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Supplemental Material Legends 

Supplementary Figure 1: Flow diagram of the ROADMAP and OFU studies and illustration 

of participant inclusion in the current study.  

Supplementary Figure 2: Mediation analysis of risk for microalbuminuria development with 

inclusion of CXCL-16, TGF-β1 and angiopoietin-2. 

A-C: Tested mediators: changes in baseline serum TGF-β1 and angiopoietin-2. Independent 

variable: changes in CXCL-16.  

A: the first step was the demonstration that higher CXCL-16 levels had a measurable impact 

on microalbuminuria development after accounting for baseline risk covariates.  

B1 and B2: second, we checked if mediator changes (TGF-β1, angiopoietin-2) correlated with 

higher risk for microalbuminuria development, after accounting for baseline risk covariates.  

C1 and C2: subsequently, we calculated the influence of higher CXCL-16 levels on the tested 

mediators (TGF-β1, angiopoietin-2). Finally, we jointly calculated the influence of the mediator 

on microalbuminuria development, after accounting for baseline risk covariates, and the direct 

effects of the independent variable (CXCL-16).  

This last step shows that higher serum TGF-β1 partially mediates (20%, p=0.003 for the 

average causal mediation effect (ACME)) and angiopoietin-2 partially mediates (9%, p=0.007 

for the ACME) the original effect of CXCL-16 on microalbuminuria development and, 

consequently, CXCL-16 remains directly associated with microalbuminuria development in an 

independent manner (characterizing incomplete mediation).  

D-F: Tested mediators: changes in baseline serum CXCL-16 and angiopoietin-2. Independent 

variable: changes in TGF-β1.  

D: the first step was the demonstration that higher TGF-β1 levels had a measurable impact on 

microalbuminuria development after accounting for baseline risk covariates.  

E1 and E2: second, we checked if mediator changes (CXCL-16 and angiopoietin-2) correlated 

with microalbuminuria development, after accounting for baseline risk covariates.  

F1 and F2: third, we calculated the influence of higher CXCL-16 on the tested mediators 

(TGF-β1, angiopoietin-2). Finally, we jointly calculated the influence of the mediator on 

microalbuminuria development, after accounting for baseline risk covariates, and the direct 

effects of the independent variable (TGF-β1).  

This last step shows that higher serum CXCL-16 and angiopoietin-2 levels don’t mediate the 

original effect of TGF-β1 on microalbuminuria development and, consequently, TGF-β1 

remains directly associated with microalbuminuria development in an independent manner.  
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G-I: Tested mediators: changes in baseline serum CXCL-16 and TGF-β1. Independent 

variable: changes in angiopoietin-2.  

G: the first step was the demonstration that higher angiopoietin-2 levels had a measurable 

impact on microalbuminuria development after accounting for baseline risk covariates.  

H1 and H2: second, we checked if mediator changes (CXCL-16 and TGF-β1) correlated with 

microalbuminuria development, after accounting for baseline risk covariates.  

I1 and I2: third, we calculated the influence of higher angiopoietin-2 on the tested mediators 

(CXCL-16 and TGF-β1). Subsequently, we jointly calculated the influence of the mediator on 

microalbuminuria development, after accounting for baseline risk covariates, and the direct 

effects of the independent variable (angiopoietin-2).  

This last step shows that higher serum CXCL-16 partially mediates (10%, p<0.001 for the 

ACME) and TGF-β1 doesn’t mediates (0%, p<0.001 for the ACME) the original effect of 

angiopoietin-2 on microalbuminuria development and, consequently, angiopoietin-2 remains 

directly associated with microalbuminuria development in an independent manner 

(characterizing incomplete mediation).  

Supplementary Figure 3: Multilevel mediation analysis of risk for microalbuminuria 

development with inclusion of the combination of the three markers (CXCL-16, TGF-β1 and 

angiopoietin-2)  

Supplementary Table 1: Univariable association of individual clinical risk factors (top) and 

measured biomarkers (bottom) with new-onset microalbuminuria. 

Supplementary Table 2a:  Spearman correlation coefficients between selected serum 

biomarker levels 

Supplementary Table 2b: Spearman correlation coefficients between selected serum 

biomarker concentrations and clinical risk factors  

Supplementary Table 3: Clinical characteristics of the available datasets at baseline, split by 

presence or absence of olmesartan in the ROADMAP trial. 
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Supplementary Table 4: Odds ratio (OR) for developing microalbuminuria before and after 

bootstrapped multivariate regression analysis 

Supplementary Table 5: Log-rank test of comparing the different quartiles of all 3 

biomarkers associated with an increasing incidence of the composite outcome (de novo 

microalbuminuria). 

Supplementary Table 6: Calibration and sensitivity analysis of the risk prediction models. 

Supplementary Table 7: Prediction performance analysis for individual and combined 

biomarkers 

Supplementary Table 8: Biomarkers of interest. Relevant clinical studies in patients with early 

stage cardiovascular disease or cardiovascular risk factors. Supposed pathways and 

underlying molecular mechanisms. 

Modified SROBE statement 

















Supplementary Table 1. Univariable association of individual clinical risk factors (top) and measured 
biomarkers (bottom) with new-onset microalbuminuria.  

Clinical Markers AUC 95% CI p 

Age 0.529 0.469 - 0.589 0.343 
Male sex 0.489 0.430 - 0.549 0.727 
Tobacco smoking 0.502 0.442 - 0.561 0.959 

Body-mass index 0.483 0.423 - 0.543 0.585 
Systolic blood pressure 0.513 0.453 - 0.573 0.665 
Diastolic blood pressure 0.475 0.415 - 0.535 0.412 
Mean blood pressure 0.491 0.431 - 0.551 0.769 

Estimated GFR 0.486 0.427 - 0.546 0.656 
LDL cholesterol 0.485 0.425 - 0.545 0.621 
HbA1c 0.507 0.447 - 0.567 0.811 
Urine albumin-to-creatinine ratio 0.554 0.495 - 0.614 0.075 

Cardiovascular Disease 0.539 0.479 - 0.599 0.203 
Duration of diabetes 0.545 0.485 - 0.604 0.143 

AUC indicates area under the ROC curve; CI: 95% Confidence Interval; 

Serum Biomarkers AUC 95% CI p Bonferroni-Holm 
correction 

S100AMRP8 0.514 0.454 - 0.574 0.651 >0.999 
Endostatin 0.586 0.527 - 0.644 0.005 0.075 
VAP-1 0.449 0.389 - 0.508 0.092 >0.999 

CXCL-16 0.696 0.643 - 0.750 <0.001 <0.001 
sTNF-RI 0.573 0.514 - 0.632 0.016 0.240 
sTNF-RII 0.544 0.484 - 0.603 0.153 >0.999 
sST2 0.562 0.503 - 0.621 0.042 0.630 
sThrombomodulin 0.530 0.470 - 0.589 0.329 >0.999 
VEGF 0.541 0.481 - 0.601 0.178 >0.999 
RAGE 0.535 0.476 - 0.595 0.245 >0.999 
VEGF-R1 0.559 0.499 - 0.618 0.054 0.810 
TGF-β1  0.669 0.612 - 0.726 <0.001 <0.001 
Angiopoietin-2  0.658 0.602 - 0.714 <0.001 <0.001 
Angiopoietin-1 0.484 0.425 - 0.544 0.611 >0.999 
MCP-1 0.590 0.531 - 0.649 0.003 0.045 

AUC indicates area under the ROC curve; CI: 95% Confidence Interval; 



Supplementary Table 2a:  Spearman correlation coefficients between selected serum 
biomarker levels 

Biomarker CXCL-16 TGF-β1 Angiopoietin-2 Endostatin sTNF-RI 
CXCL-16 - 0.374** 0.290** 0.170** 0.265** 
TGF-β1 0.374** - 0.067 0.060 -0.033 
Angiopoietin-2 0.290** 0.067 - 0.303** 0.337** 
Endostatin 0.170** 0.060 0.303** - 0.519** 
sTNF-RI 0.265** -0.033 0.337** 0.519** - 

* p<0.05; ** p<0.01; CXCL16: C-X-C Motif Chemokine Ligand 16; TGFβ-1: Transforming growth factor beta 1; sTNF-RI: soluble Tumor
Necrosis Factor Receptor I. 



Supplementary Table 2b. Spearman correlation coefficients between selected serum biomarker concentrations and clinical risk factors 

Biomarker MA Age Sex BMI Duration 
diabetes 

Smoking 
status 

Mean blood 
pressure HbA1c eGFR LDL UACR Cardiac 

complications 
CXCL-16 0.343** 0.060 0.102 0.215** 0.079 -0.023 0.027 0.073 -0.129* 0.040 0.209** 0.092 
TGF-β1 0.294** -0.077 0.129* 0.093 0.093 -0.084 0.057 0.114* 0.098 0.023 0.209** 0.061 
Angiopoietin-2 0.275** -0.002 0.107* 0.204** 0.020 0.123* 0.008 0.014 -0.014 -0.019 0.138** 0.093 
Endostatin 0.147** 0.218** 0.024 0.093 0.087 -0.007 0.043 -0.103 -0.274** 0.069 -0.056 0.033 
sTNF-RI 0.125* 0.182** -0.024 0.207** 0.180** 0.052 0.046 -0.010 -0.246** 0.030 0.008 -0.017 

* p<0.05; ** p<0.01; CXCL16: C-X-C Motif Chemokine Ligand 16; TGFβ-1: Transforming growth factor beta 1; sTNF-RI: soluble Tumor Necrosis Factor Receptor I; MA: microalbuminuria; Cardiovascular disease was defined as history of coronary
heart disease, myocardial infarction, stroke or transient ischemic attack, or peripheral vascular disease; eGFR: glomerular filtration rate (calculated with the use of the abbreviated Modification of Diet in Renal Disease formula); HbA1c: Glycated 
hemoglobin; LDL: low density lipoprotein; UACR: urine albumin creatinine ratio. 



Supplementary Table 3: Clinical characteristics of the available datasets at 
baseline, split by presence or absence of olmesartan in the ROADMAP trial. 

Characteristics Olmesartan 
(n=86) 

Placebo 
(n=96) P 

Demographic characteristics 
Age 

Median - years (min-max) 58 (36-75) 59 (33-74) 0.431 

Male sex - no. (%) 45 (46,9) 50 (46.5) 0.961 
Tobacco smoking - no. (%) 

Non-smoker 57 (59.4) 49 (57.0) 
0.866 Current-smoker 24 (25.0) 21 (24.4) 

Former-smoker 15 (15.6) 16 (18.6) 
Physical examination 

Body-mass index† 31.7 ± 4.8 32.2 ± 5.1 0.915 
Mean arterial blood pressure - mmHg 100.2 ± 10.8 99.8 ± 10.5 0.808 

Laboratory values 
Estimated GFR - ml/min/1.73 m2 86.6 ± 18.4 86.3 ± 16.0 0.829 

HbA1c - % 8.1 ± 1.6 7.9 ± 1.6 0.323 
LDL cholesterol - mmol/l 2.9 ± 1.0 3.3 ± 1.2 0.027 
Urine albumin-to-creatinine ratio - mg/g 10.5 ± 6.8 10.6 ± 8.3 0.585 

Medical history 

Cardiovascular disease – no. (%) 11 (11.5) 11 (12.8) 0.783 
Duration of diabetes - months 85.1 ± 72.6 83.1 ± 71.2 0.673 

Biomarkers 
CXCL-16 - ng/ml 2.65 ± 0.58 2.68 ± 0.64 0.701 

TGF-β1 - ng/ml 31.50 ± 33.25 33.25 ± 14.97 0.511 
Angiopoietin-2 - ng/ml 2.12 ± 1.22 2.13 ± 1.02 0.782 
Endostatin - ng/ml 116.7 ± 41.16 111.4 ± 37.52 0.324 
sTNF-RI - ng/ml 1.53 ± 0.72 1.44 ± 0.62 0.352 

Data are presented as mean (SD) for normally distributed values, median (min-max) for skewed continuous values and n 
(%) for categoric values; Cardiovascular disease was defined as history of coronary heart disease, myocardial infarction, 
stroke or transient ischemic attack, or peripheral vascular disease; eGFR: glomerular filtration rate (calculated with the 
use of the abbreviated Modification of Diet in Renal Disease formula); HbA1c: Glycated hemoglobin; LDL: low density 
lipoprotein; †: The body-mass index is the weight in kilograms divided by the square of the height in meters. 



Supplementary Table 4: Odds ratio (OR) for developing microalbuminuria before and after bootstrapped multivariate regression analysis 

Variable 
Multivariate Bootstrap resampling 

OR 95% CI P OR BCa 95% CIa P ba SEb
a 

Age 1.000 0.968 - 1.033 0.988 1.000 -0.036 - 0.034 0.988 0.000 0.019 

Sex 0.681 0.403 - 1.149 0.150 0.681 -0.962 - 0.137 0.150 -0.384 0.301 

BMI 0.953 0.904 - 1.006 0.079 0.953 -0.108 - 0.001 0.079 -0.048 0.031 

Smoking status 0.930 0.662 - 1.306 0.674 0.930 -0.438 - 0.283 0.674 -0.073 0.191 

Mean arterial pressure 0.995 0.972 - 1.019 0.685 0.995 -0.030 - 0.018 0.685 -0.005 0.013 

Estimated GFR 0.997 0.981 - 1.013 0.691 0.997 -0.022 - 0.015 0.691 -0.003 0.009 

HbA1c 0.938 0.797 - 1.103 0.436 0.938 -0.256 - 0.103 0.436 -0.064 0.095 

LDL cholesterol 0.971 0.768 - 1.227 0.806 0.971 -0.275 - 0.214 0.806 -0.029 0.129 

Urine albumin-to-creatinine ratio 0.996 0.963 - 1.030 0.817 0.996 -0.047 - 0.037 0.817 -0.004 0.020 

Cardiovascular disease 1.516 0.703 - 3.271 0.288 1.516 -0.459 - 10.389 0.288 0.416 0.434 

Duration of diabetes 1.001 0.997 - 1.004 0.633 1.001 -0.003 - 0.005 0.633 0.001 0.002 

Duration of follow-up 0.992 0.977 - 1.006 0.248 0.992 -0.025 - 0.007 0.248 -0.009 0.008 

CXCL-16 2.603 1.705 - 3.957 <0.001 2.603 0.472 - 10.626 <0.001 0.957 0.233 

TGF-β1 1.026 1.010 - 1.042 0.001 1.026 0.007 - 0.049 0.001 0.025 0.009 

Angiopoietin-2 1.504 1.141 - 1.983 0.004 1.504 0.106 - 0.968 0.004 0.408 0.177 

OR: odds ratio; CI: confidence interval; BCa CI: bias-corrected and accelerated (BCa) bootstrap interval; b: regression coefficients; SE0. standard error; a: bootstrap results are based on 10.000 bootstrap samples; CXCL16: 
C-X-C Motif Chemokine Ligand 16; TGFβ-1: Transforming growth factor beta 1; sTNF-RI: soluble Tumor Necrosis Factor Receptor I. Cardiovascular disease was defined as history of coronary heart disease, myocardial 
infarction, stroke or transient ischemic attack, or peripheral vascular disease; eGFR: glomerular filtration rate (calculated with the use of the abbreviated Modification of Diet in Renal Disease formula); HbA1c: Glycated 
hemoglobin; LDL: low density lipoprotein; UACR: urine albumin creatinine ratio.



Supplementary Table 5: Log-rank test of comparing the different quartiles of all 3 
biomarkers associated with an increasing incidence of the composite outcome (de 
novo microalbuminuria). 

Log-rank text (Mantel-Cox) Q1 Q2 Q3 Q4 

CXCL-16-quartiles 

Q1 (< 1.953 ng/ml) - <0.001 <0.001 <0.001 

Q2: (1.953 - 2.390 ng/ml) <0.001 - 0.493 0.038 

Q3: (2.390 - 2.883 ng/ml) <0.001 0.493 - 0.142 

Q4: (> 2.883 ng/ml) <0.001 0.038 0.142 - 

TGF-β1-quartiles 

Q1 < 11.745 ng/ml) - <0.001 <0.001 <0.001 

Q2: (11.745- 29.341 ng/ml) <0.001 - 0.048 0.184 

Q3: (29.341- 40.575 ng/ml) <0.001 0.048 - 0.939 

Q4: (> 40.575 ng/ml) <0.001 0.184 0.939 - 

Angiopoietin-2-quartiles 

Q1 (< 1.416 ng/ml) - 0.017 <0.001 <0.001 

Q2: (1.416 - 1.831 ng/ml) 0.017 - 0.035 0.079 

Q3: (1.831 - 2.378 ng/ml) <0.001 0.035 - 0.739 

Q4: (> 2.378 ng/ml) <0.001 0.079 0.739 - 



Supplementary Table 6. Calibration and sensitivity analysis of the 
risk prediction models 

Model Omnibus Tests Nagelkerke’s R2 Hosmer and 
Lemeshow Test 

Model 1 0.096 0.068 0.031 

Model 2 <0.001 0.235 0.027 

Model 3 <0.001 0.267 0.016 

Model 1: Age, Sex, BMI, Duration diabetes, Smoking status, Mean blood pressure, HbA1c, eGFR, LDL, 
Time of follow-up, UACR, Cardiac Complications 
Model 2: CXCL16, TGFβ1, Angiopoietin-2 
Model 3: Model 1 + 2 



Supplementary Table 7: Prediction performance analysis for individual and combined 
biomarkers 

Models AUC 95% CI SEM NRI SEM Z P 

Model 1 0.638 0.580 - 0.695 0.029 - - - - 
Model 1 plus each 
biomarker individually 
   CXCL-16 0.715 0.662 - 0.767 0.027 0.238 0.059 4.002 <0.001 

   TGF-β1 0.664 0.607 - 0.721 0.029 0.161 0.056 2.884 0.004 

   Angiopoietin-2 0.678 0.623 - 0.733 0.028 0.215 0.043 5.043 <0.001 

Model 3  0.760a 0.711 - 0.809 0.025 0.341 0.065 5.269 <0.001 
a P value for Delong test comparing biomarker plus clinical model to clinical model alone was <0,001; AUC: Area under the curve; 
SEM: Standard Error of the Mean; NRI: Net Reclassification Improvement; Z: z value (z statistic for NRI) and the corresponding p-
Value (with alpha error set to 0.05). 

Model 1: Age, Sex, BMI, Duration diabetes, Smoking status, Mean blood pressure, HbA1c, eGFR, LDL, Time of follow-up, UACR, 
Cardiovascular disease 
Model 2: CXCL16, TGFβ1, Angiopoetin2 
Model 3: Model 1 + 2 



Supplementary Table 8: Biomarkers of interest. Relevant clinical studies in patients with early stage 
cardiovascular disease or cardiovascular risk factors. Supposed pathways and underlying molecular 
mechanisms. 

CXCL16: C-X-C Motif Chemokine Ligand 16; TGFβ-1: Transforming growth factor beta 1; VEGF-R1: Vascular Endothelial Growth Factor-A Receptor 1; ANGP-
2: Angiopoietin-2; C1qR1: Complement component C1q Receptor1; VAP-1: Vascular Adhesion Protein 1; MCP-1: Monocyte Chemotactic Protein 1; sTNF-RII: 
soluble Tumor Necrosis Factor Receptor II;  sTNF-RI: soluble Tumor Necrosis Factor Receptor I; sST2: soluble ST2; S100A8/MRP8: S100 calcium binding 
protein A/Myeloid Related Protein 8; RAGE: Receptor for Advanced Glycation Endproducts; VEGF-A: Vascular Endothelial Growth Factor-A. C1qR1, Galectin-3, 
Osteopontin and Copeptin were measured but not included in the analysis due to the high proportion of missing values (>3% and >15%).  
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