Supplementary material

Deleterious Role of Endothelial Lectin-like Oxidized Lowdensity Lipoprotein Receptor-1 (LOX-1) in Ischemia/Reperfusion Cerebral Injury

Alexander Akhmedov, PhD,^{1*} Nicole R. Bonetti, MD,^{1,2*} Martin F. Reiner, MD,^{1,2} Remo
D. Spescha, PhD,¹ Heidi Amstalden, MSc,¹ Mario Merlini, PhD,³ Daniel S. Gaul, PhD,¹
Candela Diaz-Cañestro, MSc,¹ Rebecca S. Spescha, PhD,^{4,5} Aurora Semerano, MD,⁶
Giacomo Giacalone, MD,⁶ Gianluigi Savarese, MD,⁷ Fabrizio Montecucco, MD,^{8,9,10}
Luka Kulic, MD,^{4,5} Roger M. Nitsch, MD,^{4,5} Christian M. Matter, MD,^{1,11} Gerd A. Kullak-Ublick, MD,¹² Maria Sessa, MD,⁶ Thomas F. Lüscher, MD,^{1,11}, Jürg H. Beer, MD,^{1,2}
Luca Liberale, MD,^{1,8*} Giovanni G. Camici, PhD,^{1,5*}

* These authors contributed equally to this work

¹Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; ²Department of Internal Medicine, Cantonal Hospital of Baden, Im Ergel 1, 5404 Baden, Switzerland; ³Gladstone Institute of Neurological Disease, University of California, San Francisco, 1650 Owens Street, San Francisco, CA 94158, USA; ⁴Division of Psychiatry Research, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; ⁵Zurich Neuroscience Center, University of Zurich, Winterthurer Strasse 190, 8057 Zurich, Switzerland; ⁶Department of Neurology, San Raffaele Scientific Institute, via Olgettina 60, 20132 Milano, Italy; ⁷Division of Cardiology, Department of Medicine, Karolinska Institute, N305, 171 76, Stockholm, Sweden; ⁸First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; ⁹Ospedale Policlinico San Martino 10 Largo Benzi, 16132 Genoa, Italy; ¹⁰Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 viale Benedetto XV, 16132 Genoa, Italy; ¹¹Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland;

¹²Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland

Address for correspondence:

Prof. Dr. Giovanni G. Camici

Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland. E-Mail address: <u>giovanni.camici@uzh.ch</u>. Phone +41 44 635 64 68 Fax +41 44 635 68 27

Source of Funding

The present work was supported by the Swiss National Science Foundation (Drs. Camici [310030_175546] and Lüscher [310030_166576]), the Alfred and Annemarie von Sick Grants for Translational and Clinical Research Cardiology and Oncology to Dr. Camici and the Foundation for Cardiovascular Research–Zurich Heart House. G.G. Camici is the recipient of a Sheikh Khalifa's Foundation Assistant Professorship at the Faculty of Medicine, University of Zurich.

Running headline: Endothelial LOX-1 worsens ischemic stroke damage

Supplementary Figure 1

Regional cerebral blood flow

lschemie 45 min

Figure Legends

Supplementary Figure 1. Regional cerebral blood flow (rCBF) reduction during transient middle cerebral artery occlusion (tMCAO). Cerebral blood flow in the middle cerebral artery region was reduced to similar extents in wild type (WT) and endothelial-specific LOX-1 transgenic (eLOX-1TG) animals during tMCAO, as assessed by a laser Doppler flowmetry.