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Supplemental methods, tables, and figures

SNP array data and imputation

Genotype data quality control was described elsewhere1. In summary, 949 individuals
passed genotype quality control. Genotype phasing and imputation was performed in all
949 individuals that passed quality control. Post-imputation quality control was performed
as follows. SNPs with an imputation info-score below 0.4, a HWE P ≤ 10−6, or a MAF
≤ 5% in the 63 individuals with measured RNA-Seq and methylation were excluded. In
total, 7,037,776 SNPs passed post-imputation quality control.

Expression quantification and quality control

The quality of the raw reads was assessed using FastQC (v0.11.5). The adaptors
were clipped using cutadapt (v1.8.1)2 requiring at least three bases to match (--min
overlap 3) and removing processed reads shorter than 20 bases (--min length 20).
RNA-Seq reads were mapped to the NCBI v37 H. sapiens reference genome using STAR
(v2.4.2a)3. Only uniquely aligned reads were used for downstream quantification and anal-
ysis. The percentage of reads marked as PCR duplicates was computed using Picard.
For the differential expression and eQTL analysis, PCR duplicates were not filtered out,
since it has been shown that computational removal of duplicates does not improve power
or FDR in differential expression analyses4, but the proportion of PCR duplicates used
as a technical covariate in downstream analysis. For the differential ASE analysis, PCR
duplicates were removed. Mapping statistics from the BAM files were acquired through
Samtools flagstat (v1.2)5. The 5’ and 3’ coverage bias, duplication rate and insert sizes
were assessed using Picard tools (v2.0.1). HTSeq was used to quantify gene expression6.

Expression data on the sample level were first corrected for library size using the
DESeq2 R package7. Genes were excluded if they had less than 5 counts on average
for either age groups, and zero counts in more than 20% of individuals (to minimize tails).
A total of 16,087 genes were expressed. For the eQTL analysis, genes from the sex chro-
mosomes as well as mitochondrial genes were also excluded, leaving 15,729 genes in the
analysis.

To identify potential outlier individuals, we performed PCA (Figure S1). Samples that
demonstrated extreme values in the first two principal components on the expression levels
were removed (more than 3 standard deviations). No samples were excluded based on this
measure. To identify low quality samples, we applied several quality metrics (Figure S1).
Samples were removed if they had insufficient reads (≤20M), poor mappability (≤60%),
and low correlation with other samples (D-statistic ≤ 0.85). We also checked for sample
mix-ups by comparing agreement between true and RNA-Seq-inferred heterozygous SNPs
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for all possible pairs of RNA-Seq and genotype data. No samples were excluded based on
these metrics. Three individuals with low RNA integrity number (RIN ≤ 5) were marked.
These individuals were not excluded since they do not seem to appear as outliers in the
PCA plots (Figure S1C).

Measuring DNA methylation and quality control

Extracted DNA was bisulphite-converted using the Zymo bisulphite conversion kit and
hybridized to the Infinium HumanMethylation450 BeadChip (450k array). Signal intensi-
ties were measured with the BeadChip scanner. The 130 samples (with available RNA-Seq
data) were distributed across two periods of methylation data collection, eight 96-well
plates (5 plates for the 70-year old samples and 3 plates for the 80-year old samples), and
forty-one 12-sample chips (24 chips for the 70-year old samples and 17 chips for the 80-year
old samples).

Quality control was performed using the R package minfi (version 1.20.0)8. Missing
values were imputed by the k-nearest neighbor approach using the impute R package (ver-
sion 1.48.0)9. Background correction and dye-bias normalization were done using noob10

through minfi. Signal intensities were converted to DNA methylation β-values, i.e. the
ratio of methylated probe intensity to total (methylated + un-methylated) probe intensity.

Inferring cell-type frequencies from whole blood

Whole blood is a heterogeneous mixture of cell types. Since gene expression and DNA
methylation vary across different cell types, correlations between the phenotype of interest
(e.g. age) and the cell type composition may lead to a large number of false discover-
ies. False discoveries due to cell type heterogeneity can be addressed by adding the cell
proportions as covariates. Since cell counts were not available for our samples, we used
computational methods to estimate their composition.

To estimate blood cell composition from gene expression data, we used CIBERSORT11.
While this tool was designed from micro-array data, it has been shown to have reason-
ably robust cross-platform performance. To estimate blood cell composition from DNA
methylation data, we used Houseman’s reference-based method12, including their provided
reference data and signature CpG sites. This approach was used on our methylation data
after adjustment with noob10. Results are shown in Figure S2A.

Methylation-based cell-type frequency estimates are closer to expected values for adults
of similar age, compared to expression-based estimates. Moreover, while methylation-based
estimates are mainly correlated with biological covariates, expression-based estimates are
highly correlated with technical factors Figure S2B. For these reason, we use methylation-
based estimates in downstream analyses. Methylation-based estimates of B and CD8 T
cells, granulocyte, and monocytes showed a significant difference between the two ages
(2-sample Wilcoxon test; P = 0.018, 0.019, 1.21 × 10−4, and 9.29 × 10−3, Figure S2C).

Background noise correction in RNA-Seq experiments

We consider analyses corrected for either measured and/or inferred determinants of
gene expression variability. Below we describe the selection of the known factors and the
inference of the inferred factors.
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Measured determinants of gene expression variability in RNA-Seq experiments

We considered 24 measured variables as candidate components of RNA-Seq variability,
listed in Table S1. In order to decide which of the variables affect gene expression, we
performed a multiple linear mixed model regression on the expression of each gene using
the lme4 R package13. We used the π1 statistic14 to detect technical covariates affecting
a large number of genes, i.e. π1 ≥ 5%, and only consider those covariates in subsequent
analyses. Table S1 also lists the median % of gene expression variance accounted for (VAF)
by each measured variable, estimated using the R package variancePartition15, as
well as the proportion of genes each variable was associated with at 5% FDR.

Figure sfig:KnownAndInferredFactorsA and C show the correlation of the variables
(that have π1 ≤ 5%) with age and the proportion of gene expression variance they explain.
Since age is moderately correlated with RIN (Spearman’s ρ = −0.46, P = 5.16 × 10−8)
and RNA concentration (Spearman’s ρ = −0.30, P = 4.21 × 10−4) and RIN and RNA
concentration are associated with gene expression, these variables could act as potential
confounders and we thus include them in the model for differential expression analysis.

Inferred determinants of gene expression variability in RNA-Seq experiments

We used surrogate variable analysis (SVA) to infer hidden factors from the RNA-Seq
data. Two different algorithms for extracting hidden factors were considered: the two-
step SVA procedure16 without setting any covariate of interest, implemented in the sva R
package17, and the IRW-SVA algorithm, setting age as the covariate of interest18, imple-
mented in the SmartSVA R package19. The later algorithm, to which we hereafter refer
as supervised SVA, attempts to protect the effect of age by identifying a subset of genes
that show strong association with the underlying sources of gene expression heterogeneity
but no association with age, also referred to as negative or empirical control genes.

We use the Buja and Eyuboglu method20, a permutation-based selection rule for the
number-of-factors problem, to estimate the number of hidden factors that explain a sig-
nificant proportion of gene expression variability, larger than what would be expected by
chance. Using the SVA method, we find 12 and 15 factors when performing the unsuper-
vised and supervised algorithms, respectively.

We found that the inferred factors summarize multiple correlated measured factors
(Figure sfig:KnownAndInferredFactorsB) with significant contribution to variability in the
RNA-sequencing data (Figure sfig:KnownAndInferredFactorsB). Generally, we observed
that the top factors largely correspond to technical factors such as RNA extraction date,
RIN scores and factors specific to RNA-seq such as percent duplicated reads and others
obtained from the Picard metrics and to a much lesser extent to biological factors such as
estimates of cell type frequencies.

Co-localization analysis for DE genes

For each DE gene, we obtained colocalization posterior probabilities (CLPP) between
GWAS summary statistics of several complex traits and GTEx21 whole blood from the
LocusCompare database (http://locuscompare.ml:3838/). We defined any locus
with CLPP ≥ 0.05 to have sufficient evidence for colocalization.
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Differential expression analysis in the SardiNIA study

The SardiNIA study consists of 605 individuals (56% females, average age 57) from
195 families with measured RNA-Seq22. From a total of 19,646 genes expressed in Sar-
diNIA, 14,847 of them are also expressed in PIVUS, using the same threshold for calling
a gene expressed (see above). To account for the family structure, we perform the dif-
ferential expression analysis using the pedigree-based linear mixed-models implemented in
the coxme R package23. Specifically, let Eij and Ageij denote the gene expression and
age for the jth member of family i, and xij a p-dimensional vector with known / inferred
determinants of gene expression for i = 1, . . . , n and j = 1, . . . , ni. Here we correct the
analysis for sex. In the mixed models framework, a set of family-specific random effects
bi = (bi1,bi2, . . . ,bini

)T is introduced to model the within family dependencies and Eij
is modeled conditional on the ni × 1 random-effects vector bi, and covariate information
Ageij and xij as

Eij = β0 + bij + β1Ageij + xT
ijβ2 + εij

(εi, bi) ∼ N2ni
(02ni

,Σi)

Σi =

[
σ2
ε Ini

02ni

02ni
σ2
bRni

]
Where β0 is the intercept term, β1 is the fixed effect of age, and β2 is the p-dimensional

regression coefficients vector for the additional covariates. Moreover, Rni
is the coefficient

of relationships matrix with elements rjk = 2−djk with djk denoting the distance between
subjects j and k in the pedigree and σ2

b the genetic variance parameter. σ2
ε is the residual

variance and Ini
is an ni × ni identity matrix.
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Supplemental Tables

Table S1: Measured covariates that can introduce variability in RNA-sequencing experiment.
Table lists technical factors directly obtained from Picard QC metrics (Type ”T/Picard”), factors relating
to sample preparation and storage (Type ”SP”), methylation-based cell type frequencies (Type ”MCTF”),
and factors measured in the clinic (Type ”C”). For subsequent analyses, we only consider factors that
affect a large proportion of genes (π̂1 > 5%). Table also shows median % of expression variance accounted
for (VAF) by each factor and genes each factor was associated with at 5% FDR. π̂1, VAF, and the number
of associations for each covariate were estimated via a multiple linear mixed model per gene correcting
for all uncorrelated covariates.

ID Description Type π̂1 Median VAF (%) % associations

1 Extraction year SP 77.59 5.54 59.51
2 % Intronic bases T/Picard 72.59 2.06 53.05
3 RNA integrity number SP 61.43 1.85 34.33
4 CD8 T cells MCTF 60.72 2.08 31.30
5 CD4 T cells MCTF 56.23 1.57 23.94
6 Median insert size T/Picard 49.16 1.02 19.39
7 Leukocytes count C 45.09 0.72 10.02
8 Monocytes MCTF 29.60 0.35 1.93
9 NK cells MCTF 28.80 0.39 0.89
10 SBP C 22.88 0.38 0.00
11 RNA concentration SP 22.19 0.41 1.46
12 Min insert size T/Picard 18.85 0.21 0.00
13 Sex C 14.99 0.42 0.00
14 B cells MCTF 10.23 0.33 0.83
15 DBP C 9.47 0.32 0.00
16 Fasting blood glucose C 9.15 0.21 0.00
17 Albumin C 6.76 0.27 0.00
18 BMI C 6.07 0.29 0.00
19 Alanine aminotransferase C 4.03 0.18 0.00
20 Any medications C 0.17 0.18 0.00
21 Smoking C 0.00 0.17 0.00
22 Alkalic phosphates C 0.00 0.23 0.00
23 Calcium C 0.00 0.16 0.00
24 C-reactive protein C 0.00 0.16 0.00
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Supplemental Figures
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Figure S1: RNA-Seq data quality control. (A) Distribution of RNA integrity number, number of
sequenced reads (in million), percent of uniquely mapped reads, and D-statistic across samples. The
median RNA integrity number across samples was 6.9. All samples had at least 30M reads, at least 80%
of their reads mapped uniquely, and their median Spearman expression correlation (D-statistic) with
other samples was at least 0.9. (B) Concordance between SNP array and RNA-Seq called heterozygous
loci. All RNA-seq samples are most similar to their own genotype sample (darker numbers in the diag-
onal). The four light colors in the diagonals refer to the two individuals (four samples) for which SNP
genotypes were not available; these individuals are not similar to the genotype of any other sample. (C)
Principal component analysis on expression data. No outliers are present based on the two first principal
components (PC).
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Figure S2: Cell-type deconvolution in whole blood. (A) Cell-type frequency estimates (in %).
Each column contains relative estimates for each sample. Pairs of consecutive columns are 70- and 80-
years-old samples of the same individual. Expression-based estimates are not close to expected values
for adults of similar age. (B) Correlation of cell-type frequencies with biological and technical covariates
(separated by black line). Expression-based estimates are highly correlated with technical covariates while
methylation-based estimates are correlated with biological covariates. (C) Distribution of estimated cell-
type frequencies by age. For expression-based estimates, we see a significant difference with ages for
CD4 and CD8 T cells and granulocytes (2-sample Wilcoxon test; P = 0.053, .029, and 6.73 × 10−5).
For methylation-based estimates, B and CD8 T cells, granulocytes, and monocytes showed a significant
difference between the two ages (P = 0.018, 0.019, 1.21 × 10−4, and 9.29 × 10−3). Significance codes:
′ ∗ ∗∗′ ≤ 0.001 , ′ ∗ ∗′ ≤ 0.01, ′∗′ ≤ 0.05.
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Figure S3: Known and inferred determinants of gene expression variability. (A) Correlation
between measured covariates and with hidden factors. Age is moderately correlated with RIN (Spearman’s
ρ = −0.46, P = 5.16× 10−8) and RNA concentration (Spearman’s ρ = −0.30, P = 4.21× 10−4). Hidden
factors are correlated with several measured factors, e.g. Spearman’s ρ = .69 between extraction year and
first hidden factor. The fourth and fifth hidden factors are moderately correlated with age (Spearman’s
ρf4,age = 0.56 and ρf5,age = −0.55). The fourth hidden factor is also correlated with RIN (Spearman’s
ρ = 0.56), consistent with the fact that age and RIN are moderately correlated. (B) Proportion of
gene expression variance explained (VE) by measured and hidden factors. VE for each measured factor
is estimated by fitting a multiple linear mixed model with all measured factors and age for each gene.
Consistent with results in (A), extraction year accounts for the largest proportion of gene expression
variance (VE mean= 9.89%, median = 5.54%). Measured covariates are listed in the same order as Table
S1. Moreover, the first hidden factor explains about 10% of gene expression variance (median across
genes) while the 15th one explains about .3%.
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Figure S4: Gene expression within individuals is highly correlated. (A) Intra- and inter-
individual gene expression correlations (Spearman’s ρ; across all genes) based on uncorrected data (Un-
corrected), data corrected for confounders and all inferred components of gene expression variability
(Hidden (protect age) and confounders) or confounder and only inferred components that are uncorre-
lated with age (Hidden* (protect age) and confounders). Intra-individual (red) refers to samples of the
same individual at the two ages. Inter-individual refers to samples of two different individuals that share
age (dark blue) or do not share age (light blue), for 65 randomly sampled pairs of individuals. Even af-
ter correcting for global determinants of gene expression variability, the intra-individual correlations are
higher than the inter-individual correlations, due to cis genetic and environmental effects that are unique
to the individuals. (B) Dendrogram of expression-based sample-to-sample distance. Measurements of
the same individual at the two ages cluster together (green) for the majority of samples. Labels of nodes
denote sample ids; odd number ids are age 70 samples while even are age 80. Pairs of consecutive ids
refer to the same individual, e.g. 3 and 4 refer to the same individual at age 70 and 80.
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Figure S5: Population-level age-specific expression across the transcriptome. (A) Proportion
of tested genes differentially expressed (DE) with age and DE genes that show down-regulation with age
(FDR ≤ 5%) for different background noise correction methods. Measured factors are listed in Table
S1. Confounders are RIN and RNA-concentration. Numbers on top of bars show number of DE genes.
(B) Box-plot of expression variance explained by age (in %) across all genes (black) or significantly DE
genes (grey). In uncorrected data, age explained, on average, 4.8% of the expression variance of all genes
(median=1.84%) and 7.9% (median=4.97%) for genes DE with age. In the data corrected for hidden
factors and confounders, age explained a smaller proportion of expression variance (note the difference
in y-axis scale), since we removed part of expression variance attributed to age that could be due to
confounders. Globally, age explained, on average, .31% (median=.14%) of expression variance, while for
genes DE with age, it explained 1.5% (median=1.3%) of expression variability. (C) Proportion of overlap
between the top 1,000 DE genes in PIVUS with the top 1,000 DE genes from CHARGE and SardiNIA.
We found a statistically significant overlap between PIVUS and the other two studies (Fold enrichment
= 4.17; Hyper-geometric exact test; P = 1.3 × 10−16). (D) Gene ontology enrichment analysis for the
49 genes that are in the top 1000 most DE genes across all three studies.
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Figure S6: Examples of age-trajectory outliers. (A) Outlier genes for the individual that showed
the largest outlying expression increase with age in IGKV1-27. The same individual was an outlier for
several additional immunoglobulin-related genes (in red). Y-axis shows the expression differences between
two ages. (B) Outlier genes for the individual that showed the largest outlying expression decrease with
age in BIRC2. The same individual was an outlier for several other genes related to proteasomal protein
catabolic process (in red). (C-E) Enrichment for GO biological processes for each individual’s set of
genes with outlying decrease of expression with age (C) and outlier phenotypes for the individuals with
significant enrichment of GO terms (E). We observed significant enrichment (FDR ≤ 5%) for known age-
related GO terms for three individuals. For two of these individuals, one of which showed a large increase
in leukocyte counts between the two ages, we see enrichment for terms related to immune response24. For
the third individual, we see enrichment for terms related to protein catabolism25. The same individual
had a substantial increase in albumin levels between the two ages, and was diagnosed with diabetes
between age 70 and 80. Y-axis in D shows the phenotype differences between two ages (δY80−70). The
larger symbols indicate where the outlier individual is located in the distribution of each gene/phenotype.
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Figure S7: Age-specific genetic regulation across the genome. (A) Number of genes with at least
one significant eQTL (eGenes) at age 70 (red) and 80 (blue) for different background noise correction
strategies (shape), minor allele frequencies (MAF), and FDR thresholds used to identify eGenes and
eQTLs26. We find the largest number of discoveries when we correct for hidden factors. For all MAFs
and FDR thresholds we make more discoveries at age 70, compared to age 80. (B) Proportion of eGenes
discovered at age 70 (80) that validated at age 80 (70) for different background noise correction strategies,
validation FDR levels (FDRv), and MAF filters for candidate eQTL at each age. The discovery FDR
was 1%. *, **, and *** indicate that the validation proportion at age 70 is lower than the one at age 80
at ≤10%, 5%, and 1% nominal significance levels, respectively.
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Figure S8: Known and inferred determinants of alternative splicing variability. (A) Correlation
between measured covariates and alternative splicing hidden factors. Hidden factors are correlated with
several measured factors. Several hidden factors are correlated with age, e.g. Spearman’s ρf8,age = 0.53.
(B) Proportion of alternative splicing variance explained (VE) by measured and hidden factors. VE for
each measured or hidden factor is estimated by fitting a multiple linear mixed model with all measured
or hidden factors for each gene. VE by the measured or hidden factors for alternative splicing is lower
than the VE for expression. This is due to intron excision ratios being internally normalized and thus
less affected by technical variability.
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