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S1. Dynamical Triangulated Monte Carlo (DTMC)

Figure S1. A patch of a membrane represented by a randomly triangulated surface in
presence of pinning sites when Aex = 44% and Np = 10%.

We model a patch of an undulating membrane using a mesoscale membrane model
that treats the membrane as a continuum elastic surface and accounts for the morphological
changes in cell membranes [1]. The continuum surface of the membrane is discretized
into a set of interconnected triangles with each triangle on the surface representing a patch
of a bilayer whose size is much smaller than the persistence length of the bilayer. A
surface with Ntri triangles is constructed with Nv vertices and Nl links that connect the
vertices. The elastic energy of the surface is defined by the well known Canham-Helfrich
Hamiltonian [2, 3]. The discretized form of this Hamiltonian is given by

Helastic =
κ

2

Nv∑
v=1

(2Hv − C0)
2Av, (S1)



where κ is the bending rigidity of membrane, Av is the area, Hv the mean curvature and
C0 the spontaneous curvature at vertex v. C0 accounts for the presence of an asymmetry in
the membrane which may arise either due to lipid asymmetry between monolayers or the
presence of a curvature inducing protein. To compute the mean curvature Hv, we follow
the method introduced by Ramakrishnan et al. [4]. In addition to the elastic energy, we
account for the self-avoidance of the vertices through a link potential given as

USA(l) =

{
0, if a0 ≤ l <

√
3a0

∞ otherwise.
. (S2)

where l is the length of the link connecting two vertices and a0 is vertex diameter. This
is in general not sufficient to impose strict self-avoidance, hence a constraint on the
largest angle between the normals of the two faces sharing a link is imposed. The cutoff
angle is set to be 60°. A patch of the simulated membrane in the randomly triangulated
representation in the presence of pinning is shown in Figure S1.

MC procedure: The MC procedure to equilibrate membrane patch involves a set of
vertex moves and link flips which are accepted through the Metropolis algorithm [5]. Each
MC step contains Nv vertex moves and Nl link flips. In a vertex move, the position of a
vertex is updated to a new location within a cubic box through a random displacement.
The size of the box is selected such that 50% of moves are accepted. The vertex move
allows the membrane shape to relax to an equilibrium conformation. In a link flip
move a randomly selected link, between two triangles is disconnected, and new a link is
established with the unconnected vertices of the same two triangles. This move makes the
triangulation dynamic and preserves the fluid nature of the bilayer membranes by ensuring
the in-plane displacement of vertices.

S2. Constant projected area and constant frame tension ensemble

We consider a patch of the plasma membrane of a cell in a quiescent state wherein the
membrane surface area and projected area, set by the density of cytoskeletal anchorages,
remains nearly constant. Structural reorganization events occur throughout the plasma
membrane. We assume the events in a patch of plasma membrane used in our simulations
(with length scales∼ 600 nm) are independent of those events occurring elsewhere. This is
a good approximation as was previously shown in our earlier in silico study on extracting
tethers from a membrane patch of similar dimensions. Finally, it should be noted that
the membrane projected area and surface area can be changed independently of each



other. The inflow of lipids holding the cortical contacts intact can lead to an increase
in surface area given a constant projected area. Similarly, contractile or extensile motion
of the cortical contacts can lead to change in the projected area holding the frame tension
constant.

A membrane patch in our simulations is bounded and subjected to periodic boundary
conditions by a square frame of size L that defines the projected area of the surface as
Ap = L2. An equilibrated membrane patch has a curvilinear area Amem that is greater than
Ap. To obtain a membrane patch subject to various tension values in the physiological
range, we construct systems with different excess areas (Aex). We initialize the membrane
as a planar square grid with grid size l0 and 50l0 = L. Each square is subdivided into
two triangles with diagonal length

√
2l0 to form a triangulated surface. This grid is then

equilibrated using the MC procedure described in section S1. To satisfy the self avoidance
condition the initial length of the sides and diagonals should be within the limit a0 and√

3a0 , which implies the choice of l0 should satisfy a0 < l0 <
√

3/2a0. In a constant
projected area ensemble, the various Aex values are obtained by holding Ap constant.
Hence Aex is fixed by the choice of l0 which gives Aex in the limit 2− 55%.

As an alternative to the above constant projected area method, we can incorporate the
membrane tension explicitly through a constant frame tension ensemble. Here, we apply
a frame tension τ to the membrane and allow the projected area Ap to fluctuate [6]. In the
constant frame tension ensemble, the Hamiltonian for the MC simulations is modified as:

Helastic =
κ

2

Nv∑
v=1

(2Hv − C0)
2Av + τAp +KA(Amem − A0)

2. (S3)

The last two terms represent frame and stretch contributions to the membrane energy,
which set the area of the membrane. The choice of KA = 4.1 µN/m sets the membrane
area to a preferred areaA0 with the maximum allowed fluctuations of .01%. In the constant
frame tension ensemble the MC procedure includes an additional boundary move that
allows for a change in projected area Ap by rescaling a0. The boundary MC move is
performed at every 20 MC steps.

S3. Free energy calculations

For the free-energy analysis on the membrane patch with adhesive interactions, we adopt
a standard free energy estimation technique for MC simulations called the thermodynamic
integration method [7]. In this method, we define a new potential energy function for the



system HTI that depends on a coupling parameter λ. When λ = 0, HTI corresponds to
the potential energy of the system without pins, denoted as state I , and when λ = 1, HTI

correspond to the potential energy of the system with Np pins, denoted by state II . The
system is evolved with a Hamiltonian HTI = (1− λ)HI + λHII where HI = Helastic and
HII = Helastic +Hbell using the same set of MC moves defined earlier. The path between
state I and II is obtained by varying λ = 0 to λ = 1 for a membrane withNp pins. The free
energy difference between these two states is given by ∆F = FII − FI =

∫ 1

0
〈∂H(λ)

∂λ
〉dλ,

where 〈〉 represents the ensemble average obtained from the simulations. The values of
thermodynamic integration parameter λ are chosen, such that 0 ≤ λ ≤ 1 with an interval
of 0.1. The integration over λ is computed using Simpson’s rule.
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