

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com).

If you have any questions on BMJ Open's open peer review process please email info.bmjopen@bmj.com

BMJ Open

A cross sectional study of the health of southern African truck drivers

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-032025
Article Type:	Research
Date Submitted by the Author:	30-May-2019
Complete List of Authors:	Lalla-Edward, Samanta; University of the Witwatersrand, Wits Reproductive Health and HIV Institute Fischer, Alex; University of the Witwatersrand, Wits Reproductive Health and HIV Institute Venter, WD Francois; Wits Reproductive Health and HIV Institute Scheuermaier, Karine; University of the Witwatersrand Faculty of Health Sciences, Wits Sleep Laboratory, Brain Function Research Group, School of Physiology, Meel, Ruchika; University of the Witwatersrand, Department of Internal Medicine, Division of Cardiology, Chris Hani Baragwanath Hospital Hankins, Catherine; University of Amsterdam, Department of Global Health and Amsterdam Institute for Global Health and Development; McGill University, Department of Epidemiology, Biostatistics, and Occupational Health, Faculty of Medicine Gomez, Gabriela; London School of Hygiene and Tropical Medicine, Department of Global Health and Development Klipstein-Grobusch, Kerstin; Utrecht University, Julius Global Health, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; University of the Witwatersrand Faculty of Health Sciences, Division of Epidemiology and Biostatistics, School of Public Health Draaijer, Melvin; VUMC, School of Medical Sciences Vos, Alinda; Utrecht University, Julius Global Health, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht; University of the Witwatersrand, Wits Reproductive Health and HIV Institute
Keywords:	truck drivers, South Africa, Zimbabwe, Non-communicanble diseases, HIV & AIDS < INFECTIOUS DISEASES

SCHOLARONE™ Manuscripts

A cross sectional study of the health of southern African truck drivers

Lalla-Edward ST, Fischer A*; Venter WDF; Scheuermaier K; Meel R; Hankins CA; Gomez GB; Klipstein-Grobusch K; Draaijer M; Vos AG

Authors' affiliations:

Samanta T. Lalla-Edward, PhD

Wits Reproductive Health and HIV Institute, University of Witwatersrand, Johannesburg, South Africa.

E: slalla-edward@wrhi.ac.za

Alex Fischer*, MPH

Wits Reproductive Health and HIV Institute, University of Witwatersrand. Johannesburg, South Africa.

A: Klein St & Esselen St, Hillbrow, Johannesburg, 2001.

P: +27 073 776 2705

E: afischer@wrhi.ac.za

WD Francois Venter, FCP (SA)

Wits Reproductive Health and HIV Institute, University of Witwatersrand, Johannesburg, South Africa.

E: <u>fventer@wrhi.ac.za</u>

Karine Scheuermaier, MD, MMSc

Wits Sleep Laboratory, Brain Function Research Group, School of Physiology, Faculty of Health Sciences University of Witwatersrand, Johannesburg, South Africa.

E: Karine.Scheuermaier@wits.ac.za

Ruchika Meel, MBChB, MMED, Certificate in Cardiology, PhD

Consultant and Post-Doctoral Carnegie Fellow

Department of Internal Medicine, Division of Cardiology, Chris Hani Baragwanath Hospital and University of the Witwatersrand

E: ruchikameel@gmail.com

Catherine A. Hankins, MD PhD FRCPC CM

Department of Global Health and Amsterdam Institute for Global Health and Development, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands

Department of Epidemiology, Biostatistics, and Occupational Health, Faculty of Medicine, McGill University, Montreal, Canada

E: c.hankins@aighd.org

Gabriela B. Gomez, PhD

Department of Global Health and Development, London School of Hygiene and Tropical Medicine, UK E: Gabriela.Gomez@lshtm.ac.uk

Kerstin Klipstein-Grobusch, PhD

Julius Global Health, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands

Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa

E: k.klipstein-grobusch@umcutrecht.nl

*corresponding author

Melvin Draaijer, BA

. MD
.ilth, Julius Center for Health Sc.
.int University, Utrecht, the Netherl,
.iniversity Medical Center Utrecht, the N.
.roductive Health and HIV Institute, Faculty c.
.africa
.os@wrhi.ac.za

'Vord count: 2970 words Julius Global Health, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands, and Department of Internal Medicine & Infectious

Wits Reproductive Health and HIV Institute, Faculty of Health Sciences, University of Witwatersrand,

ABSTRACT

Objectives: Lifestyle and working conditions of truck driver predisposes them to risk-factors associated with communicable and non-communicable diseases(NCDs), but little is known about the health status of African truck driver. This study aims to assess a cross-section of truckers in South Africa to describe their health information.

Setting: The study took place across three truck-stop rest areas in the South African provinces of Free State and Gauteng.

Participants: Eligibility criteria included being males aged 18 years and older, full-time employment as a long-distance truck driver. A total of 614 male truck drivers participated; 384(63%) were Zimbabwean and 325(55%) completed high-school.

Primary and secondary outcome measures: The trucker survey explored demographics; working conditions; sexual, eating, and sleeping behaviours; mental health status, medical history, and cardiac risk-factors. Medical assessments included physical measurements, glucose and lipid measurements, electrocardiogram(ECG), carotid intima-media thickness(CIMT), and cardiac ultrasound.

Results: In the previous month, 554(91%) participants were sexually active; 522(86%) had sex with a regular partner, 174(27%) with a casual partner, and 87(14%) with a sex worker. Average time driving was 10 hours/day, 20 days/month, 302(50%) never worked night shifts, and 74(12%) worked nights approximately 4times/week. 112(18%) experienced daytime sleepiness and 59(10%) were ever hospitalized from an accident. Forty-seven(8%,95%Cl=5.3-9.5) were HIV-positive, with half taking antiretrovirals. Forty-eight(8%) truckers had some moderate depression, while 21(4%) suffered from post-traumatic stress disorder. Reported TB, myocardial infarction, and diabetes were <3%. Prominent cardiac risk-factors included smoking(n=63,11%), consuming alcohol(>15drinks/week)(n=54,9%), overweight/obesity (n=417,69%), and hypertension(n=220,36%,95%Cl=32.1-39.7). ECG results showed 23(4.9%) and 29(5.3%) drivers had left ventricular hypertrophy using the Cornell criterion and product, respectively. CIMT measurements indicated 9(4.2%) drivers had a carotid atherosclerotic plaque.

Conclusion: This first holistic assessment of health among southern African male truck driver demonstrates substantial addressable cardiovascular risk factors, mental health issues and sexual risk behaviours.

Key words: Truck driver, South Africa, Zimbabwe, HIV, NCDs, cohort.

Strengths and limitations of this study

- This study is possibly the largest and most comprehensive truck driver health and wellness survey completed in sub-Saharan Africa.
- Previous studies have been conducted in silos, where only individual outcomes were evaluated, while this study explores how multiple risk factors and outcomes interact on a holistic scale.
- The comprehensiveness of the survey presented a limitation, as some drivers could not join because it would take too much time.
- This study has established a comprehensive baseline of health problems and associated risk-factors for truck drivers in South Africa.

INTRODUCTION

Land transport is a \$3 billion industry in South Africa that employs over 70 000 commercial truck drivers^{1,2}, and due to operational demands, these long-distance truck drivers may be susceptible to a variety of adverse health outcomes. The extended time away, including long driving hours and night shifts, may make them vulnerable to risk-factors for communicable diseases, such as sexually transmitted infections(STIs)^{3,4}, non-communicable diseases(NCDs) and mental health disorders⁵.

Driving long hours disrupts healthy sleep cycles and encourages drivers to lead a sedentary lifestyle. The risk of diabetes, hypertension, and heart disease is exacerbated by job-related stress, sleep disruption, nightshift-related circadian misalignment and limited access to healthy food at rest stops⁶⁻⁸. The travelling lifestyle may also provide limited access to healthcare facilities, however mobile HIV clinics and roadside wellness clinics have been established to accommodate this^{9,10}. The North-Star Alliance(NSA) clinics, for example, have shown successes with the general uptake of healthcare, including HIV counselling and testing(HCT) for truckers^{10,11}. Despite these developments, very little is known about long-term health trends within this group, and current findings have come from studies that examine individual factors, but do not apply a comprehensive health^{12,13}.

The Trucker Health Survey was developed to take a comprehensive snapshot of disease prevalence in truck drivers at selected South African locations.

METHODS

Study Design and Setting

The Trucker Health Survey is an initiative of the Wits Reproductive Health and HIV Institute(Wits RHI) and North-Star Alliance, a non-governmental organisation located along the main sub-Saharan trucking corridors that provides truck drivers, sex workers, and local communities with primary healthcare services. These services include general health check-ups, STI and malaria testing and treatment, HCT, and tuberculosis(TB) screening¹².

Enrolment in this study took place between October 2016 and March 2017. Recruitment was done at truck stops in two provinces; one truck stop at the Shell garage at the N1 highway close to Bloemfontein (Free State), multiple truck stops in Pomona, Johannesburg (Gauteng) and one truck stop in Soweto(Gauteng). NSA already had a strong presence due to their current clinical infrastructure in Bloemfontein and Pomona. Some truck stops in Pomona were privately owned but did not belong to a transport company. They accommodated mainly foreign long-distance drivers as South-African drivers would stop at the premises of their company in South Africa. To reach South-African drivers the truck stop in Soweto, Johannesburg, was added from January to March 2017. Study staff handed out invitation cards to truck drivers at truck stops and at companies that permitted recruitment and personally approached truck drivers at designated truck stops (in or near where the survey was being conducted).

Eligibility criteria included: males aged 18 years and older, full-time employment as a long-distance truck driver, and able to provide informed consent for study procedures.

Patient and Public Involvement

Patients and the public were not involved in the study design, or in the recruitment to, and conduct of the study.

Data Collection

Data collection was completed during a single visit that commenced with HIV testing and demographic data collection, followed by mental health and NCD risk-factor questionnaires. Participants underwent a physical examination, with functional and laboratory testing.

HIV Testing

A trained nurse/counsellor conducted HIV pre-test counselling, followed by rapid testing with tests supplied by the National Department of Health(NDOH). Testing was performed on whole-blood from a finger prick, using two rapid assays, according to the NDOH HCT Policy¹⁴. If found HIV-positive, additional blood was collected for measurement of CD4+ cell count, with participants then referred to local public clinics for the accepted standard of care¹⁴.

Baseline Data

For demographic and baseline information, an interview and multiple externally validated questionnaires were administered. Due to the use of externally validated questionnaires, no pilot testing was undertaken with the study population before data collection. Mental and social health issues were explored with the following questionnaires (or relevant parts thereof): Eating Behavior¹⁵, Health Service Use¹⁶, HIV Testing questionnaire¹⁷, Safe Sex and Behaviour¹⁸, IIEF-5 questionnaire for erectile dysfunction¹⁹, NEO questionnaire²⁰, Traumatic Events questionnaire, Post-Traumatic Stress Disorder (PTSD) Checklist (PCL-5) questionnaire²¹ and PHQ-9 (for depression)²². We also evaluated daytime sleepiness using the Epworth Sleepiness Scale (ESS)²³.

For respiratory health, the British Medical Research Council Respiratory questionnaire²⁴, the World Health Survey²⁵, the ATS-DLD-78-A survey²⁶ and industry-standard questions from other publications²⁷ were used. Cardiovascular health, was explored with a modified version of the WHO STEPs instrument²⁸ while a survey for musculoskeletal injuries was also administered²⁹.

Physical Examination

Trained nurses took measurements of height, weight, waist and hip circumference and blood pressure. Blood pressure was measured at both arms, with a third measurement taken on the arm with the highest value. Waist circumference was measured halfway between the lower rib and the iliac crest during expiration in standing position. Non-fasting blood was collected from participants for the measurement of C-reactive protein (CRP), creatinine, alkaline phosphatase, random glucose, total cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides and hepatitis B antigen. Low-density lipoprotein (LDL) cholesterol was calculated using the Friedewald formula. Urine was collected for measurement of protein. Extra blood and urine samples were stored for future research.

A standard 12 lead electrocardiogram(ECG) was taken using a computer-based ECG device (SE-1515 DP12, EDAN)^{30,31}, and left ventricular hypertrophy (LVH) assessed using the Cornell's criterion, Cornell's product and the Solokow-Lyon's criterion^{23,33}.

Carotid intima-media thickness (CIMT) was measured in 217 (42.9%) participants, dependent on the sonographer's availability,after a 15-minute rest. A Siemens Acuson p500 ultrasound (Siemens Healthcare (Pty) Ltd, South Africa) with a ≥7mHz linear probe was used. Measurements of common carotid artery (CCA) walls were taken and analysed with the semi-automatically Artery Measurement System software (Chalmers University, Götenburg, Sweden) based on the standard procedures described by Bolus in 2016 and Naqvi in 2014^{34,35}.

Transthoracic echocardiography was performed on 132(21%) participants, dependent on the sonographer's availability, using a transducer on Siemens Acuson p500 ultrasound. Images were obtained

according to a standardised protocol according to the 2015 American Society of Echocardiography(ASE) chamber quantification guidelines^{36,37}.

RESULTS

Study Population

Of 614 truck drivers responding to the survey most (96%) were black Africans. The median age of respondents was 37 years old (Interquartile range (IQR): 31-42 years), and the majority (80%) were married. The majority of participants (63%) were Zimbabwean nationals, while 20% were South Africans and 7% reported Zambian nationality. Almost all respondents (99%) completed primary school, while more than half (55%) completed high school and further 9% completed tertiary education (Table 1).

Occupational characteristics are presented in Table 1. On average, truck drivers in this study reported nine years of driving experience (IQR: 5-14 years), and spent an average of 10 hours per day on the road. The median days spent driving per month was 20 (IQR: 15-24 days). On average, drivers spent four days per month waiting for loading/offloading of their truck, had three days off a month and an additional 22 leave days per year.

When participants were asked to indicate how often they worked nights (at least three hours between 10pm-6am), 302 (50%) stated that they never worked night shifts, while 74 (12%) reported that they worked nights at least 4 times a week. Sixty-five (10.6%) participants had worked in the mining industry for at least one year, 44 (7.3%) participants had worked in environments that exposed them to dust and another 17 (2.8%) had worked in jobs that exposed them to dangerous fumes. One hundred and fifteen (19%) truck drivers had reportedly been involved in an accident, with half of them (51%) hospitalized due to the accident.

Table 1. Sociodemographic and occupational characteristics

Characteristic	Median	IQR
Age in years (N=614)	37	31-42
Truck driving years (N=612)	9	5-14
Hours spent driving per day (N=611)	10	8-12
Days spent driving per month (N=614)	20	15-24
Days waiting per month(N=609)	4	2-7
Off days per month (N=610)	3	0-6
Leave days per annum (N=603)	22	13-30
Sociodemographic characteristic	Frequency	Percentage*
Country (N=612)		
South Africa	123	20.1
Zimbabwe	384	62.6
Zambia	45	7.4
Other	60	9.8
Race (N=608)		
Black African	587	95.6
Coloured	8	1.3
Indian	6	1.0
White	5	0.8
Other/declined	2	0.3
Highest level of education (N=591)		
No formal education	2	0.3
Less than primary	3	0.5
Primary completed	46	7.8
High school completed	325	55.0
Matric completed	161	27.2

College complete	54	9.1
Marital status (N=607)		
Married	488	80.4
Living together	22	3.6
Never married	19	3.1
Divorced	18	3.0
Widower	9	1.5
Other	51	8.4
Occupational characteristic	Frequency	Percentage*
Truck driving years (N=603)		
1-5 years	205	34.0
6-10 years	172	28.5
11-15 years	123	20.4
>15 years	103	17.1
Night shifts (N=607)		
Never	305	50.3
Once per week	93	15.3
2-3 times per week	135	22.2
4-5 times per week	58	9.6
More than 5 times per week	16	2.6
Occupational exposures (N=608)		
Worked in mining at least one year	65	10.6
Worked in dusty job at least one year	44	7.3
Exposed to gas or chemical fumes	17	2.8
No work exposures	482	79.3
Vehicle accidents (N=605)		
Involved in accident	115	19
Never involved in accident	490	81
Hospitalized from accident (n=115)	59	51
-		

Abbreviations: IQR, interquartile range; N, number; n, number

Mental and Social Health Characteristics

Health Services

When truckers were asked to indicate the health facilities and services that they had utilized in the past six months, NSA health services were the most cited (n=278,46%), followed by community health centres, and clinics (n=270,44%). Some participants also utilized pharmacies and hospital-based clinics, however no one mentioned the use of mental health services. All information pertaining to mental and social health is presented in Table 2.

Sexual Activity and Behaviour

Only 4 truckers (0.2%) reported that their sexual partners were men. Vaginal intercourse (n=607,99%) was the most frequent type of sexual intercourse. Truck drivers had varying levels of recent sexual activity, with 554(91%) reported having sex in the past month, and a median coital frequency of three times a month. 522(86%) truckers stated that they had sex with a regular partner, while 174(27%) stated that sex was with a casual partner, and 87(14%) participants reported recent sexual activity was with a sex worker. Reported condom usage for regular partners, casual partners, and sex workers, was 15%, 57%, and 83% respectively.

When asked about the number of regular partners in the past year, 453 (75%) truckers indicated that they only had one regular partner, while 130(21%) had more than one, and 25(4%) reported not having a regular partner. Among the 595 who responded about erectile dysfunction(ED), 313(53%) had no ED, while only one (0.2%) person had severe ED.

^{*}percentages may not add up to 100% as some sub-characteristics were not mutually exclusive

Mental health and sleep wellness

Depression was screened with PHQ-9, and all items on the scale were verified with reliability analysis and a Cronbach's alpha value of 0.76. The questionnaire showed that 48(8.1%) participants had moderate depression, while none one of the respondents reported severe depression. The PCL-5 tool, however, identified PTSD in 21(3.6%) truck drivers, and with a Cronbach's alpha of 0.92, this scale was deemed internally consistent. Daytime sleepiness was assessed using the ESS. It was validated in a population of South Africans using English as a second language, similar to our Truckers' population³⁸ and showed a good reliability with a Cronbach's alpha of 0.77. Overall, scores of 10 and less were considered as normal daytime sleepiness while 11 and more were considered as excessive daytime sleepiness. In addition, for our analysis, we further divided three categories of excessive daytime sleepiness, with scores of 11-12, 13-15 and greater than 16, corresponding to mild excessive, moderate excessive and severe excessive daytime sleepiness, respectively.

HIV status and antiretroviral treatment (ART)

Information on their HIV status was provided by 581 truck drivers (17 respondents did not provide data, and another 16 reported their status as unknown). Of those, 47 (8%) reported that they were HIV-positive, and 23 (49%) of those HIV-positive participants were on ART (Table 3). The majority of truckers (97%) agreed to an HIV test. HIV prevalence among 597 tested drivers was 7.1% (n=42; 95%CI=5.3%-9.5%). The validity of self-reported HIV status was assessed comparing self-report and rapid test. Seven drivers who reported to be HIV-negative, were rapid test positive. Three drivers who reported to be HIV-positive, had negative rapid test results. Most drivers appeared to be aware of their status, with sensitivity and specificity of self-reporting being 83% (95%CI=67.9-92.8%) and 99.8% (95%CI=98.3-99.9%), respectively.

Table 2. Mental and social health characteristics

Mental and social health characteristic	Frequency	Percentage*
Health services (N=614)		
North-Star Alliance	278	45.3
Community health centers/clinics	270	44.0
Pharmacies	84	13.7
Hospital-based clinics	51	8.3
Mental health services	0	0
Other	26	4.2
Sexual activity (N=609)		
Regular partner	522	85.7
Casual partner	147	24.1
Sex worker	74	12.2
Overall	554	91.0
Condom use		
Regular partner (n=513)	77	15.0
Casual partner (n=136)	78	57.4
Sex worker (n=74)	61	82.4
Regular partners in the last year (N=614)		
One regular partner	453	73.8
Multiple regular partners	130	212
No regular partners	25	4.1
Depression (N=597)		
Minimal	399	66.8
Mild	150	25.1
Moderate	40	6.7
Moderately severe	8	1.4
Severe	0	0
Post-traumatic stress disorder (PTSD) (N	=583)	

Suffering PTSD	21	3.6
No PTSD	562	96.4
Intimate partner violence (IPV) (N=611)		
Limited/no IPV last year	569	93.1
Broad IPV last year	42	6.9
Limited/no IPV lifetime	509	83.3
Broad IPV lifetime	102	16.7
Daytime sleepiness (DS) (N=608)		
Normal	496	81.6
Mild excessive	35	5.8
Moderate excessive	46	7.6
Severe excessive	31	5.1
Erectile dysfunction (N=595)		
None	313	52.6
Mild	206	34.6
Mild-Moderate	65	10.9
Moderate	10	1.7
Severe	1	0.2
HIV status: self-reported (N=518)		
HIV negative	471	90.9
HIV-positive	47	9.1
HIV-positive and taking ART (n=47)	23	48.9
HIV-positive not on ART (n=47)	24	51.6

Abbreviations: N, number; n, number; PTSD, post-traumatic stress disorder; IPV, intimate partner violence; ART, antiretroviral therapy

Chronic Diseases history

Respiratory

TB infection was screened for in all participants with the NDOH TB screening tool, and 17(2.8%) truckers had previously acquired TB. General breathing difficulty was assessed and 49(13%) reported some shortness of breath, 18(2.9%) drivers described persistent coughing, 7(1.2%) had previously undergone a chest operation, and 3(0.5%) had experienced wheezing. All information pertaining to chronic disease history is presented in Table 3.

Musculoskeletal injuries

A total of 51(25%) truckers had work-related pain that lasted at least two days in the last year, while 63 (10%) had work-related pain that lasted more than three months. The most common work-related injuries were lower- and upper-back pain, experienced by 92(15%) and 74(12%) truckers, respectively. Of the participants that experienced work-related pain, 45(31%) stated that the pain interfered with their work, and 5(3%) had to take time off work.

Cardiovascular disease and risk-factors

Self-reported cardiovascular outcomes identified that 8(1.3%) participants had a heart attack or stroke, while 3(0.5%) reported angina. Only 290(47%) truckers had ever undergone blood pressure testing and 32(11%) had hypertension. Of these 32 drivers, 10(30%) were currently on physician-prescribed medication for hypertension, while 2(6.3%) were taking traditional remedies. One-hundred and twenty-one (19.7%) participants previously had their blood-sugar checked, and 12(10%) had elevated blood-sugar. Of those, 3(25%) were taking insulin, another 3(25%) were taking oral medication, and one (9.1%) was on traditional remedies for diabetes. For cholesterol, only 20 participants (3.3%) previously had their levels checked and of these, 3(15%) were diagnosed with raised cholesterol, but no one was taking medication (doctor-prescribed or traditional) for management.

^{*}percentages may not add up to 100% as some sub-characteristics were not mutually exclusive

For domestic smoke exposure, 121(20%) had been exposed to second-hand smoke during childhood, and 160 (26%) had indoor fireplace exposure. Ninety (15%) drivers had ever smoked tobacco and 63(11%) still smoked. Marijuana use was much lower, as only 28(5%) had ever smoked it, and 23(4%) identified as current smokers. The majority of participants who currently smoked reported that they smoke daily (76% for tobacco, 68% for marijuana). For alcohol use, 240(40%) truck drivers had ever consumed alcohol and 196(33%) still drank regularly. Of the drivers who drank, 54(28%) were problem or heavy drinkers (>15 drinks per week), comprising 9% of the total population. One trucker reported using acid, but no other recreational drugs were disclosed by participants.

Study participants were asked to indicate how often they engaged in mild, moderate or strenuous exercise, and only 254(41.3%) exercised strenuously at least twice a week. Mild and moderate exercise twice a week was even less with engagement levels of 78(12.7%) and 125(20.3%) respectively.

When asked about their diet, 347(57%) had at least two fruits daily, while only 280(46%) had two servings of vegetables. Junk food was much higher, as 474(78%) drank at least two soft drinks daily, and 347 (71%) had at least one snack.

Regarding family history, 20(3.4%) truckers reported a parent who had suffered a heart attack before the age of 60, while 18(3.1%) had a parent experiencing a stroke before the age of 60.

Table 3. Chronic disease history

Respiratory and cardiac history	Frequency	Percentage*
TB (N=607)		
History of TB	17	2.8
Cough of >2 weeks	7	1.2
Fever > 2 weeks	5	0.8
Dyspnea (N=363)		
No regular trouble breathing	314	86.5
SOB walking up a slight hill or hurrying	44	12.1
Walks slow with frequent stops	2	0.6
Stops every 100m to catch breath	1	0.3
Too breathless to leave house/undress	2	0.6
Other respiratory outcomes (N=583)		
Cough several times per day	18	2.9
Chest operation	7	1.2
Wheezing	3	0.5
Heart disease- self-reported (N=614)		
Heart attack or stroke	8	1.3
Angina	3	0.5
No previous heart disease	603	98.2
Hypertension (HTN)- self reported (N=61	2)	
Ever tested for HTN	290	47.4
HTN diagnosed by a doctor (n=290)	32	11.1
Take HTN meds from doctor(n=32)	10	30.3
Take traditional heeler remedy (n=12)	2	6.3
Diabetes- self reported (N=612)		
Blood sugar tested by doctor	121	19.7
Diabetes diagnosed by doctor(n=121)	12	10
Take oral meds from doctor(n=12)	3	25
Take insulin prescribed by doctor(n=12)	3	25
Take traditional heeler remedy (n=12)	1	9.1
Cholesterol- self reported (N=612)		
Cholesterol tested by doctor	20	3.3

High abalastanal dia 20)	1	145
High cholesterol diagnosis(n=20)	3	15
Take meds prescribed by doctor(n=20)	0	0
Take traditional heeler remedy (n=20)	0	0
Family history (N=588)	T -	
Parents chronic lung condition	21	3.6
Parents heart attack before 60 years	20	3.4
Parents stroke before 60 years	18	3.1
Smoking (N=606)	T	I
Tobacco- ever smoked	90	14.7
Tobacco- current smoker	63	11.1
Marijuana- ever smoked	28	4.8
Marijuana- current smoker	23	3.9
Domestic smoke exposure (N=606)		
Second-hand smoke as child	121	20
Fireplace in house	160	26
Alcohol consumption (N=600)		
Ever used alcohol	240	39.8
Current alcohol use	196	32.5
Criticized for drinking (n=240)	53	21.9
Drinks daily (n=196)	19	9.7
Alcohol volume consumed last week (N=	=196)	
Did not drink	20	10.2
Moderate drinkers (1-14drinks)	122	62.2
Problem drinkers (15-21drinks)	27	13.8
Heavy drinkers (>21drinks)	27	13.8
Physical activity at least twice a week(N	=614)	
Mild	78	12.7
Moderate	125	20.3
Strenuous	254	41.3
Diet and nutrition (N=608)		
Soft drinks at least twice a day	474	78
Snacks at least 1 a day	432	71
Fruit at least twice a day	347	57
Vegetables at least twice a day	280	46
Musculoskeletal pain (N=614)		
Overall pain >2 days	151	25
Overall pain >3 months	63	10
Lower-back pain >2 days	92	15
Lower-back pain >3 months	37	6
Upper-back pain >2 days	74	12
Upper-back pain >3 months	31	5
	1	

Abbreviations: TB, tuberculosis; N, number; SOB, shortness of breath; m, meter; HTN, hypertension; n, number

Clinical characteristics

The median height and weight was 1.71m (IQR:1.65–1.76m) and 79kgs (IQR:69-90kg), respectively. Median waist and hip circumference were 87cm (IQR:77-99cm) and 101cm (IQR:94–108cm), respectively. Calculated body mass index(BMI) revealed that 417 (69%) of all respondents were either overweight or obese³⁹. All information pertaining to clinical characteristics is presented in Table 4.

Table 4. Physical testing

Physical measurements	Median	IQR
Systolic blood pressure(N=614)	131mmHg	122-140 mmHg
Diastolic blood pressure(N=614)	83 mmHg	76-89 mmHg

^{*}percentages may not add up to 100% as some sub-characteristics were not mutually exclusive

	1	<u> </u>	
Heart rate(N=614)	75 bpm	66-83 bpm	
Height(N=614)	1.71m	1.66-1.76m	
Weight(N=614)	79kg	69-90kg	
Neck circumference(N=614)	37cm	36-40cm	
Waist circumference(N=614)	87cm	77-96cm	
Hip circumference(N=614)	101cm	94-108cm	
Laboratory assessments	Median	IQR	
Serum C-reactive protein(N=584)	1.2mg/L	0.5-2.7mg/L	
Protein urine quantitative(N=16)	0.44mmol/L	0.22-0.62mmol/L	
Blood-glucose(N=583)	5.2mmol/L	4.6-6.3mmol/L	
Serum creatinine(N=585)	91mmol/L	81-104 mmol/L	
Serum cholesterol(N=585)	4.39mmol/L	3.9-5.13 mmol/L	
Serum LDL Cholesterol(N=585)	2.7 mmol/L	2.24-3.35mmol/L	
Serum HDL cholesterol(N=585)	1.2 mmol/L	1.02-1.45mmol/L	
Triglyceride(N=585)	1.33mmol/L	0.92-2.05mmol/L	
Physical characteristic	Frequency	Percentage*	
Hypertension- tested (N=614))			
Grade 1(sys:140-159; dias:90-99)	151	24.6	
Grade 2(sys:160-179; dias:100-109)	43	7.0	
Grade 3(sys: >180-; dias:>110)	26	4.2	
Total HTN(sys:>140; dias:>90)	220	35.8	
Blood sugar- tested (N=583)			
<4.5mmol/L	121	20.7	
4.5-7.8mmol/L	414	71.0	
7.9-11.1mmol/L	34	5.8	
>11.1mmol/L	15	2.6	
Body mass index (BMI) (N=604)	,		
Underweight (BMI<18.5)	7	1.2	
Normal weight (BMI 18.5-24.9)	180	29.8	
Overweight (BMI 25-29.9)	244	40.4	
Obese (BMI >30)	173	28.6	
Hepatitis B (N=586)			
Positive	29	5.0	
Negative	557	95.0	

Abbreviations: IQR, interquartile range; N, number; mmHg, millimeter of mercury; bpm; beats per minute; m, meter; kg, kilogram; cm, centimeter; mg/L, milligrams per liter; mmol/LHTN, hypertension; sys, systolic; dias, diastolic; BMI, body mass index

Blood pressures were taken for every truck driver, and the mean measurements were 131mmHg (IQR:122-140mmHg) systolic and 83mmHg (IQR:76-89mmHg) diastolic. Based on the South African hypertension practice guide that defined hypertension as systolic >140mmHg or diastolic >90mmHg, 35.8% (95%CI=32.1-39.7) were hypertensive.

The median blood-glucose level was 5.2mmol/L (IQR 4.6-6.3mmol/L) and 15(2.6%) participants were considered to be diabetic with a non-fasting glucose above 11.0mmol/L. The average cholesterol level was within normal ranges, as were serum creatine and triglyceride levels, while median serum CRP levels were 1.2mg/L.

Table 5 presents the cardiovascular measurements and ECG results showed that 23 (4.9%) and 29 (5.3%) drivers, respectively, had LVH using the Cornell criterium and product. According to the Solokow-Lyon criterium 136 (23.8%) participants had LVH. CIMT measurements showed that 9 (4.2%) drivers had a carotid atherosclerotic plaque. Echocardiographic outcomes showed that 10 drivers (7.6%) had a left ventricular mass above 115 g/m^2 , which is an indicator of LVH. The median ejection fraction (EF) was 59%

^{*}percentages may not add up to 100% as some sub-characteristics were not mutually exclusive

(IQR 55-65). No driver had an EF <50% which is a sign of heart failure. No moderate or severe valve pathology was observed.

Table 5. Cardiovascular measurements

Table 5. Cardiovascular measure		_
Electrocardiography- Heart	Median	IQR
Left ventricle		ı
LVED index, mm/m² (N=132)	24.32	22.53-26.11
LVESD index, mm/m ² (N=132)	16.01	14.41-17.74
IVS index, mm/m ² (N=132)	5.15	4.60-5.89
LVPW index, mm/m ² (N=132)	4.81	4.26-5.40
LV EDV index, mL/m ² (N=128)	51.45	42.26-57.54
LV ESV index, mL/m ² (N=129)	19.72	16.36-24.17
LVM index g/m ² (N=132)	79.70	68.34-94.88
Left atrium		
LA, mm/m ² (N=132)	17.40	16.13-19.36
LA, volume mL/m ² (N=132)	17.09	12.85-20.30
Systolic and diastolic function		
Simpsons EF, % (N=130)	59	55-65
Mitral inflow E/A ratio (N=130)	1.35	1.15-1.59
Mitral flow deceleration, ms (N=131)	172	150-200
Right ventricle echocardiography		
RV base index, mm/m ² (N=132)	19.21	17.33-21.51
TAPSE, mm (N=124)	19	17-22
Carotid intima-media thickness		
Mean-mean CCA-IMT (N=217)	0.529	0.493-0.596
Mean-max CCA-IMT (N=217)	0.608	0.554-0.685
Max Bulb IMT (N=216)	0.668	0.570-0.830
Electrocardiography-Heart	Frequency	Percentage*
Pulmonary valve (N=131)		
Normal	96	73.3
Mild PR	35	26.7
Tricuspid valve (N=132)	<u>'</u>	
Normal	93	70.5
Mild TR	39	29.5
Aortic valve (N=132)	•	
Normal	131	99.2
Mild AR	1	0.8
Mitral valve (N=132)		
Normal	108	81.8
Mild MR	24	18.2
LVH echo (N=132)		
<115 g/m ²	122	92.4
≥115 g/m²	10	7.6
Electrocardiogram	Frequency	Percentage*
Cornell criterium (N=555)	,	i i ereemage
<2.8mV	532	95.6
≥2.8mV	23	4.1
Cornell Product mV (N=547)		
<244mVms	518	94.7
≥244mVms	29	5.3
Sokolow-Lyon criterium (N=581)		
<3.5mV	395	68.0
≥3.5mV	186	32.0
Carotid Intima-Media Thickness	100	J J Z . U
Plaque (CCA-IMT >1.0mm) (N=216)	9	4.2
QTC interval (N=484)	J J	4.4
QTC III(erval (IV-484)		

<450ms	470	97.1
450-500ms	14	2.9
>500ms	0	0

Abbreviations: IQR, interquartile range; LVED, left ventricular end-diastolic diameter; mm/m², millimetre per square meter; N, number; LVESD, left ventricular end-systolic diameter; IVS, interventricular septal thickness in end diastole; LVPW, left ventricular posterior wall thickness in end diastole; LV, left ventricle; EDV, end-diastolic volume; mL/ m², milliliters per square meter; ESV, end-systolic volume; LVM = left ventricular mass; g/m², grams per square meter; LA, left atrium; EF, ejection fraction; %, percentage; E/A, early diastole/atrial contraction; ms, millisecond; RV, right ventricle; TAPSE, tricuspid annular plane excursion; mm, millimeter; CCA-IMT, common carotid artery intima-media thickness; IMT, intima-media thickness; PR = pulmonary valve regurgitation; TR = tricuspid valve regurgitation; AR = aortic valve regurgitation; MR = mitral valve regurgitation; LVH = left ventricular hypertrophy; mV, millivolt

DISCUSSION

With over 600 participants, this study is possibly the largest of its design in sub-Saharan Africa, and the methods used have established a comprehensive baseline of health problems and associated risk-factors for truck drivers in South Africa. Almost all participants were black African males, the majority from Zimbabwe and over half of the participants had completed high school. Most participants were sexually active with a regular partner, while one quarter had a causal partner and 14% reported sexual activity with a sex worker. Participants drove an average of 10 hours per day, 20 days per month, and half had never worked night shifts, while 12% reported that they worked nights at least 4 times a week. Daytime sleepiness was experienced by almost 20% of participants, while moderate depression and PTSD were experienced by less than 10% of all participants. One-in-five drivers had been in an accident, and half of these drivers had been hospitalized due to the accident. Reported histories of TB, myocardial infarction, and diabetes were below 3%, however prominent cardiac risk-factors included smoking (11%), consuming alcohol (>15 drinks/week) (9%), overweight/obesity (69%), and hypertension (36%). Reported HIV prevalence was less than the national average, at 8%, and less than half were taking ART.

The methods described here are not only feasible to execute, but their findings provide valuable information regarding the comprehensive health and wellness of truck drivers in South Africa. By examining the findings, relatively low condom use and ART coverage indicate that HIV counselling and testing is still a priority in this population. Elevated risk-factors for NCDs and mental health suggest that screening and linkage to care for these areas need to be prioritized. Surprisingly, although nearly 50% of truck drivers reported doing night shifts at least once a week, only 18% had symptoms of excessive daytime sleepiness. While these findings have highlighted priority areas for truckers in South Africa, these methods could be replicated in similar populations to describe their baseline health statistics and identify areas of need.

Limitations include challenges in recruiting South African truck drivers because long-distance driving is mainly performed by foreign drivers. Accessing healthcare programs and information directly from the trucking companies was difficult, as this is strictly regulated and controlled by unions. The comprehensiveness of the survey also presented a limitation, as some drivers could not join because it would take too much time (it couldn't be performed over a lunch break, for example). A sampling bias may also be present, as the HIV prevalence in the survey is lower than that of the general population, suggesting that truck drivers with risky behaviours may be failing to test for HIV.

Acknowledgements

The authors would like to thank the Centre for Statistical Analysis and Research (CESAR) for their support with the initial data cleaning and analysis and North Star Alliance for their assistance during participant recruitment.

^{*}percentages may not add up to 100% as some sub-characteristics were not mutually exclusive

Contributors

Designed the study: AGV. Analysed the data and interpreted results: STLE, AF, RM, KS, AGV. Wrote the initial draft: STLE, AF, AGV. All authors critically reviewed and approved of the final draft.

Funding

This work was funded by North Star Alliance through a research and implementation grant received from the Ministry of Foreign Affairs of the Netherlands, managed by the Royal Dutch Embassy of Mozambique. The Amsterdam Institute for Global Health and Development and Wits RHI held separate contracts with North Star Alliance (AIGHD's grant reference: 0068 North Star – NSCDP; RHI's grant number: D1404070).

The views of this study are those of the authors and do not necessarily reflect the views of any of the funders or the South African and Dutch governments.

Competing Interests

All authors have no competing interests to declare.

Ethics Approval

University of the Witwatersrand Human Research Ethics Committee approved this evaluation (reference number M160760).

Participation was voluntary. A research nurse or counsellor who spoke the same language as the participant obtained informed consent. The three consent forms obtained for each participant were for study participation, HCT and storage of blood for further research. Participants received ZAR 150 and a shirt to compensate for their time.

Data Sharing

Extra data is available by emailing A.G.Vos-8@umcutrecht.nl

REFERENCES

- 1. Lalla-Edward S T, Gomez G B. Enroute to a healthy truck driver population. *HIV Nurs. Matters*. 2015; 6 (2), 20–23.
- 2. Stats SA. *STATISTICAL RELEASE: Land transport (Preliminary) October 2018.* Statistics South Africa. 2018; Pretoria.
- 3. Strauss M, George G, Lansdell E, et al. HIV testing preferences among long distance truck drivers in Kenya: a discrete choice experiment. *AIDS Care*. 2018; 30(1): 72–80.
- 4. Delany-Moretlwe, S., Bello, B., Kinross, P., Oliff, M., Chersich, M., Kleinschmidt, I., et al., HIV prevalence and risk in long distance truck drivers in South Africa: a national cross-sectional survey. *Int. J. STD AIDS.* 2014; 25 (6), 428–438.
- 5. Sieber K, Robinson C, et al. Obesity and other risk factors: The National Survey of U.S. Long-Haul Truck Driver Health and Injury. *American Journal of Industrial Medicine*. 2015; 57 (6) 615–626.
- 6. Hege A, Lemke MK, Apostolopoulos Y, et al. US long-haul truck driver work organization and the association with cardiometabolic disease risk. *Arch Environ Occup Health*. 2017;72(5):303-310
- 7. Du BB, Bigelow PL, Wells, RP, et al. The impact of different seats and whole-body vibration exposures on truck driver vigilance and discomfort. *Ergonomics*. 2018; 61(4):528-537.

- 8. Olson R, Thompson S, Wipfli B, et al. Sleep, Dietary, and Exercise Behavioral Clusters among Truck Drivers with Obesity: Implications for Interventions. *J Occup Environ Med*. 2016; 58(3): 314–321.
- Romo MI, George G, Mantell JE, et al. Psychosocial characteristics of primary care-seeking longdistance truck drivers in Kenya and associations with HIV testing. Afr J AIDS Res. 2018; 17 (2):119-
- 10. Lalla-Edward ST, Ncube S, Matthew, et al. Uptake of health services among truck drivers in South Africa: analysis of routine data from nine roadside wellness centres. *BMC Health Serv Res*. 2017; 17: 649.
- 11. Birdsey J, Sieber WK, Chen GX, et al. National Survey of US Long-Haul Truck Driver Health and Injury: health behaviors. *J Occup Environ Med.* 2015; 57(2):210-6.
- 12. Lalla-Edward ST, Fobosi SC, Hankins C, et al. Healthcare Programmes for Truck Drivers in Sub-Saharan Africa: A Systematic Review and Meta-Analysis. *PLoS One*. 2016; 11(6): e0156975.
- 13. Boyce, W.S., 2016. Does truck driver health and wellness deserve more attention? *J. Transp. Health*. 3 (1), 124–128.
- 14. National Department of Health. *NATIONAL HIV COUNSELLING AND TESTING (HCT) POLICY GUIDELINES*. National Department of Health. 2010; Pretoria, South Africa.
- 15. Prestage G, Song A, Grierson J, Race K, Grulich A et al (2001a). Positive Health: Method and sample (Monograph 9/2000). *Sydney: National Centre in HIV Social Research*. The University of New South Wales.
- 16. Prestage G, Song A, Grierson J, Race K, Grulich A et al (2001b). Positive Health: Treatments, services and health (Monograph 1/2001). *Sydney: National Centre in HIV Social Research*. The University of New South Wales.
- 17. Creel AH, Rimal RN. Factors related to HIV-testing behavior and interest in testing in Namibia. *AIDS care* 23.7 (2011): 901-907.
- 18. Dilorio, C., Parsons, M., Lehr, S., Adame, D., & Carlone, J. Measurement of safe sex behavior in adolescents and young adults. *Nursing Research*. 1992; 41, 203–208.
- 19. Rosen RC, Cappelleri JC Smith MD et al. Development and evaluation of an abridged, 5-item version of the International Index of Erectile Function (IIEF-5) as a diagnostic tool for erectile dysfunction. *International Journal of Impotence Research* (1999) 11, 319-326.
- 20. Costa, P. T., & McCrae, R. R. (1992). Normal personality assessment in clinical practice: The NEO Personality Inventory. Psychological Assessment, 4(1), 5-13.
- 21. Blevins C, Weathgers F, Davis M, et al. The Posttraumatic Stress Disorder Checklist for DSM-5 (PCL-5): Development and Initial Psychometric Evaluation. *Journal of Traumatic Stress*. 2015; 28 (6): 489-498. https://doi.org/10.1002/jts.22059
- 22. Kroenke K, Spitzer R, Williams J. The PHQ-9 Validity of a brief depression severity measure. Journal of General Internal Medicine. 2001; 16 (9):606-613. https://doi.org/10.1046/j.1525-1497.2001.016009606.x
- 23. Johns MW. A new method for measuring daytime sleepiness: The Epworth Sleepiness Scale. Sleep. 1991;14(6):540-5.
- 24. Cotes JE. Medical Research Council Questionnaire on respiratory symptoms. Correspondence. Lancet 1987;2:1028.
- 25. World Health Organization. World Health Survey 2002. World Health Organization. 2002; Geneva.
- 26. Ferris B. Epidemiology standardization project (American Thoracic Society). Am Rev Respir Dis 1978;118(6 Pt 2):1-120.
- 27. Mengersen K1, Morawska L, Wang H, Murphy N, Tayphasavanh F, Darasavong K, Holmes N. The effect of housing characteristics and occupant activities on the respiratory health of women and children in Lao PDR. Sci Total Environ. 2011 Mar 15;409(8):1378-84.

- 28. World Health Organization. *WHO STEPS Surveillance Manual*. World Health Organization. 2017; Geneva.
- 29. Canadian Centre for Occupational Health and Safety (CCOHS). *Medical History Checklist:* Symptoms Survey for Work-Related Musculoskeletal Disorders (WMSDs). Government of Canada. 2019; https://www.ccohs.ca/oshanswers/diseases/work_related_WMSD.html
- 30. Alfakih K, Walters K, Jones T, et al. New gender-specific partition values for ECG criteria of left ventricular hypertrophy. *Hypertension*. 2004; 44:1-5
- 31. Ishikawa J, Yamanaka Y, Watanabe S, et al. Cornell product in an electrocardiogram is related to reduced LV regional wall motion. Hypertens Res. 2018 Dec 12. doi: 10.1038/s41440-018-0164-8.
- 32. Sokolow M, Lyon TP. The ventricular complex in left ventricular hypertrophy as obtained by unipolar precordial and limb leads. Am Heart J 1949;37:161-86. 10.1016/0002-8703(49)90562-1
- 33. Okin PM, Roman MJ, Devereux RB, et al. Electrocardiographic identification of increased left ventricular mass by simple voltage-duration products. J Am Coll Cardiol 1995; 25:417-23. 10.1016/0735-1097(94)00371-V
- 34. Boulos NM, Gardin JM, Malik S, Postley J, Wong ND. Carotid Plaque Characterization, Stenosis, and Intima-Media Thickness According to Age and Gender in a Large Registry Cohort. *Am J Cardiol* 2016; **117**:1185-1191.
- 35. Naqvi TZ, Lee MS. Carotid intima-media thickness and plaque in cardiovascular risk assessment. JACC Cardiovasc Imaging 2014;7:1025e38.
- 36. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. European Heart Journal-Cardiovascular Imaging. 2015 Feb 18;16(3):233-71
- 37. Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 2010;23:685-713
- 38. Redman K, Karstaedt A, Scheuermaier K. Increased CD4 counts, pain and depression are correlates of poorer sleep quality in treated HIV positive patients with low baseline CD4 counts. Brain Behav Immun, 2018;69:548-555.
- 39. Centers for Disease Control and Prevention. Defining Adult Obesity; Adult Body Mass Index (BMI). https://www.cdc.gov/obesity/adult/defining.html April 11, 2017. Accessed May 2, 2019.

BMJ Open

A cross sectional study of the health of southern African truck drivers

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-032025.R1
Article Type:	Original research
Date Submitted by the Author:	29-Aug-2019
Complete List of Authors:	Lalla-Edward, Samanta; University of the Witwatersrand, Wits Reproductive Health and HIV Institute Fischer, Alex; University of the Witwatersrand, Wits Reproductive Health and HIV Institute Venter, WD Francois; Wits Reproductive Health and HIV Institute Scheuermaier, Karine; University of the Witwatersrand Faculty of Health Sciences, Wits Sleep Laboratory, Brain Function Research Group, School of Physiology, Meel, Ruchika; University of the Witwatersrand, Department of Internal Medicine, Division of Cardiology, Chris Hani Baragwanath Hospital Hankins, Catherine; University of Amsterdam, Department of Global Health and Amsterdam Institute for Global Health and Development; McGill University, Department of Epidemiology, Biostatistics, and Occupational Health, Faculty of Medicine Gomez, Gabriela; London School of Hygiene and Tropical Medicine, Department of Global Health and Development Klipstein-Grobusch, Kerstin; Utrecht University, Julius Global Health, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; University of the Witwatersrand Faculty of Health Sciences, Division of Epidemiology and Biostatistics, School of Public Health Draaijer, Melvin; VUMC, School of Medical Sciences Vos, Alinda; Utrecht University, Julius Global Health, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht; University of the Witwatersrand, Wits Reproductive Health and HIV Institute
Primary Subject Heading :	Occupational and environmental medicine
Secondary Subject Heading:	HIV/AIDS, Sexual health, Cardiovascular medicine, Mental health
Keywords:	truck drivers, South Africa, Zimbabwe, Non-communicanble diseases, HIV & AIDS < INFECTIOUS DISEASES

SCHOLARONE™ Manuscripts

A cross sectional study of the health of southern African truck drivers

Lalla-Edward ST, Fischer A*; Venter WDF; Scheuermaier K; Meel R; Hankins CA; Gomez GB; Klipstein-Grobusch K; Draaijer M; Vos AG

Authors' affiliations:

Samanta T. Lalla-Edward, PhD

Ezintsha, a sub-division of Wits Reproductive Health and HIV Institute, University of Witwatersrand, Johannesburg, South Africa.

E: slalla-edward@wrhi.ac.za

Alex Fischer*, MPH

Ezintsha, a sub-division of Wits Reproductive Health and HIV Institute, University of Witwatersrand. Johannesburg, South Africa.

A: Klein St & Esselen St, Hillbrow, Johannesburg, 2001.

P: +27 073 776 2705

E: afischer@wrhi.ac.za

WD Francois Venter, FCP, PhD

Ezintsha, a sub-division of Wits Reproductive Health and HIV Institute, University of Witwatersrand, Johannesburg, South Africa.

E: fventer@wrhi.ac.za

Karine Scheuermaier, MD, MMSc

Wits Sleep Laboratory, Brain Function Research Group, School of Physiology, Faculty of Health Sciences University of Witwatersrand, Johannesburg, South Africa.

E: Karine.Scheuermaier@wits.ac.za

Ruchika Meel, MBChB, MMED, Certificate in Cardiology, PhD

Consultant and Post-Doctoral Carnegie Fellow

Department of Internal Medicine, Division of Cardiology, Chris Hani Baragwanath Hospital and University of the Witwatersrand

E: ruchikameel@gmail.com

Catherine A. Hankins, MD PhD FRCPC CM

Department of Global Health and Amsterdam Institute for Global Health and Development, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands

Department of Epidemiology, Biostatistics, and Occupational Health, Faculty of Medicine, McGill University, Montreal, Canada

E: c.hankins@aighd.org

Gabriela B. Gomez, PhD

Department of Global Health and Development, London School of Hygiene and Tropical Medicine, UK E: Gabriela.Gomez@lshtm.ac.uk

Kerstin Klipstein-Grobusch, PhD

Julius Global Health, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands

*corresponding author

Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa

E: k.klipstein-grobusch@umcutrecht.nl

Melvin Draaijer, BA

VUmc School of Medical Sciences, Amsterdam, the Netherlands

E: m.draaijer@student.vu.nl

Alinda G. Vos, MD, PhD

Julius Global Health, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands, and Department of Internal Medicine & Infectious Diseases, University Medical Center Utrecht, the Netherlands

ds Ezintsha, a sub-division of Wits Reproductive Health and HIV Institute, Faculty of Health Sciences, University of Witwatersrand, South Africa

E: avos@wrhi.ac.za

Word count: 2970 words

ABSTRACT

Objectives: Lifestyle and working conditions of truck drivers predisposes them to risk-factors associated with communicable and non-communicable diseases(NCDs), but little is known about the health status of African truck driver. This study aims to assess a cross-section of truckers in South Africa to describe their health information.

Setting: The study took place across three truck-stop rest areas in the South African provinces of Free State and Gauteng.

Participants: Eligibility criteria included being males aged 18 years and older, full-time employment as a long-distance truck driver. A total of 614 male truck drivers participated; 384(63%) were Zimbabwean and 325(55%) completed high-school.

Primary and secondary outcome measures: The trucker survey explored demographics; working conditions; sexual, eating, and sleeping behaviours; mental health status, medical history, and cardiac risk-factors. Medical assessments included physical measurements, glucose and lipid measurements, electrocardiogram(ECG), carotid intima-media thickness(CIMT), and cardiac ultrasound.

Results: In the previous month, 554(91%) participants were sexually active; 522(86%) had sex with a regular partner, 174(27%) with a casual partner, and 87(14%) with a sex worker. Average time driving was 10 hours/day, 20 days/month, 302(50%) never worked night shifts, and 74(12%) worked nights approximately 4times/week. 112(18%) experienced daytime sleepiness and 59(10%) were ever hospitalized from an accident. Forty-seven(8%,95%Cl=5.3-9.5) were HIV-positive, with half taking antiretrovirals. Forty-eight(8%) truckers had some moderate depression, while 21(4%) suffered from post-traumatic stress disorder. Reported TB, myocardial infarction, and diabetes were <3%. Prominent cardiac risk-factors included smoking(n=63,11%), consuming alcohol(>15drinks/week)(n=54,9%), overweight/obesity (n=417,69%), and hypertension(n=220,36%,95%Cl=32.1-39.7). ECG results showed 23(4.9%) and 29(5.3%) drivers had left ventricular hypertrophy using the Cornell criterion and product, respectively. CIMT measurements indicated 9(4.2%) drivers had a carotid atherosclerotic plaque.

Conclusion: This first holistic assessment of health among southern African male truck drivers demonstrates substantial addressable cardiovascular risk factors, mental health issues and sexual risk behaviours.

Key words: Truck driver, South Africa, Zimbabwe, HIV, NCDs, cohort.

Strengths and limitations of this study

- This study is possibly the largest and most comprehensive truck driver health and wellness survey completed in sub-Saharan Africa.
- Previous studies have been conducted in silos, while this study explores how multiple risk factors interact with common health conditions.
- The comprehensiveness of the survey presented some limitations, due to convenience sampling (no tracked refusal rates), self-reporting, and the length of time required by participants.
- Additional limitations included challenges in recruiting South African truck drivers because long-distance driving is mainly performed by foreign drivers and inability to access healthcare programs and information directly from the trucking companies since this is strictly regulated and controlled by unions.
- This study did not include any tabulations, modelling or regressions; it has established a
 comprehensive baseline of health problems and associated risk-factors for truck drivers in
 South Africa in order to lead research for future interventions.

INTRODUCTION

Land transport is a \$3 billion industry in South Africa that employs over 70 000 commercial truck drivers^{1,2}, and due to operational demands, these long-distance truck drivers may be susceptible to a variety of adverse health outcomes. The extended time away, including long driving hours and night shifts, may make them vulnerable to risk-factors for communicable diseases, such as sexually transmitted infections(STIs)^{3,4}, non-communicable diseases(NCDs) and mental health disorders⁵.

Driving long hours disrupts healthy sleep cycles and encourages drivers to lead a sedentary lifestyle. The risk of diabetes, hypertension, and heart disease is exacerbated by job-related stress, sleep disruption, nightshift-related circadian misalignment and limited access to healthy food at rest stops⁶⁻⁸. The travelling lifestyle may also provide limited access to healthcare facilities, especially for long-distance drivers from outside of South Africa, who easily and frequently cross borders. While traditional public health facilities are available to truck drivers across the country, truck drivers hardly access these services as they cannot take leave or clinics are not reachable by large trucks. In order to reduce barriers to access, mobile HIV clinics and roadside wellness clinics have been established to accommodate all drivers at no cost^{9,10}. The North-Star Alliance(NSA) clinics, for example, use trained clinical and outreach teams to provide primary healthcare services, HIV prevention and screening for other infectious diseases in converted shipping containers.

These initiatives have shown successes with the general uptake of healthcare, including HIV counselling and testing(HCT) for truckers^{10,11}, however, most of the focus is on preventing communicable diseases and very little is known about long-term health trends within this group. Current findings have come from studies and interventions that examine individual factors or conditions, but they do not incorporate a comprehensive health approach that includes NCDs^{12,13}. The objective of this study is to use the Trucker Health Survey, which was developed to take a comprehensive snapshot of disease prevalence in truck drivers at selected South African locations, in order to determine what the common health problems are for truck drivers in South Africa. This body of evidence should establish a baseline to lead researchers towards future interventions.

METHODS

Study Design and Setting

The Trucker Health Survey is an initiative of the Wits Reproductive Health and HIV Institute(Wits RHI) and North-Star Alliance, a non-governmental organisation located along the main sub-Saharan trucking corridors that provides truck drivers, sex workers, and local communities with primary healthcare services. These services include general health check-ups, STI and malaria testing and treatment, HCT, and tuberculosis(TB) screening¹².

Enrolment in this cross-sectional study took place between October 2016 and March 2017. Recruitment was done at truck stops in two provinces; one truck stop at the Shell garage at the N1 highway close to Bloemfontein (Free State), multiple truck stops in Pomona, Johannesburg (Gauteng) and one truck stop in Soweto(Gauteng). NSA already had a strong presence due to their current clinical infrastructure in Bloemfontein and Pomona. Some truck stops in Pomona were privately owned but did not belong to a transport company. They accommodated mainly foreign long-distance drivers as South-African drivers would stop at the premises of their company in South Africa. To reach South-African drivers the truck stop in Soweto, Johannesburg, was added from January to March 2017. As this was a harder group of people to recruit we employed various methods of invitation to participate. These included handing out invitation cards individually and to groups at truck stops, placing them on truck windscreens where no driver was available and recruiting at companies. In some instances the recruiter would be addressing one

or two people and a group would form. These methods did not facilitate us accurately noting the number of invitations extended and as such no invitation log was maintained.

Eligibility criteria included: males aged 18 years and older, full-time employment as a long-distance truck driver, and able to provide informed consent for study procedures.

Patient and Public Involvement

Patients and the public were not involved in the study design, or in the recruitment to, and conduct of the study.

Data Collection

The invitation card contained details for where and when drivers could go to the study clinic (participating NSA wellness clinic) for study enrolment. Dependent on when a truck driver decided to enrol he could go to the study clinic immediately upon invitation or any time within the study period. Data collection was completed during a single visit that commenced with HIV testing and demographic data collection, followed by mental health and NCD risk-factor questionnaires. Participants underwent a physical examination, with functional and laboratory testing.

HIV Testing

A trained nurse/counsellor conducted HIV pre-test counselling, followed by rapid testing with tests supplied by the National Department of Health(NDOH). Testing was performed on whole-blood from a finger prick, using two rapid assays, according to the NDOH HCT Policy¹⁴. If found HIV-positive, additional blood was collected for measurement of CD4+ cell count, with participants then referred to local public clinics for the accepted standard of care¹⁴.

Questionnaire Data

For demographic and health information, an interview and multiple externally validated questionnaires were administered. Due to the use of externally validated questionnaires, no pilot testing was undertaken with the study population before data collection. Mental and social health issues were explored with the following questionnaires (or relevant parts thereof): Eating Behavior¹⁵, Health Service Use¹⁶, HIV Testing questionnaire¹⁷, Safe Sex and Behaviour¹⁸, IIEF-5 questionnaire for erectile dysfunction¹⁹, NEO questionnaire²⁰, Traumatic Events questionnaire, Post-Traumatic Stress Disorder (PTSD) Checklist (PCL-5) questionnaire²¹ and PHQ-9 (for depression)²². We also evaluated daytime sleepiness using the Epworth Sleepiness Scale (ESS)²³, which was validated in a population of South Africans using English as a second language, similar to our Truckers' population²⁴.Overall, scores of 10 and less were considered as normal daytime sleepiness while 11 and more were considered as excessive daytime sleepiness. In addition, for our analysis, we further divided three categories of excessive daytime sleepiness, with scores of 11-12, 13-15 and greater than 16, corresponding to mild excessive, moderate excessive and severe excessive daytime sleepiness, respectively.

For respiratory health, the British Medical Research Council Respiratory questionnaire²⁵, the World Health Survey²⁶, the ATS-DLD-78-A survey²⁷ and industry-standard questions from other publications²⁸ were used. Cardiovascular health was explored with a modified version of the WHO STEPs instrument²⁹ while a survey for musculoskeletal injuries was also administered³⁰.

Physical Examination

Trained nurses took measurements of height, weight, waist and hip circumference and blood pressure. Blood pressure was measured at both arms, with a third measurement taken on the arm with the highest value. Waist circumference was measured halfway between the lower rib and the iliac crest during expiration in standing position. Non-fasting blood was collected from participants for the measurement

of C-reactive protein (CRP), creatinine, alkaline phosphatase, random glucose, total cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides and hepatitis B antigen. Low-density lipoprotein (LDL) cholesterol was calculated using the Friedewald formula. Urine was collected for measurement of protein. Extra blood and urine samples were stored for future research.

A standard 12 lead electrocardiogram(ECG) was taken using a computer-based ECG device (SE-1515 DP12, EDAN)^{31,32}, and left ventricular hypertrophy (LVH) assessed using the Cornell's criterion, Cornell's product and the Solokow-Lyon's criterion^{33,34}.

Carotid intima-media thickness (CIMT) was measured in 217 (42.9%) participants, dependent on the sonographer's availability, after a 15-minute rest. A Siemens Acuson p500 ultrasound (Siemens Healthcare (Pty) Ltd, South Africa) with a ≥7mHz linear probe was used. Measurements of common carotid artery (CCA) walls were taken and analysed with the semi-automatically Artery Measurement System software (Chalmers University, Götenburg, Sweden) based on the standard procedures described by Bolus in 2016 and Nagvi in 2014^{35,36}.

Transthoracic echocardiography was performed on 132(21%) participants, dependent on the sonographer's availability, using a transducer on Siemens Acuson p500 ultrasound. Images were obtained according to a standardised protocol according to the 2015 American Society of Echocardiography(ASE) chamber quantification guidelines^{37,38}.

Statistical analysis

In line with the aim of this paper data are descriptive only and reported as mean with standard deviation, median with interquartile range or count and percentages as appropriate. Internal consistency among items of the PHQ-9, PCL-5 and ESS questionnaires was verified with Cronbach's alpha tests. A score of > 0.7 -0.8 was considered acceptable, >0.8-0.9 good and any score >0.9 as excellent reliability.

RESULTS

Study Population

Of 614 truck drivers responding to the survey most (96%) were black Africans. The median age of respondents was 37 years old (Interquartile range (IQR): 31-42 years), and the majority (80%) were married. The majority of participants (63%) were Zimbabwean nationals, while 20% were South Africans and 7% reported Zambian nationality. Almost all respondents (99%) completed primary school, while more than half (55%) completed high school and further 9% completed tertiary education (Table 1).

Occupational characteristics are presented in Table 1. On average, truck drivers in this study reported nine years of driving experience (IQR: 5-14 years), and spent an average of 10 hours per day on the road. The median days spent driving per month was 20 (IQR: 15-24 days). On average, drivers spent four days per month waiting for loading/offloading of their truck, had three days off a month and an additional 22 leave days per year.

When participants were asked to indicate how often they worked nights (at least three hours between 10pm-6am), 302 (50%) stated that they never worked night shifts, while 74 (12%) reported that they worked nights at least 4 times a week. Sixty-five (10.6%) participants had worked in the mining industry for at least one year, 44 (7.3%) participants had worked in environments that exposed them to dust and another 17 (2.8%) had worked in jobs that exposed them to dangerous fumes. One hundred and fifteen (19%) truck drivers had reportedly been involved in an accident, with half of them (51%) hospitalized due to the accident.

Table 1. Sociodemographic and occupational characteristics

		100
Characteristic	Median	IQR
Age in years (N=614)	37	31-42
Truck driving years (N=612)	9	5-14
Hours spent driving per day (N=611)	10	8-12
Days spent driving per month (N=614)	20	15-24
Days waiting per month(N=609)	4	2-7
Off days per month (N=610)	3	0-6
Leave days per annum (N=603)	22	13-30
Sociodemographic characteristic	Frequency	Percentage*
Country (N=612)		
South Africa	123	20.1
Zimbabwe	384	62.6
Zambia	45	7.4
Other	60	9.8
Race (N=608)		
Black African	587	95.6
Coloured	8	1.3
Indian	6	1.0
White	5	0.8
Other/declined	2	0.3
Highest level of education (N=591)		1 2.2
No formal education	2	0.3
Less than primary	3	0.5
Primary completed	46	7.8
High school completed	325	55.0
Matric completed	161	27.2
College complete	54	9.1
Marital status (N=607)	34	J.1
Married	488	80.4
Living together	22	2.6
Never married	19	3.1
Divorced	18	3.0
	9	3.0
Widower Other	51	1.5 8.4
		8.4
Occupational characteristic	Frequency	3.6 3.1 3.0 1.5 8.4 Percentage* 34.0 28.5 20.4
Truck driving years (N=603)	205	24.0
1-5 years	205	34.0
6-10 years	172	28.5
11-15 years	123	20.4
>15 years	103	17.1
Night shifts (N=607)	1 005	I = 0 0
Never	305	50.3
Once per week	93	15.3
2-3 times per week	135	22.2
4-5 times per week	58	9.6
More than 5 times per week	16	2.6
Occupational exposures (N=608)		
Worked in mining at least one year	65	10.6
Worked in dusty job at least one year	44	7.3
Exposed to gas or chemical fumes	17	2.8
No work exposures	482	79.3
Vehicle accidents (N=605)		•
Never involved in accident	490	81
Involved in accident	115	19
	1	1

Hospitalized from accident (n=115)	59	51

Abbreviations: IQR, interquartile range; N, number; n, number

Mental and Social Health Characteristics

Health Services

When truckers were asked to indicate the health facilities and services that they had utilized in the past six months, NSA health services were the most cited (n=278,46%), followed by community health centres, and clinics (n=270,44%). Some participants also utilized pharmacies and hospital-based clinics, however no one mentioned the use of mental health services. All information pertaining to mental and social health is presented in Table 2.

Sexual Activity and Behaviour

Only 4 truckers (0.2%) reported that their sexual partners were men. Vaginal intercourse (n=607,99%) was the most frequent type of sexual intercourse. Truck drivers had varying levels of recent sexual activity, with 554(91%) reported having sex in the past month, and a median coital frequency of three times a month. 522(86%) truckers stated that they had sex with a regular partner, while 174(27%) stated that sex was with a casual partner, and 87(14%) participants reported recent sexual activity was with a sex worker. Reported condom usage for regular partners, casual partners, and sex workers, was 15%, 57%, and 83% respectively.

When asked about the number of regular partners in the past year, 453 (75%) truckers indicated that they only had one regular partner, while 130(21%) had more than one, and 25(4%) reported not having a regular partner. Among the 595 who responded about erectile dysfunction(ED), 313(53%) had no ED, while only 11 (1.9%) people had moderate-severe ED.

Mental health and sleep wellness

Depression was screened with PHQ-9 and the Cronbach's alpha value was 0.76. The questionnaire showed that 48(8.1%) participants had moderate depression, while none one of the respondents reported severe depression. The PCL-5 tool, however, identified PTSD in 21(3.6%) truck drivers, with a Cronbach's alpha of 0.92. Daytime sleepiness was assessed using the ESS and the Cronbach's alpha score was 0.77." Overall, 77(12.7%) stated that they experienced moderate to severe excessive daytime sleepiness

HIV status and antiretroviral treatment (ART)

Information on their HIV status was provided by 581 truck drivers (17 respondents did not provide data, and another 16 reported their status as unknown). Of those, 47 (8%) reported that they were HIV-positive, and 23 (49%) of those HIV-positive participants were on ART (Table 3). The majority of truckers (97%) agreed to an HIV test. HIV prevalence among 597 tested drivers was 7.1% (n=42; 95%CI=5.3%-9.5%). The validity of self-reported HIV status was assessed comparing self-report and rapid test. Seven drivers who reported to be HIV-negative, were rapid test positive. Three drivers who reported to be HIV-positive, had negative rapid test results. Most drivers appeared to be aware of their status, with sensitivity and specificity of self-reporting being 83% (95%CI=67.9-92.8%) and 99.8% (95%CI=98.3-99.9%), respectively.

Table 2. Mental and social health characteristics

Mental and social health characteristic	Frequency	Percentage*
Health services (N=614)		
North-Star Alliance	278	45.3
Community health centers/clinics	270	44.0
Pharmacies	84	13.7
Hospital-based clinics	51	8.3

^{*}percentages may not add up to 100% as some sub-characteristics were not mutually exclusive

Mental health services	0	0
Other	26	4.2
Sexual activity (N=609)	1 20	
Regular partner	522	85.7
Casual partner	147	24.1
Sex worker	74	12.2
Overall	554	91.0
Condom use		
Regular partner (n=513)	77	15.0
Casual partner (n=136)	78	57.4
Sex worker (n=74)	61	82.4
Regular partners in the last year (N=614)	
One regular partner	453	73.8
Multiple regular partners	130	21.2
No regular partners	25	4.1
Depression (N=597)		
Minimal	399	66.8
Mild	150	25.1
Moderate	40	6.7
Moderately severe	8	1.4
Severe	0	0
Post-traumatic stress disorder (PTSD) (N	-	
Suffering PTSD	21	3.6
No PTSD	562	96.4
Intimate partner violence (IPV) (N=611)		,
Limited/no IPV last year	569	93.1
Broad IPV last year	42	6.9
Limited/no IPV lifetime	509	83.3
Broad IPV lifetime	102	16.7
Daytime sleepiness (DS) (N=608)		
Normal	496	81.6
Mild excessive	35	5.8
Moderate excessive	46	7.6
Severe excessive	31	5.1
Erectile dysfunction (N=595)	_	
	242	52.6
None	313	1 32.0
None Mild	313 206	34.6
Mild	206	34.6 10.9
Mild Mild-Moderate		34.6 10.9 1.9
Mild Mild-Moderate Moderate-Severe	206 65	34.6 10.9 1.9
Mild Mild-Moderate Moderate-Severe HIV status: self-reported (N=518)	206 65 11	34.6 10.9 1.9
Mild Mild-Moderate Moderate-Severe HIV status: self-reported (N=518) HIV negative	206 65	34.6 10.9 1.9
Mild Mild-Moderate Moderate-Severe HIV status: self-reported (N=518) HIV negative HIV-positive	206 65 11 471 47	34.6 10.9 1.9 90.9 9.1 48.9
Mild Mild-Moderate Moderate-Severe HIV status: self-reported (N=518) HIV negative	206 65 11 471	34.6 10.9 1.9

Abbreviations: N, number; n, number; PTSD, post-traumatic stress disorder; IPV, intimate partner violence; ART, antiretroviral therapy

Chronic Diseases history

Respiratory

TB infection was screened for in all participants with the NDOH TB screening tool, and 17(2.8%) truckers had previously acquired TB. General breathing difficulty was assessed and 49(13%) reported some shortness of breath, 18(2.9%) drivers described persistent coughing, 7(1.2%) had previously undergone a chest operation, and 3(0.5%) had experienced wheezing. All information pertaining to chronic disease history is presented in Table 3.

^{*}percentages may not add up to 100% as some sub-characteristics were not mutually exclusive

Musculoskeletal injuries

A total of 51(25%) truckers had work-related pain that lasted at least two days in the last year, while 63 (10%) had work-related pain that lasted more than three months. The most common work-related injuries were lower- and upper-back pain, experienced by 92(15%) and 74(12%) truckers, respectively. Of the participants that experienced work-related pain, 45(31%) stated that the pain interfered with their work, and 5(3%) had to take time off work.

Cardiovascular disease and risk-factors

Self-reported cardiovascular outcomes identified that 8(1.3%) participants had a heart attack or stroke, while 3(0.5%) reported angina. Only 290(47%) truckers had ever undergone blood pressure testing and 32(11%) had hypertension. Of these 32 drivers, 10(30%) were currently on physician-prescribed medication for hypertension, while 2(6.3%) were taking traditional remedies. One-hundred and twenty-one (19.7%) participants previously had their blood-sugar checked, and 12(10%) had elevated blood-sugar. Of those, 3(25%) were taking insulin, another 3(25%) were taking oral medication, and one (9.1%) was on traditional remedies for diabetes. For cholesterol, only 20 participants (3.3%) previously had their levels checked and of these, 3(15%) were diagnosed with raised cholesterol, but no one was taking medication (doctor-prescribed or traditional) for management.

For domestic smoke exposure, 121(20%) had been exposed to second-hand smoke during childhood, and 160 (26%) had indoor fireplace exposure. Ninety (15%) drivers had ever smoked tobacco and 63(11%) still smoked. Marijuana use was much lower, as only 28(5%) had ever smoked it, and 23(4%) identified as current smokers. The majority of participants who currently smoked reported that they smoke daily (76% for tobacco, 68% for marijuana). For alcohol use, 240(40%) truck drivers had ever consumed alcohol and 196(33%) still drank regularly. Of the drivers who drank, 54(28%) were problem or heavy drinkers (>15 drinks per week), comprising 9% of the total population. One trucker reported using acid, but no other recreational drugs were disclosed by participants.

Study participants were asked to indicate how often they engaged in mild, moderate or strenuous exercise, and only 254(41.3%) exercised strenuously at least twice a week. Mild and moderate exercise twice a week was even less with engagement levels of 78(12.7%) and 125(20.3%) respectively.

When asked about their diet, 347(57%) had at least two fruits daily, while only 280(46%) had two servings of vegetables. Snacks were much higher, as 474(78%) drank at least two soft drinks daily, and 347 (71%) had at least one snack.

Regarding family history, 20(3.4%) truckers reported a parent who had suffered a heart attack before the age of 60, while 18(3.1%) had a parent experiencing a stroke before the age of 60.

Table 3. Chronic disease history

Respiratory and cardiac history	Frequency	Percentage*
TB (N=607)		
History of TB	17	2.8
Cough of >2 weeks	7	1.2
Fever > 2 weeks	5	0.8
Dyspnea (N=363)		
No regular trouble breathing	314	86.5
SOB walking up a slight hill or hurrying	44	12.1
Walks slow with frequent stops	2	0.6
Stops every 100m to catch breath	1	0.3
Too breathless to leave house/undress	2	0.6
Other respiratory outcomes (N=583)		

Cough several times per day	18	2.9
Chest operation	7	1.2
Wheezing	3	0.5
Heart disease- self-reported (N=614)		
Heart attack or stroke	8	1.3
Angina	3	0.5
No previous heart disease	603	98.2
Hypertension (HTN)- self reported (N=6	L2)	
ver tested for HTN	290	47.4
HTN diagnosed by a doctor (n=290)	32	11.1
Take HTN meds from doctor(n=32)	10	30.3
Γake traditional heeler remedy (n=12)	2	6.3
Diabetes- self reported (N=612)		
Blood sugar tested by doctor	121	19.7
Diabetes diagnosed by doctor(n=121)	12	9.9
Take oral meds from doctor(n=12)	3	25.0
Take insulin prescribed by doctor(n=12)	3	25.0
Take traditional heeler remedy (n=12)	1	9.1
Cholesterol- self reported (N=612)		
Cholesterol tested by doctor	20	3.3
High cholesterol diagnosis(n=20)	3	15.0
Take meds prescribed by doctor(n=20)	0	0.0
Take traditional heeler remedy (n=20)	0	0.0
Family history (N=588)		
Parents chronic lung condition	21	3.6
Parents heart attack before 60 years	20	3.4
Parents stroke before 60 years	18	3.1
Smoking (N=606)		
Гobacco- ever smoked	90	14.7
Tobacco- current smoker	63	11.1
Marijuana- ever smoked	28	4.8
Marijuana- current smoker	23	3.9
Domestic smoke exposure (N=606)		
Second-hand smoke as child	121	20.0
Fireplace in house	160	26.4
Alcohol consumption (N=600)		
Ever used alcohol	240	39.8
Current alcohol use	196	32.5
Criticized for drinking (n=240)	53	21.9
Drinks daily (n=196)	19	9.7
Alcohol volume consumed last week (N=		J.,
Did not drink	20	10.2
Moderate drinkers (1-14drinks)	122	62.2
Problem drinkers (15-21drinks)	27	13.8
Heavy drinkers (>21drinks)	27	13.8
Physical activity at least twice a week(N		15.0
Mild	78	12.7
Vinu Moderate	125	20.3
Strenuous	254	41.3
Diet and nutrition (N=608)		71.5
Soft drinks at least twice a day	474	78.0
Snacks at least 1 a day	432	71.1
Fruit at least twice a day	347	57.1
Vegetables at least twice a day	280	46.1
Wegetables at least twice a day Musculoskeletal pain (N=614)	200	40.1
Viusculoskeietai pain (N=614) Overall pain >2 days	151	24.6
	151	24.6
Overall pain >3 months	63	9.8

Lower-back pain >2 days	92	15.0	
Lower-back pain >3 months	37	6.0	
Upper-back pain >2 days	74	12.1	
Upper-back pain >3 months	31	5.0	

Abbreviations: TB, tuberculosis; N, number; SOB, shortness of breath; m, meter; HTN, hypertension; n, number

Clinical characteristics

The median height and weight was 1.71m (IQR:1.65–1.76m) and 79kgs (IQR:69-90kg), respectively. Median waist and hip circumference were 87cm (IQR:77-99cm) and 101cm (IQR:94–108cm), respectively. Calculated body mass index(BMI) revealed that 417 (69%) of all respondents were either overweight (BMI $25-29.9 \text{kg/m}^2$) or obese (BMI $>30 \text{kg/m}^2$)³⁹. All information pertaining to clinical characteristics is presented in Table 4.

Table 4. Physical testing

Physical measurements	Median	IQR
Systolic blood pressure(N=614)	131mmHg	122-140 mmHg
Diastolic blood pressure(N=614)	83 mmHg	76-89 mmHg
Heart rate(N=614)	75 bpm	66-83 bpm
Height(N=614)	1.71m	1.66-1.76m
Weight(N=614)	79kg	69-90kg
Neck circumference(N=614)	37cm	36-40cm
Waist circumference(N=614)	87cm	77-96cm
Hip circumference(N=614)	101cm	94-108cm
Laboratory assessments	Median	IQR
Serum C-reactive protein(N=584)	1.2mg/L	0.5-2.7mg/L
Protein urine quantitative(N=16)	0.44mmol/L	0.22-0.62mmol/L
Blood-glucose(N=583)	5.2mmol/L	4.6-6.3mmol/L
Serum creatinine(N=585)	91mmol/L	81-104 mmol/L
Serum cholesterol(N=585)	4.39mmol/L	3.9-5.13 mmol/L
Serum LDL Cholesterol(N=585)	2.7 mmol/L	2.24-3.35mmol/L
Serum HDL cholesterol(N=585)	1.2 mmol/L	1.02-1.45mmol/L
Triglyceride(N=585)	1.33mmol/L	0.92-2.05mmol/L
Physical characteristic	Frequency	Percentage*
Blood Pressure- tested (N=614))		
Normotensive (sys:<140; dias:<90)	394	64.2
Grade 1(sys:140-159; dias:90-99)	151	24.6
Grade 2(sys:160-179; dias:100-109)	43	7.0
Grade 3(sys: >180-; dias:>110)	26	4.2
Total HTN(sys:>140; dias:>90)	220	35.8
Blood sugar- tested (N=604)		
<4.5mmol/L	121	20.7
4.5-7.8mmol/L	414	71.0
7.9-11.1mmol/L	34	5.8
>11.1mmol/L	15	2.6
Body mass index (BMI) (N=604)		
Underweight (BMI<18.5)	7	1.2
Normal weight (BMI 18.5-24.9)	180	29.8
Overweight (BMI 25-29.9)	244	40.4
Obese (BMI >30)	173	28.6
Hamatitia D (N=EOC)		
Hepatitis B (N=586)		
Positive	29	5.0

^{*}percentages may not add up to 100% as some sub-characteristics were not mutually exclusive

Abbreviations: IQR, interquartile range; N, number; mmHg, millimeter of mercury; bpm; beats per minute; m, meter; kg, kilogram; cm, centimeter; mg/L, milligrams per liter; mmol/LHTN, hypertension; sys, systolic; dias, diastolic; BMI, body mass index

Blood pressures were taken for every truck driver, and the mean measurements were 131mmHg (IQR:122-140mmHg) systolic and 83mmHg (IQR:76-89mmHg) diastolic. Based on the South African hypertension practice guide that defined hypertension as systolic >140mmHg or diastolic >90mmHg⁴⁰, 35.8% (95%CI=32.1-39.7) were hypertensive.

The median blood-glucose level was 5.2mmol/L (IQR 4.6-6.3mmol/L) and 15(2.6%) participants were considered to be diabetic with a non-fasting glucose above 11.0mmol/L. The average cholesterol level was within normal ranges, as were serum creatine and triglyceride levels, while median serum CRP levels were 1.2mg/L.

Table 5 presents the cardiovascular measurements and ECG results showed that 23 (4.9%) and 29 (5.3%) drivers, respectively, had LVH using the Cornell criterium and product. According to the Solokow-Lyon criterium 136 (23.8%) participants had LVH. CIMT measurements showed that 9 (4.2%) drivers had a carotid atherosclerotic plaque. Echocardiographic outcomes showed that 10 drivers (7.6%) had a left ventricular mass above 115 g/m², which is an indicator of LVH. The median ejection fraction (EF) was 59% (IQR 55-65). No driver had an EF <50% which is a sign of heart failure. No moderate or severe valve pathology was observed.

Table 5. Cardiovascular measurements

Electrocardiography- Heart	Median	IQR
Left ventricle		
LVED index, mm/m ² (N=132)	24.32	22.53-26.11
LVESD index, mm/m ² (N=132)	16.01	14.41-17.74
IVS index, mm/m ² (N=132)	5.15	4.60-5.89
LVPW index, mm/m ² (N=132)	4.81	4.26-5.40
LV EDV index, mL/m ² (N=128)	51.45	42.26-57.54
LV ESV index, mL/m ² (N=129)	19.72	16.36-24.17
LVM index g/m ² (N=132)	79.70	68.34-94.88
Left atrium		
LA, mm/m ² (N=132)	17.40	16.13-19.36
LA, volume mL/m ² (N=132)	17.09	12.85-20.30
Systolic and diastolic function		
Simpsons EF, % (N=130)	59	55-65
Mitral inflow E/A ratio (N=130)	1.35	1.15-1.59
Mitral flow deceleration, ms (N=131)	172	150-200
Right ventricle echocardiography		
RV base index, mm/m ² (N=132)	19.21	17.33-21.51
TAPSE, mm (N=124)	19	17-22
Carotid intima-media thickness		
Mean-mean CCA-IMT, mm (N=217)	0.529	0.493-0.596
Mean-max CCA-IMT, mm (N=217)	0.608	0.554-0.685
Max Bulb IMT, mm (N=216)	0.668	0.570-0.830
Electrocardiography-Heart	Frequency	Percentage*
Pulmonary valve (N=131)		
Normal	96	73.3
Mild PR	35	26.7
Tricuspid valve (N=132)		
Normal	93	70.5
Mild TR	39	29.5

^{*}percentages may not add up to 100% as some sub-characteristics were not mutually exclusive

Aortic valve (N=132)		
Normal	131	99.2
Mild AR	1	0.8
Mitral valve (N=132)		
Normal	108	81.8
Mild MR	24	18.2
LVH echo (N=132)		
<115 g/m ²	122	92.4
≥115 g/m²	10	7.6
Electrocardiogram	Frequency	Percentage*
Cornell criterium (N=555)		
<2.8mV	532	95.6
≥2.8mV	23	4.1
Cornell Product mV (N=547)		
<244mVms	518	94.7
≥244mVms	29	5.3
Sokolow-Lyon criterium (N=581)		
<3.5mV	395	68.0
≥3.5mV	186	32.0
Carotid Intima-Media Thickness		
Plaque (CCA-IMT >1.0mm) (N=216)	9	4.2
QTC interval (N=484)		
<450ms	470	97.1
450-500ms	14	2.9
>500ms	0	0.0

Abbreviations: IQR, interquartile range; LVED, left ventricular end-diastolic diameter; mm/m², millimetre per square meter; N, number; LVESD, left ventricular end-systolic diameter; IVS, interventricular septal thickness in end diastole; LVPW, left ventricular posterior wall thickness in end diastole; LV, left ventricle; EDV, end-diastolic volume; mL/ m², milliliters per square meter; ESV, end-systolic volume; LVM = left ventricular mass; g/m², grams per square meter; LA, left atrium; EF, ejection fraction; %, percentage; E/A, early diastole/atrial contraction; ms, millisecond; RV, right ventricle; TAPSE, tricuspid annular plane excursion; mm, millimeter; CCA-IMT, common carotid artery intima-media thickness; IMT, intima-media thickness; PR = pulmonary valve regurgitation; TR = tricuspid valve regurgitation; AR = aortic valve regurgitation; MR = mitral valve regurgitation; LVH = left ventricular hypertrophy; mV, millivolt

DISCUSSION

With over 600 participants, this study is possibly the largest and most comprehensive truck driver health and wellness investigation in sub-Saharan Africa, and the methods used have established a comprehensive reference point of health problems and associated risk factors present in this group. Almost all participants were black African males, the majority from Zimbabwe and over half of the participants had completed high school. Most participants were sexually active with a regular partner, while one quarter had a causal partner and 14% reported sexual activity with a sex worker. Participants drove an average of 10 hours per day, 20 days per month, and half had never worked night shifts, while 12% reported that they worked nights at least 4 times a week. Daytime sleepiness was experienced by almost 20% of participants, while moderate depression and PTSD were experienced by less than 10% of all participants. One-in-five drivers had been in an accident, and half of these drivers had been hospitalized due to the accident. Reported histories of TB, myocardial infarction, and diabetes were below 3%, however prominent cardiac risk-factors included smoking (11%), consuming alcohol (>15 drinks/week) (9%), overweight/obesity (69%), and hypertension (36%). The frequency of hypertension and diabetes is in line with nationwide data from South Africa⁴¹ but the frequency of overweight/obesity is double of

^{*}percentages may not add up to 100% as some sub-characteristics were not mutually exclusive

what is seen in the general population (69% versus 31%) 42 . Reported HIV prevalence was less than the national average (13.1%) 43 , at 8%, and less than half were taking ART.

The methods described here are not only feasible to execute, but their findings provide valuable information regarding the comprehensive health and wellness of truck drivers in South Africa. By examining the findings, relatively low condom use and ART coverage indicate that HIV counselling and testing is still a priority in this population. Elevated risk-factors for NCDs and mental health suggest that screening and linkage to care for these areas need to be prioritized. Surprisingly, although nearly 50% of truck drivers reported doing night shifts at least once a week, only 18% had symptoms of excessive daytime sleepiness. While these findings have highlighted priority areas for truckers in South Africa, these methods could be replicated in similar populations to describe their baseline health statistics and identify areas of need.

Limitations include challenges in recruiting South African truck drivers because long-distance driving is mainly performed by foreign drivers. Accessing healthcare programs and information directly from the trucking companies was difficult, as this is strictly regulated and controlled by unions. The comprehensiveness of the survey also presented a limitation, as some drivers could not join because it would take too much time (it couldn't be performed over a lunch break, for example). A sampling bias may also be present, as the HIV prevalence in the survey is lower than that of the general population, suggesting that truck drivers with risky behaviours may be failing to test for HIV.

Acknowledgements

The authors would like to thank the Centre for Statistical Analysis and Research (CESAR) for their support with the initial data cleaning and analysis and North Star Alliance for their assistance during participant recruitment.

Contributors

Designed the study: AGV. Analysed the data and interpreted results: STL-E, AF, RM, KS, AGV. Wrote the initial draft: STL-E, AF, AGV. Contributed content to subsequent drafts: WDFV, CH, GG, KKG, MD. All authors critically reviewed and approved of the final draft.

Funding

This work was funded by North Star Alliance through a research and implementation grant received from the Ministry of Foreign Affairs of the Netherlands, managed by the Royal Dutch Embassy of Mozambique. The Amsterdam Institute for Global Health and Development and Wits RHI held separate contracts with North Star Alliance (AIGHD's grant reference: 0068 North Star – NSCDP; RHI's grant number: D1404070).

The views of this study are those of the authors and do not necessarily reflect the views of any of the funders or the South African and Dutch governments.

Competing Interests

All authors have no competing interests to declare.

Ethics Approval

University of the Witwatersrand Human Research Ethics Committee approved this evaluation (reference number M160760).

Participation was voluntary. A research nurse or counsellor who spoke the same language as the participant obtained informed consent. The three consent forms obtained for each participant were for

study participation, HCT and storage of blood for further research. Participants received ZAR 150 and a shirt to compensate for their time.

Data Sharing

Extra data is available by emailing A.G.Vos-8@umcutrecht.nl

REFERENCES

- 1. Lalla-Edward S T, Gomez G B. Enroute to a healthy truck driver population. *HIV Nurs. Matters*. 2015; 6 (2), 20–23.
- Stats SA. STATISTICAL RELEASE: Land transport (Preliminary) October 2018. Statistics South Africa. 2018; Pretoria.
- 3. Strauss M, George G, Lansdell E, et al. HIV testing preferences among long distance truck drivers in Kenya: a discrete choice experiment. *AIDS Care*. 2018; 30(1): 72–80.
- 4. Delany-Moretlwe, S., Bello, B., Kinross, P., Oliff, M., Chersich, M., Kleinschmidt, I., et al., HIV prevalence and risk in long distance truck drivers in South Africa: a national cross-sectional survey. *Int. J. STD AIDS.* 2014; 25 (6), 428–438.
- 5. Sieber K, Robinson C, et al. Obesity and other risk factors: The National Survey of U.S. Long-Haul Truck Driver Health and Injury. *American Journal of Industrial Medicine*. 2015; 57 (6) 615–626.
- 6. Hege A, Lemke MK, Apostolopoulos Y, et al. US long-haul truck driver work organization and the association with cardiometabolic disease risk. *Arch Environ Occup Health*. 2017;72(5):303-310
- 7. Du BB, Bigelow PL, Wells, RP, et al. The impact of different seats and whole-body vibration exposures on truck driver vigilance and discomfort. *Ergonomics*. 2018; 61(4):528-537.
- 8. Olson R, Thompson S, Wipfli B, et al. Sleep, Dietary, and Exercise Behavioral Clusters among Truck Drivers with Obesity: Implications for Interventions. *J Occup Environ Med*. 2016; 58(3): 314–321.
- Romo MI, George G, Mantell JE, et al. Psychosocial characteristics of primary care-seeking longdistance truck drivers in Kenya and associations with HIV testing. Afr J AIDS Res. 2018; 17 (2):119-
- 10. Lalla-Edward ST, Ncube S, Matthew, et al. Uptake of health services among truck drivers in South Africa: analysis of routine data from nine roadside wellness centres. *BMC Health Serv Res.* 2017; 17: 649.
- 11. Birdsey J, Sieber WK, Chen GX, et al. National Survey of US Long-Haul Truck Driver Health and Injury: health behaviors. *J Occup Environ Med.* 2015; 57(2):210-6.
- 12. Lalla-Edward ST, Fobosi SC, Hankins C, et al. Healthcare Programmes for Truck Drivers in Sub-Saharan Africa: A Systematic Review and Meta-Analysis. *PLoS One*. 2016; 11(6): e0156975.
- 13. Boyce, W.S., 2016. Does truck driver health and wellness deserve more attention? *J. Transp. Health*. 3 (1), 124–128.
- 14. National Department of Health. *NATIONAL HIV COUNSELLING AND TESTING (HCT) POLICY GUIDELINES*. National Department of Health. 2010; Pretoria, South Africa.
- 15. Prestage G, Song A, Grierson J, Race K, Grulich A et al (2001a). Positive Health: Method and sample (Monograph 9/2000). *Sydney: National Centre in HIV Social Research*. The University of New South Wales.
- 16. Prestage G, Song A, Grierson J, Race K, Grulich A et al (2001b). Positive Health: Treatments, services and health (Monograph 1/2001). *Sydney: National Centre in HIV Social Research*. The University of New South Wales.

- 17. Creel AH, Rimal RN. Factors related to HIV-testing behavior and interest in testing in Namibia. *AIDS care* 23.7 (2011): 901-907.
- 18. Dilorio, C., Parsons, M., Lehr, S., Adame, D., & Carlone, J. Measurement of safe sex behavior in adolescents and young adults. *Nursing Research*. 1992; 41, 203–208.
- 19. Rosen RC, Cappelleri JC Smith MD et al. Development and evaluation of an abridged, 5-item version of the International Index of Erectile Function (IIEF-5) as a diagnostic tool for erectile dysfunction. *International Journal of Impotence Research* (1999) 11, 319-326.
- 20. Costa, P. T., & McCrae, R. R. (1992). Normal personality assessment in clinical practice: The NEO Personality Inventory. Psychological Assessment, 4(1), 5-13.
- 21. Blevins C, Weathgers F, Davis M, et al. The Posttraumatic Stress Disorder Checklist for DSM-5 (PCL-5): Development and Initial Psychometric Evaluation. *Journal of Traumatic Stress*. 2015; 28 (6): 489-498. https://doi.org/10.1002/jts.22059
- 22. Kroenke K, Spitzer R, Williams J. The PHQ-9 Validity of a brief depression severity measure. Journal of General Internal Medicine. 2001; 16 (9):606-613. https://doi.org/10.1046/j.1525-1497.2001.016009606.x
- 23. Johns MW. A new method for measuring daytime sleepiness: The Epworth Sleepiness Scale. Sleep. 1991;14(6):540-5.
- 24. Redman K, Karstaedt A, Scheuermaier K. Increased CD4 counts, pain and depression are correlates of poorer sleep quality in treated HIV positive patients with low baseline CD4 counts. Brain Behav Immun, 2018;69:548-555.
- 25. Cotes JE. Medical Research Council Questionnaire on respiratory symptoms. Correspondence. Lancet 1987;2:1028.
- 26. World Health Organization. World Health Survey 2002. World Health Organization. 2002; Geneva.
- 27. Ferris B. Epidemiology standardization project (American Thoracic Society). Am Rev Respir Dis 1978;118(6 Pt 2):1-120.
- 28. Mengersen K1, Morawska L, Wang H, Murphy N, Tayphasavanh F, Darasavong K, Holmes N. The effect of housing characteristics and occupant activities on the respiratory health of women and children in Lao PDR. Sci Total Environ. 2011 Mar 15;409(8):1378-84.
- 29. World Health Organization. *WHO STEPS Surveillance Manual*. World Health Organization. 2017; Geneva.
- 30. Canadian Centre for Occupational Health and Safety (CCOHS). *Medical History Checklist:* Symptoms Survey for Work-Related Musculoskeletal Disorders (WMSDs). Government of Canada. 2019; https://www.ccohs.ca/oshanswers/diseases/work related WMSD.html
- 31. Alfakih K, Walters K, Jones T, et al. New gender-specific partition values for ECG criteria of left ventricular hypertrophy. *Hypertension*. 2004; 44:1-5
- 32. Ishikawa J, Yamanaka Y, Watanabe S, et al. Cornell product in an electrocardiogram is related to reduced LV regional wall motion. Hypertens Res. 2018 Dec 12. doi: 10.1038/s41440-018-0164-8.
- 33. Sokolow M, Lyon TP. The ventricular complex in left ventricular hypertrophy as obtained by unipolar precordial and limb leads. Am Heart J 1949;37:161-86. 10.1016/0002-8703(49)90562-1
- Okin PM, Roman MJ, Devereux RB, et al. Electrocardiographic identification of increased left ventricular mass by simple voltage-duration products. J Am Coll Cardiol 1995; 25:417-23. 10.1016/0735-1097(94)00371-V
- 35. Boulos NM, Gardin JM, Malik S, Postley J, Wong ND. Carotid Plaque Characterization, Stenosis, and Intima-Media Thickness According to Age and Gender in a Large Registry Cohort. *Am J Cardiol* 2016; **117**:1185-1191.
- 36. Naqvi TZ, Lee MS. Carotid intima-media thickness and plaque in cardiovascular risk assessment. JACC Cardiovasc Imaging 2014;7:1025e38.

- 37. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. European Heart Journal-Cardiovascular Imaging. 2015 Feb 18;16(3):233-71
- 38. Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 2010;23:685-713
- 39. Centers for Disease Control and Prevention. Defining Adult Obesity; Adult Body Mass Index (BMI). https://www.cdc.gov/obesity/adult/defining.html April 11, 2017. Accessed May 2, 2019.
- 40. Hypertension guideline working group, Seedat YK, Rayner BL, Veriava Y. South African hypertension practice guideline 2014 [published correction appears in Cardiovasc J Afr. 2015 Mar-Apr;26(2):90]. *Cardiovasc J Afr.* 2014;25(6):288–294. doi:10.5830/CVJA-2014-062
- 41. International Diabetes Federation. IDF Diabetes Atlas. Seventh Edition. Brussels, IDF. 2015, PMID: 31389103
- 42. National Department of Health (NDoH), Statistics South Africa (Stats SA), South African Medical Research Council (SAMRC), and ICF. 2019. *South Africa Demographic and Health Survey 2016*. Pretoria, South Africa, and Rockville, Maryland, USA: NDoH, Stats SA, SAMRC, and ICF.

43. Statistics South Africa. Mid-year population estimates 2018. Statistical release P0309.3. 2018.

STROBE Statement—Checklist of items that should be included in reports of cross-sectional studies

	Item No	Recommendation
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract [pg1, line1]
		(b) Provide in the abstract an informative and balanced summary of what was done
		and what was found [pg3, line 1-28]
Introduction		200
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported [pg4, line2-22]
Objectives	3	State specific objectives, including any prespecified hypotheses [pg4, line22-26]
Methods		
Study design	4	Present key elements of study design early in the paper [pg4, line28-34]
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection [pg4, line34-42]
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants [pg4, line42-45; pg5, line1-4]
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable [pg5, line8-43; pg6, line1-17]
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group [pg5, line8-43; pg6, line1-17]
Bias	9	Describe any efforts to address potential sources of bias [pg3, line35-41]
Study size	10	Explain how the study size was arrived at [pg4, line42-45]
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why [N/A]
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding [pg6, line18-22]
		(b) Describe any methods used to examine subgroups and interactions [N/A]
		(c) Explain how missing data were addressed [N/A]
		(d) If applicable, describe analytical methods taking account of sampling strategy [N/A]
		(e) Describe any sensitivity analyses [N/A]
Results		
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed [pg6, line25]
		(b) Give reasons for non-participation at each stage [N/A] (c) Consider use of a flow diagram [N/A]
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders [pg6, line25-41]
		(b) Indicate number of participants with missing data for each variable of interest [pg7, line3-9, 11, 16, 22, 29, 37, 42, 47, 52]
Outcome data	15*	Report numbers of outcome events or summary measures [pg8-14]
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included [pg8-14]

		(b) Report category boundaries when continuous variables were categorized [N/A]
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period [N/A]
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses [N/A]
Discussion		
Key results	18	Summarise key results with reference to study objectives [pg14, line 36-49, pg15, line1-2]
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias [pg15, line 12-18]
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence [pg15, line 3-11]
Generalisability	21	Discuss the generalisability (external validity) of the study results [pg15, line 9-11]
Other information		
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based [pg15, line 26-32]

^{*}Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.