compared to their native counterpart. It involves
multiple steps involving binding of proteins by ubiquitin and then, with the help of ATP, the proteins are degraded into either
small peptides or amino acids. The degradation in our model is simple; it approximates the whole process by single-step first
order kinetics where the flux of degradation is proportional to the concentration of degradable protein: kdeg[P ] (Fig. 1). The
rate constant of degradation used in the model is given in Table S1.

Chaperoning. There are multiple chaperones in C. elegans. Even in simple organisms, such as E. Coli, there are three major
chaperones: trigger factor (TF), DnaK/J/GrpE (KJE or HSP70) and GroEL/S (GroE or HSP60). The mechanism of
chaperoning is highly complex. Although all the chaperones help the client proteins in their folding pathways, the mechanism
as well as the efficiency of their actions are different. Similar to E. coli, the cells in C. elegans also synthesize HSP70- and
HSP60-class chaperones which are conserved in both structure and function. Per complex, previous studies found HSP60 to be
more efficient in folding a misfolded protein compared to HSP70. In contrast, due in part to its higher chaperoning rate per
unit mass, HSP70 was found to be the most critical chaperone in preventing protein damage, which is a potential threat in cell
aging (12). In our current study, we thus consider only HSP70 chaperone and its simplified kinetics through which it folds its
non-native client proteins. The kinetics follow a two-step process whereby the HSP70 binds the non-native client and then
releases it to either a native or non-native state based on the rates folding and misfolding.

Chaperone kinetics and binding affinities were estimated from experiments. We take chaperone kinetics to be roughly an
order of magnitude slower than those found in well-studied prokaryotes like E. coli (1, 10) (Table S1). The slower kinetics
reflect the difference in speed observed between prokaryotic and eukaryotic chaperones, which may be a response to the slower
natural folding rate of eukaryotic proteins due to their longer average chain length (13, 14). Proteins that do not require
chaperones to fold are not modeled here, as they are predicted to fold too quickly to suffer significant aggregation (1) or damage
(12), and thus are not expected to be as sensitive to the slowing protein turnover rates associated with aging, nor play a central
role in proteostasis decline.
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Protein damage. In our model, oxidative damage is assumed to occur only to unfolded proteins. Proteins are unfolded several
times during their existence – upon being synthesized and when unfolding spontaneously due to their finite stability. The
damage rate is given by kdam = kodam[U ], with kodam = 0.012 s−1 (Table S1). Given that damage is modeled as occurring only
to undamaged protein, it is the ratio of kodam to the protective mechanisms of chaperone binding, folding and misfolding that
determines the fraction of proteins that become damaged during post-synthesis folding or upon spontaneous unfolding.

Proteomes are susceptible to heat and oxidative damage

While models of proteostasis commonly include interactions between folding non-native proteins and chaperones (1, 14, 15), as
captured by the top plane in Fig. 1, our approach is unique in two major respects. First, our model captures the biophysical
dependencies that control the sensitivity of protein conformation to changes in temperature and, in turn, the differential
sensitivity of conformations to oxidative damage (4, 7, 12). While proteins are often assumed to be highly stable, experiments
have shown that they unfold spontaneously on timescales of hours to days. Thus, while our proteostasis model averages over the
protein-to-protein heterogeneity within a proteome by modeling a single average protein, it captures the biophysical properties
shared across proteomes that dictate their common response to temperature and oxidation and - we hypothesize - controls
lifespan.

Heat stress. Temperature affects the dynamics of proteostasis in multiple ways. First, it is a general property of enzymes that
their rates increase with temperature following Arrhenius behavior (7, 16). This can be written as

kocat = kcat,o e
−E1/RT [S4]

where kcat,o is the catalytic rate in the high-temperature limit. Protein degradation and chaperoning activities are assumed to
follow Eq.S4.

While the concerted increase in catalytic rates given by Eq.S4 has often been cited as predicting a corresponding shortening
in lifespan, in line with the Rate-of-Living Hypothesis (17), this conclusion is not necessarily justified. The reason is that
not all processes scale at the same rate with temperature. Specifically, protein unfolding grows much more rapidly with
temperature than any of the proteostasis mechanisms to counteract it, roughly doubling with every 4◦C increase in temperature
(18, 19). Due to this more rapid increase, the folding burden of a cell shifts from primarily folding newly synthesized proteins
at low temperatures to refolding spontaneously unfolded protein at high temperatures (Fig. 3D). As an attempt to cope
with the increasing unfolding burden, cells decrease growth rates at high temperatures (Fig. S2). Thus, unlike the Arrhenius
temperature dependence of other biological processes, the growth rate follows a non-Arrhenius behavior at high temperature.

kogr = kgr,o
[eE1/RT + e(A−E2/RT )]

[S5]

The present study accounts for these different temperature dependencies (Eqs.S4-S5) and predicts their consequences on
lifespan (Fig. 3).

Oxidative stress. Figure 4A shows how lifespan depends on the concentration of the oxidant tBuOOH, which is assumed here
to create a proportional amount of ROS. This can be expressed by writing the rate constant of damage as

kdam = kodam

(
1 + [tBuOOH]

co

)
[S6]

where co is fitting parameter corresponding to the concentration of tBuOOH at which the damage rate is double its basal,
physiological value. A value of co = 0.5 mM is used here (Table S1).

Mortality rate and survival probability

The progressive accumulation of damaged protein with age has been widely observed across species (4). Thus, the extent of
damage is considered a general biomarker of aging. Many studies in wild-type and mutant C. elegans have revealed that the
extent of damage in short-lived mutants are almost universally higher than their long-lived counterparts (20), with the few
exceptions potentially resulting from the low solubility of the damaged proteins (21). Given that toxicity is commonly believed
to arise from oligomers several protein molecules in size – with oxidized proteins being particularly toxic (22, 23) – we model
mortality rate µ(t) in terms of the fraction of protein that is damaged, fD(t), namely

µ(t) = µofD(t)α [S7]

Both α, which determines the non-linear, cooperative nature of the toxicity, and µo, its overall scale, are determined from
the slope and magnitude of the experimental mortality curve at 20.1◦C (Fig. 2C, black circles). The values of µo and α are
reported in Table S1. Interestingly, the value of α is close to the value found in a previous study to capture the relationships
between damage level and the rate of mortality and mutation rates (α ≈ 5 − 10) in irradiated bacteria (22). The mortality
rates at other temperatures are predicted using the same values of α and µo as at 20.1◦C. From the mortality rate µ(t), the
survival probability S(t) is obtained by using following relation:

S(t) = e
−
∫ t

0
dt µ(t) [S8]
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Tests of assumptions, sensitivities, and factors deliberately left out of the model

Damaged protein. Our model assumes that damaged proteins are not able to fold, and thus are trapped in aggregation-prone
conformations. While this is true for heavily damaged proteins, those with only a single oxidized side chain are more likely to
be only mildly destabilized by 1-2 kcal/mol, comparable to that observed with single point mutations (4). While we chose not
to allow folding of damaged proteins to be consistent with past work (12), future models could explore the response to partial
destabilization from oxidation. A destabilized, rather than fully blocked, native state would be expected to result in greater
accumulation of damaged protein than in the present model. It would also allow loss of function to be explicitly modeled,
which was not the focus of the present work.

Mortality. Our model assumes that mortality scales as a power law with the amount of oxidative damage to proteins. While
damage-centric theories of aging have been supported by many lines of evidence (24), some observations are claimed to
contradict it. Most notably, mutant worms have been found that display heightened damage with no change, or even slight
increases, in lifespan (25). Higher levels of damage have also been observed in some long-lived organisms like the naked mole-rat
(21) and deer mouse (26). However, two key points may resolve these apparent contradictions. First, in the case of the naked
mole-rat, further investigation found that the high damage levels were limited to only a few highly abundant proteins, and thus
uncharacteristic of the proteome (21). Second, the higher chaperone content is strongly associated with long-lived organisms
(27) and may increase youthful damage levels by keeping mildly oxidized proteins folded and phenotypically silent, buffering
the cell from their negative consequences in a manner analogous to that proposed by Susan Lindquist for point mutants (2).
Indeed, soluble damage levels of young animals are not good predictors of the longevity of a species (21), even if total damage
levels are predictive of impending death (4, 24, 28).

To test whether the model predictions are sensitive to the exact nature of the toxic species, we reran our simulations taking
only oxidized aggregates as the cause of mortality. While the temperature and oxidant dependence of lifespan changed modestly,
the major findings remain the same. The most important fact is that the Gompertzian behavior of mortality remains the same
(Fig. 2C). Human diseases too follow a Gompertzian trend, suggesting a similar underlying mechanism. Whereas some diseases
are caused by frailties of particular proteins, aging may result from the system-wide frailty of the whole proteome.

Effective parameters. A key goal of constructing simplified biological models is to identify the minimal set of parameters needed
to capture observed behavior. While the number of model parameters, summarized in Table S1, is by no means small, they
coalesce into a much smaller set of effective parameters that dictate the model behavior explored in this work. Two effective
parameters predominate.

The first is chaperone capacity relative to basal requirements (the fold-surplus). This effective parameter is determined
by chaperone concentration, chaperone kinetics, and protein stability. Our estimates suggest a roughly 5-fold spare capacity
at 20◦C (8 µM out of 45 µM of chaperone is bound to non-native protein), as summarized in Fig. S3. This spare capacity
is reasonable, given that: (i) the spare capacity of another key chaperone system, HSP90, is also expressed at least 5- to
10-fold beyond the minimum requirements for growth (29), and (ii) a 5-fold spare capacity allows roughly two 8◦C doublings
in unfolding rate before there is no capacity left to fold newly translated protein, consistent with sythesis rates plummeting
around 35◦C (Fig. S2). This spare capacity is not wasted at lower temperatures, however, as it determines the time an
unfolded, damage-prone protein needs to wait for help, which has previously been shown to affect damage levels (12, 30). The
net result of this effective parameter is to determing the temperature at which lifespan begins to deviate strongly from the
Arrhenius rate-of-living expectation, shown in Fig. 3A and 3C. The rapid decline beyond 28◦C therefore constrains our model
and informs us on mechanism, rather than being an independent model prediction.

The second effective parameter is the damage rate relative to a protein’s dwell time in the unfolded state. This quantity is
more meaningful to model behavior than the damage rate alone, which is poorly characterized and certain to vary greatly
between proteins. Importantly, this effective parameter determines the degree of chaperone titration by damaged proteins.
While not known exactly experimentally, chaperone titration by damaged protein has been shown to significantly amplify
induction of the heat shock response (which senses chaperone titration). By running our model with and without the ability
of damaged proteins to bind chaperes, we demonstrated that our effective parameter value is sufficient to moderately affect
sensitivity to chaperone or proteasome expression levels (Figs. 5B and 6B). These predictions serve to motivate future
experimental testing.

Potential improvements. Here are some potential sources of future improvements to the model. (i) We model a single ATP-
dependent folding mechanism representing HSP70-class chaperones. In reality, proteins are folded through a cooperative
network of several ATP-dependent chaperone classes, as explored previously in E. coli (1). While the overall network behavior
can likely be captured to a first approximation by an effective folding capacity similar to the one explored here, the relative
importance of upstream (HSP70) and downstream (HSP90) chaperoning on proteome health and longevity is worth exploring.
(ii) Small heat-shock proteins are not currently treated. One possible consequence of their absence from our model is a lower
effective solubility of damaged proteins and, as a result, a lower predicted level of soluble damaged protein (Fig. 2B). (iii) We
have not modeled the clearance of aggregates, which will be particularly important when modeling organisms with lifespans
considerably longer than the typical protein half-life. (iv) Degradation of soluble proteins is treated quite simply here (Fig. 1)
due to limitations in the current understanding of factors determining protein half-life. However, the triage decision of whether
to refold or degrade an unfolded protein, and thus the trade-off between maximizing yield vs. minimizing damage, poses an
interesting topic for exploration. (v) We have made the simplifying approximation that the decay constants controlling the
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age-dependence of growth and degradation are ROS-independent. Future models should aim to derive these decay constants
from first principles based, for example, on the degree of chaperone titration. Such a treatment could also seek to explore
how the exponential decay in growth and degradation rates even under standard conditons may arise from an evolutionary
optimization of reproductive fitness for a given resource availability.

Equations

Undamaged protein

d[N ]
dt

= kf [U ] + kce kf [CU ]
kce + kum + kf

− (kgr + ku)[N ] [S9]

d[U ]
dt

= kgr[P ] + k2
ce [CU ]

kce + kum + kf
+ kmu[M ] + ku[N ] + kdeg([M ] + [Mox] + [Uox]) − kdam[U ]

− (kf + kum + kgr + kcb[C])[U ]
[S10]

d[M ]
dt

= kce kum[CU ]
kce + kum + kf

+ kum[U ] − (kgr + kmu + kdeg + kcb[C])[M ] − (kg([A] + [Aox]) + 2ka([M ] + [Mox]))[M ] [S11]

d[A]
dt

= −kgr[A] + (kg[A] + kg[Aox] + 2 ka[M ] + 2 ka[Mox])[M ] [S12]

Damaged protein

d[Uox]
dt

=kgr[P ] + k2
ce [CUox]
kce + kum

+ kmu[Mox] + kdam[U ] − (kf + kum + kgr + kdeg + kcb[C])[Uox] [S13]

d[Mox]
dt

=kce kum[CUox]
kce + kum

+ kum[Uox] − (kgr + kmu + kdeg + kcb[C])[Mox] − (kg([A] + [Aox]) + 2ka([M ] + [Mox]))[Mox]

[S14]

d[Aox]
dt

= −kgr[Aox] + (kg([A] + [Aox]) + 2 ka([M ] + [Mox]))[Mox] [S15]

Chaperoning

d[C]
dt

=
(
kgr + k2

ce

kce + kum + kf
+ kcekum
kce + kum + kf

+ kcekf
kce + kum + kf

)
[CU ] +

(
kgr + k2

ce

kce + kum
+ kcekum
kce + kum

)
[CUox]

− kcb([U ] + [Uox] + [M ] + [Mox])[C]
[S16]

d[CU ]
dt

= −
(
kgr + k2

ce

kce + kum + kf
+ kcekum
kce + kum + kf

+ kcekf
kce + kum + kf

)
[CU ] + kcb([U ] + [M ])[C] [S17]

d[CUox]
dt

= −
(
kgr + k2

ce

kce + kum
+ kcekum
kce + kum

)
[CUox] + kcb([Uox] + [Mox])[C] [S18]
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Fig. S1. Growth rate declines markedly with age. The growth rate of wild-type C. elegans decays exponentially with age (black circles, extracted from Ref.(5)). The blue line
represents the exponential fit to the data, giving a decay constant γ = 0.4 d−1, and is an input in the present study. The red arrow indicates the first day of adulthood and is
taken as the starting point in our model.
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Fig. S2. Growth rate deviates from Arrhenius behavior at high temperature. Experimentally measured growth rates (blue circles) (31) and the corresponding non-Arrhenius
fit (black line, Eq. S5) deviate significantly from Arrhenius behavior (orange line) above 28◦C.

Mantu Santra, Ken A. Dill and Adam M.R. de Graff 7 of 12



20 22 24 26 28
5

10

15

20

25

Temperature, T°C

C
h

a
p

e
ro

n
e

o
cc

u
p

ie
d

HΜM
L

Fig. S3. Chaperone requirements rise rapidly above the temperature of maximum protein stability. As growth temperature deviates from the region of maximum protein
stability (10 − 20◦C), the model predicts a highly non-linear increase in the amount of chaperone required to maintain the same level of proteome foldedness. Total HSP70
chaperone concentration is 45 µM (Table S1).
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Fig. S4. Scaling of lifespan with temperature and ROS. (A) Predicted survival curves at the same temperatures as the mortality curves in Fig. 3B, namely 20.1◦C, 22.1,
25.5, 28.3, 28.9, 30, 31.3 and 32.4◦C, from black to orange. (B) These survival probabilities, when temporally scaled to the 50% survival time τ , are similar but show a
gradual broadening at higher temperature, as observed experimentally (32). (C) and (D) are the same as (A) and (B),respectively, except that ROS level is varied rather than
temperature. The concentrations of ROS are, from black to orange, 0 mM, 0.2, 0.5, 1, 1.5, 3, 6, 10 mM.
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Table S1. List of Parameters

Parameter Value Reference

E1 17 kcal/mol (71 kJ/mol) (31)
E2 68 kcal/mol (284 kJ/mol) (31)
A 141 (31)
Ea 30 kcal/mol (125 kJ/mol) (33)

ko
gr(T = 20◦C) 1.15 d−1 (34)

λgr 0.4 d−1 (34)
ko

deg(T = 20◦C) 3.85 d−1 This work
λdeg 0.14 d−1 (34)

ku(T = 20◦C) 0.4 d−1 This work
∆Gmax 5.9 kcal/mol (24.5 kJ/mol) (7)
T∆Gmax

18◦C (7)
Tmelt 45◦C (7, 35)
ka 4 × 10−5 µM−1s−1 This work
kg 2 × 10−2 µM−1s−1 This work
kcb 0.25 µM−1s−1 This work

kce(T = 20◦C) 0.1 s−1 (36)
ko

dam 0.012 s−1 (12)
co 0.5 mM This work
Np 1500 This work
[P ] 1 µM (10)
[C] 45 µM (37)
µo 9.5 × 10−6 d−1 This work
α 6.4 This work
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