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Methods 

Tissue-specific genes differentially expressed with age (age-DEGs) from GTEx  

The RNA-Seq based gene expression data of non-cancerous tissues (v7, January 2015 

release) were download from the GTEx portal (https://gtexportal.org) (Consortium, 2015). 

RNA-Seq was performed using the Illumina TrueSeq library construction protocol. Reads 

were aligned to the human reference genome hg19/GRCh37 based on the GENCODE v19 

and were processed as described in https://gtexportal.org/home/documentationPage. Out of 

30 tissues provided by GTEx, four tissues (bladder, cervix uteri, fallopian tube, and kidney) 

with low samples (11, 11, 7, and 45, respectively) were excluded from the analysis. For each 

tissue, we identified differentially expressed genes with age using the following linear 

regression model:  

 

Yij = αAgei + βSexi + γDeathi + εij 

 

Where Yij is the expression level of gene j in sample i, Agei denotes the age of sample i. Sexi 

denotes the sex of sample I, Deathi denotes the death classification of sample i based on the 

4-point Hardy scale (Ferreira et al., 2018), and εij denotes the error term. It should be noted 

that dataset downloaded from GTEx portal did not provide the actual age of each sample, the 

age ranges, i.e. 20-29, 30-39, 40-49, 50-59, 60-69 and 70-79, were provided instead. We then 

approximated the age of each sample to 25, 35, 45, 55, 65 and 75, respectively. Because our 

main aim was to compare the age-DEGs with cancer-DEGs from TCGA, and there was a 

large difference between the number of the total genes in GTEx (56,202) and TCGA 

(20,532), we focus only on protein coding genes. Protein-coding genes were identified using 

the R package biomaRt (version 2.36.1) (Durinck et al., 2009), based on Ensembl release 92 

(April 2018). After removing the non-coding genes, there were 18,851 protein-coding genes. 

To remove the low expressed genes, genes with expression less than 1 count per million 

(cpm) in more than 30 percent of samples were excluded. Raw read counts were normalized 

using TMM normalization and were voom transformed to remove heteroscedasticity from the 
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count data. The linear model for each gene was generated by using the limma package in R 

(version 3.36.5) (Ritchie et al., 2015). Genes were considered to be significant differentially 

expressed genes with age if the empirical Bayes moderated t-statistics and their associated 

adjust P-value (Benjamini-Hochberg method) < 0.05 and absolute fold change across 50 

years of age (from 25 to 75 years old) > 1.5. The genes in GTEx were in ensemble id, we 

then converted them into entrez id format using biomaRt. Lists of age-DEGs from all 26 

tissues are provided in the Data S1. Age distributions of the samples from GTEx were shown 

in Figure S1. 

 

We selected nine tissues for further analysis, including breast, colon, esophagus, liver, 

lung, prostate, stomach, thyroid and uterus. This selection was based on the criteria that 1) 

each of these tissues had a matched TCGA project from the same tissue of origin and 2) the 

number of solid normal samples in those TCGA projects were more than 10. We also 

performed the analyses for the brain. However, the number of solid normal samples in 

TCGA-GBM project was only 5 and they lack information of patient age, we included the 

brain-GBM results in supplementary figures instead. Numbers of samples used in our study 

were summarized in Table S1. Most of the age-DEGs were tissue-specific, indicating the 

tissue specificity of age-DEGs, consistent with a previous report (Yang et al., 2015). 

 

Genes differentially expressed in cancer (cancer-DEGs) from 10 TCGA projects 

The TCGA level 3 RNA-Seq based gene expression data for 10 TCGA projects used in our 

analysis (BRCA (Cancer Genome Atlas, 2012b), COAD (Cancer Genome Atlas, 2012a), 

ESCA (Cancer Genome Atlas Research et al., 2017), GBM (Brennan et al., 2013), LIHC 

(Cancer Genome Atlas Research Network. Electronic address & Cancer Genome Atlas 

Research, 2017), LUAD (Cancer Genome Atlas Research, 2014b), PRAD (Cancer Genome 

Atlas Research, 2015), STAD (Cancer Genome Atlas Research, 2014a), THCA (Cancer 

Genome Atlas Research, 2014c), and UCEC (Cancer Genome Atlas Research et al., 2013)) 

were download from FireBrowse (http://firebrowse.org) in June 2019. RNA sequencing was 

performed on the Illumina Hi-Seq platform and aligned to the human reference genome 

GRCh37. The data then processed using RNASeqV2 pipeline of TCGA, which provide the 

RSEM expected counts. Protein-coding genes were identified using  the biomaRt R package 

(version 2.36.1). After removing non-coding genes, there were 18,548 protein-coding genes 

included in subsequent analysis. To remove the genes with low expression, genes with 
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expression less than 1 count per million (cpm) in more than 30 percent of samples were 

excluded. The limma package in R was used to identify genes significantly differentially 

expressed between cancer and normal samples. The moderated t statistic P-value after 

correction by Benjamini-Hochberg method < 0.01 with an absolute fold-change > 2 were 

used to determine the statistical significance. Lists of cancer-DEGs from all 10 TCGA 

projects were provided in the supplementary Data S2. Age distributions of primary tumour 

and solid normal samples were shown in Figure S2. 

 

Fold change with age in normal tissues of cancer-DEGs 

We examined the fold change with age of the cancer-DEGs. After obtaining the cancer-DEGs 

from TCGA, we identified the fold change with age in normal tissues in GTEx of these 

cancer-DEGs. Although not every cancer-DEG was found in the GTEx data from the 

corresponding tissue because lowly expressed genes had been filtered out before performing 

linear regression, the majority of them retained (Data S6). For each tissue, the fold change 

with age in normal tissue of up-regulated genes in cancer and down-regulated genes in cancer 

were compared using Mann-Whitney U test. 

 

Meta-analysis to identify cellular senescence signature genes 

To identify cellular senescence signature genes, the meta-analysis of 20 cellular senescence 

GEO datasets was performed. The datasets included in the analysis were shown in Table S2. 

We first separately identified differentially expressed genes in each dataset. The probe 

annotation for each dataset was slightly different, depended on the platform. In general, the 

steps are 1) Download the dataset from GEO, 2) Probe annotation to match probe ID with 

entrez ID using either the dataset’s own GPL platform files, R packages (AnnotationDbi 

version 1.44.0 and org.Hs.eg.db version 3.7.0), or bioDBnet (https://biodbnet-

abcc.ncifcrf.gov/db/db2db.php) (Mudunuri et al., 2009) 3) Remove probes which do not 

match to any entrez ID 4) Remove probes which match to multiple entrez ID 5) Average 

intensity of probes which match to the same entrez ID. The differential expression analysis 

was performed using limma. Genes with a P-value below 0.05 and absolute fold change > 1.5 

were considered putatively differentially expressed genes. For the datasets with only one non-

senescent sample and one senescent sample, only fold change cut-off was used to determine 

differentially expressed genes. There are two platforms (GPL2937 and GPL2947) in the 

dataset GSE3460, so we separately analysed each platform and treated them as two different 

datasets in the meta-analysis. After that, the results from all datasets were then combined 
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using a binomial distribution and the false discovery rate set at Q < 0.05 using the same 

method as (de Magalhaes et al., 2009). In total, there were 1,259 senescence signature genes, 

with 526 overexpressed and 734 underexpressed. We found that 442 of 1,259 senescence 

signature genes were significantly overlapped with the signature of replicative senescence 

provided by Hernandez-Segura et al. (Hernandez-Segura et al., 2017) (P-value = 2.9e-161; 

Fisher’s exact test), indicating the reliability of our data. 

 

 

Overlap analysis 

The overlap analyses were performed using the GeneOverlap package in R (version 1.16.0). 

In each experiment, background was set differently depending on where the genes come 

from. For the overlap between age-DEGs from GTEx and cancer-DEGs from TCGA, all 

protein coding genes in GTEx data (18,851 genes) were used as a background. For the 

overlap between age-DEGs and cellular senescence signature genes, all protein coding genes 

in combined datasets used for the meta-analysis (18,878 genes) were used as a background. 

For the overlap between cancer-DEGs and cellular senescence signature genes, all protein 

coding genes in combined datasets used for the meta-analysis (18,878 genes). The overlap 

was considered significant if an adjusted P-value < 0.05 (Fisher’s exact test followed by 

Benjamini-Hochberg correction). 

 

Functional enrichment analysis 

Gene ontology (GO) enrichment analysis was performed using the clusterProfiler package in 

R (version 3.8.1) (Yu et al., 2012). A GO term was considered to be an enriched term if an 

adjusted P-value < 0.1 (Benjamini-Hochberg correction). The union set of age-DEGs and 

cancer-DEGs in each of the four conditions for each tissue was employed as a background for 

GO enrichment test of the overlapping gene set in that tissue. For example, the union set of 

genes up-regulated with age in colon and genes up-regulated in COAD was used as a 

background for GO enrichment analysis of overlapping genes between genes up-regulated 

with age in colon and genes up-regulated in COAD. KEGG pathway enrichment analysis was 

performed on the underexpressed and overexpressed cellular senescence signatures. A 

pathway was enriched if an adjusted P-value < 0.05 (Benjamini-Hochberg correction). All 

protein coding genes in combined datasets used for the meta-analysis (18,878 genes) were 

employed as a background. 
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Validating the results with recount2 data 

Because GTEx and TCGA had processed the data differently, we confirmed that this 

has not affected the results of the comparison between age-DEGs and cancer-DEGs by using 

data from recount2 (Collado-Torres et al., 2017). Recount2 is a project to standardize the 

pipeline of analysis and provide the ready-to-analyze data, thus TCGA and GTEx (version 6) 

data have been processed using the same pipeline and they contain the same number of genes 

(58037 genes in total, including 19732 protein-coding genes). We performed the analyses 

following the same methods as describe above with this recount2 data and confirmed that 

age-DEGs and cancer-DEGs change in the same direction in thyroid, uterus, and brain, while 

change toward the opposite direction in the other tissues (Figure S5). We, however, keep the 

results analysed from the GTEx database (version 7) and TCGA downloaded from 

FireBrowse, because GTEx (version 6) contain less samples, particularly in the oldest age 

group (70 – 79 years old). 

 

List of Supplementary Tables, Supplementary Figures and Additional Data 

 Table S1 – Number of GTEx and TCGA samples used in the study  

 Table S2 – GEO datasets for meta-analysis of cellular senescence signatures 

 Figure S1 – Age distribution of samples from 26 GTEx tissues 

 Figure S2 – Age distribution of primary tumour and normal tissues from 10 TCGA 
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 Figure S4 – GO and KEGG pathway enrichment analysis of cellular senescence 

signatures 

 Figure S5 – Confirmation of the comparison between age-DEGs and cancer-DEGs 

using recount2 data 

 Data S1 – List of age-DEGs in GTEx tissues 

 Data S2 – List of cancer-DEGs in nine TCGA projects  

 Data S3 – List of enriched terms from GO enrichment analysis of overlap genes 

between age-DEGs and cancer-DEGs 

 Data S4 – List of cellular senescence signature genes 

 Data S5 – GO and KEGG pathway enrichment analysis of cellular senescence 

signature genes 

 Data S6 – Lists and fold change with age of cancer-DEGs presented in GTEx data 
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Supplementary Table S1 – Number of GTEx and TCGA samples included in this study 

GTEx Tissues TCGA Projects 

Tissue Name Cases Disease Name Project 

Samples 

Primary Solid 

Tumour 

Solid Tissue 

Normal 

Brain 1671 Glioblastoma Multiforme GBM 153 5 

Breast 290 Breast invasive carcinoma BRCA 1093 112 

Colon 506 Colon adenocarcinoma COAD 285 41 

Esophagus 1018 Esophageal carcinoma ESCA 184 11 

Liver 174 Liver hepatocellular carcinoma LIHC 371 50 

Lung 425 Lung adenocarcinoma LUAD 515 59 

Prostate 152 Prostate adenocarcinoma PRAD 497 52 

Stomach 261 Stomach adenocarcinoma STAD 415 35 

Thyroid 444 Thyroid carcinoma THCA 501 59 

Uterus 110 

Uterine Corpus Endometrial 

Carcinoma UCEC 186 24 
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Supplementary Table S2 – GEO datasets for meta-analysis of cellular senescence 

signatures 

GEO 
Platform 

ID 
References Tissue 

Cell Type/ Cell 

Line 

Proliferating 

Cells 

Senescent 

Cells 

GSE17077 GPL1352 

(Gruber et al., 

2010) Annulus - 8 8 

GSE13330 GPL570 

(Pazolli et al., 

2009) Foreskin BJ Fibroblasts 6 6 

GSE49860 GPL5639 

(Imai et al., 

2014) - Diploid Fibroblasts 1 1 

GSE41714 GPL10558 

(Kim et al., 

2013) Dermal Diploid Fibroblasts 2 (2 days) 

2 (30 and 

>30 days) 

GSE37091 GPL6480  

(Jong et al., 

2013) 

Umbilical 

vein 

Endothelial cell 

(HUVECS) 2 2 

GSE54095 GPL6244  

(Guerrero et al., 

2015) 

Coronary 

Artery Endothelial Cells 4 4 

GSE3460 GPL2937  

(Schwarze et al., 

2002) Prostate Epithelial Cells 2 2 

GSE3460 GPL2947  

(Schwarze et al., 

2002) Prostate Epithelial Cells 1 1 

GSE3731 GPL2990  

(Zhang et al., 

2003) Mammary 

Epithelial Cells 

(HMEC) (48R and 

184) 8 8 

GSE36640 GPL570  

(Shah et al., 

2013) - Fibroblast/IMR90 5 5 

GSE19018 GPL570  - - Fibroblast/IMR90 3 3 

GSE28863 GPL5175  (Cao et al., 2011) - Fibroblasts 12 12 

GSE3730 GPL2990  

(Zhang et al., 

2003) - 

Fibroblasts (WS1, 

WI38 and BJ) 13 13 

GSE56530 GPL570  

(Medeiros 

Tavares Marques 

et al., 2017) 

Umbilical 

Cord Vein 

Mesenchymal 

Stem Cells 9 9 

GSE35957 GPL570  

(Benisch et al., 

2012) 

Bone 

Marrow 

Mesenchymal 

Stem Cells 5 5 

GSE46019 GPL6244  

(Frobel et al., 

2014) 

Bone 

Marrow 

Mesenchymal 

Stromal Cells 3 3 

GSE15919 GPL1528 

(Binet et al., 

2009) - MRC5 Fribroblasts 6 6 

GSE10570 GPL4133  (Bhatia et al., Prostate NHP8 3 3 
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2008) 

GSE6762 GPL4693  

(Johung et al., 

2007) - 

Primary 

Fibroblasts 4 4 

GSE687 GPL506  

(Hardy et al., 

2005) 

Mammary 

Stroma 

Primary 

Fibroblasts 12 12 

GSE34303 GPL4133 (Ren et al., 2013) 

Bone 

Marrow Stromal Cells 20 20 
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Figure S1 – Age distribution of samples from 26 GTEx tissues 
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Figure S2 – Age distribution of primary tumour and normal tissues from 10 TCGA 

projects used in this study 
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Figure S3 – The relationship between age-DEGs and cancer-DEGs in brain-GBM 

(a) Fold change with age in GTEx brain data of cancer-DEGs from GBM. A number 

indicates P-values (Mann-Whitney U test). (b) Overlap between age-DEGs and cancer-DEGs 

from brain. Numbers represent FDR (Fisher’s exact test, Benjamini-Hochberg correction). 

N.S. denotes non-significant overlap. Colours of the heatmap correspond to odds ratio. (c) 

GO enrichment analysis of significant overlap gene sets. The plot shows examples of 

significant enriched terms (FDR < 0.1). The full list of enriched terms was in the Data S3. 
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Figure S4 – GO and KEGG pathway enrichment analysis of cellular senescence 

signatures 

(a) GO and (b) KEGG pathway enrichment analysis of significant overlap gene sets. The plot 

shows examples of significant enriched terms (FDR < 0.05). The full list of enriched terms 

was in the Data S5. 
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Figure S5 – Confirmation of the comparison between age-DEGs and cancer-DEGs using 

recount2 data 

Numbers of (a) age-DEGs from GTEx (b) cancer-DEGs from TCGA, RNA-Seq data 

obtained from recount2 resource. (c) Fold change with age in GTEx data of cancer-DEGs 

(Compare to Figure 1c and Figure S3a). (d) Overlap analysis between tissue-specific age-

DEGs and cancer-DEGs (Compare to Figure 1d and Figure S3b). Because only one age-DEG 

identified from stomach, the overlap analysis between age-DEG from stomach and cancer-

DEGs from STAD was not able to performed. (e) GO enrichment analysis of significant 

overlap gene sets (Compare to Figure 1e and Figure S3c). The plot shows examples of 

significant enriched terms (P-values with Benjamini-Hochberg correction < 0.1). 
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