
S1 

 

 

Copper-Catalyzed Modular Amino Oxygenation of Alkenes:    

Access to Diverse 1,2-Amino Oxygen-Containing Skeletons 

Brett N. Hemric, Andy W. Chen, and Qiu Wang* 

Department of Chemistry, Duke University, Durham, NC 27708 

Email: qiu.wang@duke.edu 

 

SUPPORTING INFORMATION 
Table of Contents 

 
1.1 Condition optimization S1 

1.2 Synthetic schemes S5 

 1.2.1 Synthesis of O-benzoylhydroxylamines  

 1.2.2 Synthesis of alcohol substrates  

 1.2.3 Synthesis of additional oxygen source substrates  

 1.2.4 Synthesis of substrates for mechanistic studies  

1.3 Amino oxygenation representative pictures S11 

1.4 Mechanism studies and characterization data S12 

1.5 1H and 13C Spectra S15 

  
1.1 Condition Optimization 

General Example Optimization Screening Conditions  

In a 1 Dram vial, 2-(2-vinylphenyl)propan-2-ol 1a (32.4 mg, 0.2 mmol, 1.0 equiv), 4-benzoyloxymorpholine 2a (82.9 mg, 

2.0 equiv), copper (II) trifluoromethanesulfonate (14.4 mg, 0.2 equiv), and pyridine p-toluenesulfonate (50.3 mg, 1.0 equiv) 

were combined and 1,2-dichloroethane (1.0 mL) was added. The vial was capped and stirred with Teflon-coated stir bar at 

60 oC. The consumption of 2a was monitored by TLC (25% EtOAc–hexanes). The reaction mixture was filtered through 

activated, neutral (Brockman Grade I, 58–60Å mesh powder) Al2O3 and concentrated in vacuo to yield the crude product. 

To determine yields by quantitative 1H NMR spectroscopy, dibromomethane (7.0 μL, 0.2 mmol) was added by 10-μL 

microsyringe to the crude reaction mixture in CDCl3 (0.5 mL). The resulting solution was analyzed by 1H NMR with a 90° 

pulse angle and 2 second relaxation time with 12–16 scans. The resulting spectra were analyzed in MestReNova, with the 

dibromomethane peak set relative to 2.0. All yields were scaled relative to a normalization curve created with known 

amounts of the isolated product. 

 

Table S1. Initial Copper Catalyst Loading Screen on Model System.a 

 

Entry 

Cu catalyst 

loading 

(mol%) 

3ab (%) 

Cu(OTf)2  

as catalyst 

[Cu(OTf)]2∙PhMe  

as catalyst 

1 1 23 22 

2 5 27 24 

3 10 30 24 
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4 15 30 24 

5 20 30 33 

6 30 40 31 

7 50 36 33 

8 100 47 41 

aReaction Conditions: 1a (0.2 mmol, 1.0 equiv), 2a (2.0 equiv), Cu catalyst 

in DCE (1.0 mL) at 80 °C. bYield determined by 1H NMR spectroscopy with 

dibromomethane as a quantitative standard. 

 

Table S2. Ligand Screen on Model System.a 

 

Entry Ligand 
Ligand loading 

(mol%) 
3ab (%) 

1 Pyridine 20 46 

2 2,2’-Bipyridine 10 26 

3 1,10-Penanthroline 10 29 

4 DMEDA 10 26 

5 PPh3 20 23 

6 XPhos 10 27 

7 BINAP 10 27 

8 Xantphos 10 28 

9 dppe 10 40 

10 dppp 10 26 

11 dppb 10 24 

aReaction Conditions: 1a (0.2 mmol, 1.0 equiv), 2a (2.0 equiv), Cu(OTf)2 (10 

mol%), Ligand, in DCE (1.0 mL) at 80 °C. bYield determined by 1H NMR 

spectroscopy with dibromomethane as a quantitative standard. 

 

Table S3. Equivalents Screen on Model System.a 

 

Entry 1 (equiv) 2 (equiv) 3ab (%) 

1 3 1 43 

2 2 1 35 

3 1 1 30 

4 1 2 36 

5 1 3 36 

aReaction Conditions: 1a, 2a, Cu(OTf)2 (0.02 mmol, 0.1 equiv), in 

DCE (1.0 mL) at 80 °C. bYield determined by 1H NMR spectroscopy 

with dibromomethane as a quantitative standard. 

 

Table S4. Additive Screen on Model System.a 
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Entry Additive 3ab (%) 

1 2,6-Lutidine 35 

2 DBU 0 

3 DIPEA 0 

4 DABCO 0 

5 DMAP 0 

6 K2CO3 37 

7 Cs2CO3 29 

8 MsOH 0 

9 HCO2H 43 

10 BzOH 41 

11 PPTS 66 

12 NaH2PO4 38 

13 HFIP 34 

aReaction Conditions: 1a (0.2 mmol, 1.0 equiv), 2a (2.0 equiv), 
Cu(OTf)2 (10 mol%), Additive (1.0 equiv) in DCE (1.0 mL) at 80 

°C. bYield determined by 1H NMR spectroscopy with 

dibromomethane as a quantitative standard. 

 

Table S5. Pyridinium p-toluenesulfonate (PPTS) Equivalents Screen on Model System.a 

 

Entry PPTS (equiv) 3ab (%) 

1 0.1 44 

2 0.5 63 

3 1 74 

4 1.5 68 

5 2 68 

aReaction Conditions: 1a (0.2 mmol, 1.0 equiv), 2a (2.0 
equiv), Cu(OTf)2 (10 mol%), PPTS in DCE (1.0 mL) at 80 

°C. bYield determined by 1H NMR spectroscopy with 

dibromomethane as a quantitative standard. 

 

Table S6. Catalyst Loading Screen on Model System.a 

 

Entry Cu(OTf)2 (mol%) 3ab (%) 

1 0 0 

2 5 66 

3 10 71 

4 15 72 

5 20 78 

6 30 80 

7 50 92 

8 100 94 

aReaction Conditions: 1a (0.2 mmol, 1.0 equiv), 2a (2.0 

equiv), Cu(OTf)2, PPTS (1.0 equiv) in DCE (1.0 mL) at 80 

°C. bYield determined by 1H NMR spectroscopy with 

dibromomethane as a quantitative standard. 
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Table S7. Copper Catalyst Screen on Model System.a 

 

Entry Cu catalyst 3ab (%) 

1 Cu(OTf)2 82 

2 Cu(OAc)2 78 

3 Cu(eh)2 72 

4 Cu(acac)2 65 

5 [Cu(OTf)2∙PhMe 82 

6 CuOAc 75 

7 Cu(MeCN)4∙BF4 75 

8 CuI 54 

aReaction Conditions: 1a (0.2 mmol, 1.0 equiv), 2a (2.0 

equiv), Cu catalyst (20 mol%), PPTS (1.0 equiv) in DCE (1.0 
mL) at 80 °C. bYield determined by 1H NMR spectroscopy 

with dibromomethane as a quantitative standard. 

 

 

 

Table S8. Temperature Screen on Model System.a 

 

Entry Temp (°C) 3ab (%) 

1 100 78 

2 80 74 

3 60 78 

4 40 68 

5 20 63 

aReaction Conditions: 1a (0.2 mmol, 1.0 equiv), 2a (2.0 
equiv), Cu(OTf)2 (20 mol%), PPTS (1.0 equiv) in DCE (1.0 

mL) at temp. bYield determined by 1H NMR spectroscopy 

with dibromomethane as a quantitative standard. 

 

Table S9. Solvent Screen on Model System.a 

 

Entry Solvent 3ab (%) 

1 DCE 74 

2 CHCl3 68 

3 THF 66 

4 DME 68 

5 PhCF3 72 

6 PhMe 53 
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7 PhH 73 

8 EtOH 64 

9 MeCN 57 

10 DMF 38 

aReaction Conditions: 1a (0.2 mmol, 1.0 equiv), 2a (2.0 
equiv), Cu(OTf)2 (20 mol%), PPTS (1.0 equiv) in solvent (1.0 

mL) at 60 °C. bYield determined by 1H NMR spectroscopy 

with dibromomethane as a quantitative standard. 

 

Table S10. Pyridinium Scource Screen on Model System.a 

 

Entry Additive 3ab (%) 

1 Pyridinium TsOH (PPTS) 72 

2 Pyridinium TFA 66 

3 Pyridinium TfOH 66 

4 4-Isonicotinic acid 36 

5 Pyridine 43 

aReaction Conditions: 1a (0.2 mmol, 1.0 equiv), 2a (2.0 equiv), Cu(OTf)2 (20 

mol%), Additive (1.0 equiv) in DCE (1.0 mL) at 60 °C. bYield determined by 
1H NMR spectroscopy with dibromomethane as a quantitative standard. 

 

1.2 Synthetic Schemes 

1.2.1 Synthesis of O-Benzoylhydroxylamines 

O-Benzoyl-N-methyl-N-phenethylhydroxylamine (2f) 

 

O-Benzoyl-N,N-dicyclohexylhydroxylamine (2g) 

 

 

1.2.2 Synthesis of Alcohol Substrates 

2-(2-Vinylphenyl)propan-2-ol (1a). 

 

Diphenyl(2-vinylphenyl)methanol (1b). 
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1-(2-Vinylphenyl)ethan-1-ol (1c). 

 

Phenyl(2-vinylphenyl)methanol (1d). 

 

(2-Vinylphenyl)methanol (1e). 

 

2-(2-Allylphenyl)propan-2-ol (1f). 

 

2-(5-Methoxy-2-vinylphenyl)propan-2-ol (1g). 

 

N-(3-(2-Hydroxypropan-2-yl)-4-vinylphenyl)-N-methylbenzamide (1h). 

 

2-(4-Chloro-2-vinylphenyl)propan-2-ol (1i). 
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2,2-Diphenylpent-4-en-1-ol (1j). 

 

2,2-Dimethylpent-4-en-1-ol (1k). 

 

2-(2-(1-Phenylvinyl)phenyl)propan-2-ol (1m). 

 

 (2-(1-Phenylvinyl)phenyl)methanol (1n). 

 

1,1,4-Triphenylpent-4-en-1-ol (1o). 

 

2,2,4-Triphenylpent-4-en-1-ol (1p). 

 

2,2-Dimethyl-4-phenylpent-4-en-1-ol (1q). 
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4-Phenylpent-4-en-1-ol (1r). 

 

(E)-2-(2-Styrylphenyl)propan-2-ol (E-1s). 

 

(Z)-2-(2-Styrylphenyl)propan-2-ol (Z-1s). 

 

(E)-2-(2-(Prop-1-en-1-yl)phenyl)propan-2-ol (E-1t). 

 

2-(1-Methylcyclopent-3-en-1-yl)propan-2-ol (1u). 

 

1.2.3 Synthesis of Additional Oxygen Source Substrates 

N-(2-Vinylphenyl)benzamide (4a). 

 

N-(2-Vinylphenyl)benzamide (4b). 
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N-Phenyl-2-vinylbenzamide (4c). 

 

2-Allyl-1,3-diphenylpropane-1,3-dione (4d). 

 

2-(2-Methylallyl)-1,3-diphenylpropane-1,3-dione (4e). 

 

(E)-1-phenylbut-3-en-1-one oxime (4f). 

 

N-hydroxy-N-methyl-2-vinylbenzamide (4g). 

 

N-hydroxy-N-phenyl-2-vinylbenzamide (4h). 

 

N-hydroxy-N-methyl-2-(prop-1-en-2-yl)benzamide (4j). 
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N-hydroxy-N,2,2-trimethylpent-4-enamide (4k). 

 

2-(Prop-1-en-2-yl)benzothioic S-acid (4i). 

 

 

1.2.4 Synthesis of substrates for mechanistic studies 

2-(2-(Prop-1-en-2-yl)phenyl)propan-2-ol (1v). 

 

2-(2-(Prop-1-en-2-yl-3,3,3-d3)phenyl)propan-2-ol (D3-1v). 

 

2-(2-Vinylphenyl)propan-1,1,1,3,3,3-d6-2-ol (D6-1a). 

 

2-(2-Vinylphenyl)propan-1,1,1,3,3,3-d6-2-ol (D6-1a): 2-Bromostyrene (732.2 mg, 4.0 mmol, 1.0 equiv) was added to a 

reaction vessel and vacuum purged three times, backfilling with N2. THF (12.0 mL) was added. To the solution at –78 oC, 

was added slowly n-BuLi (2.5 M in hexanes, 1.9 mL, 1.2 equiv) over 9 min. The resulting yellow solution was stirred at –

78 oC for 40 min followed by slow addition of acetone-d6 (0.44 mL, 1.5 equiv) over 2 min. The resulting solution was stirred 

at –78 oC for 5 min and then the yellow color became clear. The solution was then warmed to room temperature over 1 h. 

The reaction was quenched with a saturated aqueous solution of NH4Cl (15 mL). The aqueous layer was extracted with 

EtOAc (25 mL x 3). The combined organic layers were washed with brine (30 mL), dried with Na2SO4, and concentrated in 

vacuo to yield the crude alcohol. Purification by flash column chromatography (5% EtOAc–hexanes to 10% EtOAc–

hexanes) afforded alcohol D6-1a as a white solid (547.4 mg, 3.3 mmol, 81%). Rf = 0.35 (10% EtOAc–hexanes); 1H NMR 

(CDCl3, 400 MHz): δ 7.64 (dd, J = 17.4, 10.9 Hz, 1H), 7.51–7.40 (m, 2H), 7.29–7.21 (m, 2H), 5.52 (dd, J = 17.4, 1.5 Hz, 

1H), 5.28 (dd, J = 10.9, 1.5 Hz, 1H), 1.92 (s, 1H); 13C NMR (CDCl3, 125 MHz): δ 144.7, 138.1, 137.2, 128.5, 127.4, 127.3, 

124.9, 115.2, 73.3, 30.3 (multiplet); FTIR (thin film): cm-1 3364 (broad), 2230, 1623, 1477, 1131, 1045, 1107, 911, 769, 

757; HRGCMS-ESI (m/z) Calcd for (C11H8D6O) ([M]+): 168.14158; found: 168.14147. 
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1.3 Amino Oxygenation Representative Pictures 

 

  

 

 

 

 

The reaction generally (but not always) became red/brown as 

reaction progressed. 

For reactions with all solid components, add all solids to vial, 

then add DCE. Add vial to a pre-heated hotplate. 

For reactions with a liquid component, add all solids to vial, 

then add DCE, followed by the liquid component. Add vial to 

a pre-heated hotplate. 

Representative TLC for the amino oxygenation 

reaction in 25% EtOAc/hex using vanillin stain. 

Starting alkene 1/4 will vary in color and Rf. O-

Benzoylhydroxylamines (2) generally stain 

yellow/white. Shown is 2a. 

 

Representative filtration for the amino oxygenation reaction using Al2O3 

(Brockman grade I, 58-60Å). For best results, dampen the Al2O3 plug 

(made using 5 mL syringe with cotton on top and bottom of the Al2O3) 

with 100% EtOAc, then add the crude reaction mixture. Allow the crude 

to gravity filter with 100% EtOAc for ~5 mL, then 100% EtOAc can be 

flushed through with air/N2 to a total filtrate volume of ~15 mL. The 

filtrate is generally a yellow/orange solution, while with Al2O3 retains 

the red/brown color with a blue/green band (copper) at the top (intensity 

of this blue/green band varies by substrate). 
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1.4 Mechanism studies and characterization data 

1.4.1 β-Hydride Elimination Study 

 

4-((1,3,3-Trimethyl-1,3-dihydroisobenzofuran-1-yl)methyl)morpholine (3v) and 2-(2-(3-Morpholinoprop-1-en-2-

yl)phenyl)propan-2-ol (6). Run using standard conditions. Isolated by flash column chromatography (addition of 0.2 mL 

TFA to crude reaction mixture, 50% EtOAc–hexanes, then 50% EtOAc–hexanes with 5% NEt3), followed by flash column 

chromatography (100% hexanes to 50% EtOAc–hexanes). 

 

4-((3,3-Dimethyl-1-(methyl-d3)-1,3-dihydroisobenzofuran-1-yl)methyl)morpholine (D3-3v) and 2-(2-(3-

Morpholinoprop-1-en-2-yl-1,1-d2)phenyl)propan-2-ol (D2-6). Run using standard conditions. Isolated by flash column 

chromatography (addition of 0.2 mL TFA to crude reaction mixture, 50% EtOAc–hexanes, then 50% EtOAc–hexanes with 

5% NEt3), followed by flash column chromatography (100% hexanes to 50% EtOAc–hexanes) 

1.4.2 Radical Trapping Study 

 

2-(2-(2-Morpholino-1-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)ethyl)phenyl)propan-2-ol (7). Synthesized using 

standard conditions with addition of TEMPO (1.0 equiv). Isolated by flash column chromatography (100% hexanes to 70% 

EtOAc–hexanes) as a colorless oil (53.2 mg, 33%).  

 

N-(2-(2-Morpholino-1-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)ethyl)phenyl)benzamide (9). Synthesized by standard 

conditions with addition of TEMPO (1.0 equiv). Isolated by flash column chromatography (100% hexanes to 50% EtOAc–

hexanes) as a white solid (55.9 mg, 30%).  
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2-(2-Methyl-3-morpholino-2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)propyl)-1,3-diphenylpropane-1,3-dione (11). 

Synthesized by standard conditions with addition of TEMPO (1.0 equiv). Isolated by flash column chromatography (100% 

hexanes to 75% EtOAc–hexanes) as a colorless oil (33.1 mg, 16%). 

 

3-Phenyl-5-(((2,2,6,6-tetramethylpiperidin-1-yl)oxy)methyl)-4,5-dihydroisoxazole (14). Synthesized by standard 

condition with the following modification: with copper(II) acetate instead of copper(II) trifluoromethanesulfonate, 1,2-

dimethoxyethane instead of 1,2-dichloroethane, and with addition of TEMPO (1.0 equiv). Isolated by flash column 

chromatography (100% hexanes to 70% EtOAc–hexanes) as a white solid (38.2 mg, 60%). 

1.4.3 Study Eliminating Dehydration as an Intermediate in the Productive Reaction Pathway 

 

4-((3,3-Bis(methyl-d3)-1,3-dihydroisobenzofuran-1-yl)methyl)morpholine (D6-3a). Synthesized using standard 

conditions. Isolated by flash column chromatography (addition of 0.2 mL TFA to crude reaction mixture, 50% EtOAc–

hexanes, then 50% EtOAc–hexanes with 5% NEt3) as a colorless oil (77.2 mg, 76%). Rf = 0.40 (5% MeOH–CH2Cl2); 
1H 

NMR (CDCl3, 400 MHz): δ 7.28–7.19 (m, 3H), 7.09–7.05 (m, 1H), 5.32 (dd, J = 7.5, 4.0 Hz, 1H), 3.74 (t, J = 4.6 Hz, 4H), 

2.70 (dd, J = 13.1, 4.0 Hz, 1H), 2.60 (dd, J = 13.1, 7.5 Hz, 1H), 2.73–2.50 (m, 4H); 13C NMR (CDCl3, 125 MHz): δ 147.2, 

140.1, 127.7, 127.1, 121.5, 120.4, 85.0, 79.2, 66.8, 65.9, 54.4, 29.1 (multiplet), 28.0 (multiplet); FTIR (thin film): cm-1 

2852, 2807, 1455, 1116, 1036, 1009, 865, 750; HRLCMS-ESI (m/z) Calcd for (C15H16D6NO2) ([M+H]+): 254.2022; found: 

254.2025. 

1.4.4 Study on the Reversibility of Amine Addition to the Alkene 

 

In the study of the alkene scope, the geometric purity of starting alkene E-1s was 99.8% E, while Z-1s was 92% 

Z. When the alkene was recovered, it was noted that the reaction of E-1s only gave 95% E in the recovered alkene, 

while Z-1s only gave 76% Z in the recovered alkene. This intriguing result led us to further explore the idea of 

alkene reversibility.  

Table S11. Loss of Stilbene Geometric Purity in Reaction Conditions.a 

 

Starting Alkene 2a (equiv) Recovered Alkenebc 

E-stilbene (99% E) 2 10% 83% E 
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Z-stilbene (99% Z) 2 28 % 84% Z 

    

E-stilbene (99% E) 0 100% 99% E 

Z-stilbene (99% Z) 0 99% 99% Z 

Standard conditions: stilbene (0.2 mmol, 1.0 equiv), 2a (2.0 equiv), 

Cu(OTf)2 (0.2 equiv), PPTS (1.0 equiv) in DCE (1.0 mL) at 60 °C for 1 h. 
bIsolation yield. cGeometric isomer ratios determined by GCMS. 

To test this idea, we subjected stilbene substrates to the reaction condition, since they had been shown to be poor 

substrates for the intermolecular amino oxygenation in the past. We started with isomers of 99% geometric purity 

for each. When subjected to the reaction conditions with the O-benzoylhydroxylamine, the recovered alkene 

showed only 83% E when starting with the E-stilbene, and 84% Z when starting with the Z-stilbene. To exclude 

the possibility that the copper catalyst and/or heat was producing the observed isomerization, a control was run 

with the O-benzoylhydroxylamine removed from the reaction, but all other conditions held the same. In this case, 

99%+ of each alkene was recovered with retention of the 99% geometric purities. 
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1.5 1H and 13C Spectra 
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