--- title: "Puerto Rico resilience assessment analysis" author: "David Gibbs" date: "11/29/17" output: word_document: default html_document: default --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) ``` Libraries ```{r necessary libraries} # library(devtools) # install_github("vqv/ggbiplot") library(ggbiplot) library(xlsx) library(psych) library(PerformanceAnalytics) library(reshape2) library(stats) library(psy) library(BiodiversityR) library(Metrics) ``` Loads data into R ```{r load data} #Loads the survey data, calculated as indicators setwd("C:/Users/dagib/Documents/EPA ORISE EARCG/Coral projects/Resilience_assessment/Data/Data_for_PR_2016_assmt") all_data <- read.csv("Raw_NRCMP2014_data_indicators_only_20171129.csv", header=TRUE) all_data <- all_data[order(all_data$Station), c(1:9)] #Loads the indicator weight spreadsheet indic_weights <- read.xlsx("Resilience_data_rescaled_DAG_20180416.xlsx", sheetIndex = 2, header = TRUE) indic_weights <- indic_weights[c(1:10),c(3, 5:11)] #Converts the values in the weighting spreadheet from factors to numeric weights <- sapply(indic_weights[,-c(1:2)], is.factor) indic_weights[weights] <- lapply(indic_weights[weights], function(x) as.numeric(as.character(x))) #Loads the station property data setwd("C:/Users/dagib/Documents/EPA ORISE EARCG/Coral projects/Resilience_assessment/Data/Data_for_PR_2016_assmt/NOAA NCRMP 2014_from_Sarah_Hile_20160817") sta_props <- read.xlsx("NCRMP_PR2014_station_properties.xlsx", sheetIndex = 1, header = TRUE) #Reorders the station property file by station number sta_props <- sta_props[order(sta_props$survey_index),] #Joins the site attributes to the indicators all_data_attribs <- merge(x = all_data, y = sta_props, by.x = "Station", by.y = "survey_index") #The 111 sites that have coral demographic surveys demog_sites_attribs <- all_data_attribs[which(all_data_attribs$demo=="1"),] demog_sites <- demog_sites_attribs[,c(1:9)] #Just the sites with demographic surveys that actually had full-sized coral colonies. #This removes the 8 sites that did not have any full-sized coral colonies. 103 records left. demog_sites_complete_records <- demog_sites_attribs[complete.cases(demog_sites_attribs),] #Keeps just the demographic survey indicators at the demographic sites #(coral diversity, coral disease, coral thermal tolerance) demog_sites_demog_fields <- demog_sites_complete_records[,c(1:3, 9)] #All sites without demographic data. #Removes the columns that are only for sites with demographic data. all_sites_non_demog_fields <- all_data_attribs[,c(1, 4:8)] #Loads the fishing pressure data setwd("C:/Users/dagib/Documents/EPA ORISE EARCG/Coral projects/Resilience_assessment/GIS/Stressors/Fishing_pressure") fishing <- read.csv("NCRMP2014_stations_with_Shivlani_fishing_pressure_sptl_join_20180409.csv", header = TRUE) #Loads land-based sources of pollution (LBSP) data setwd("C:/Users/dagib/Documents/EPA ORISE EARCG/Coral projects/Resilience_assessment/GIS/Stressors/LBSP_coastal_dispersion") LBSP <- read.xlsx("LBSP_at_NCRMP_sites_90ft_depth_using_7_nearest_OpenNSPECT_pour_points_CCAP2010_20180412.xls", sheetIndex = 10, header = TRUE) #loads annual bleaching onset year (scenario rcp8.5) estimates for each site setwd("C:/Users/dagib/Documents/EPA ORISE EARCG/Coral projects/Resilience_assessment/GIS/UNEP van Hooindonk 2016 bleaching projections") annual_bleaching_rcp85 <- read.csv("annual_bleaching_onset_year_rcp85_20180424.csv", header = TRUE) ``` Performs principal components analysis as shown at https://www.r-bloggers.com/computing-and-visualizing-pca-in-r/ using the prcomp method ```{r performs PCA} #PCA for sites with demographic data using demog and non-demog (i.e. all) indicators demog_sites_pca <- prcomp(demog_sites_complete_records[,c(2:9)], center=TRUE, scale.=TRUE) print(demog_sites_pca) summary(demog_sites_pca) plot(demog_sites_pca, type = "lines") #Matrix of each site with its PCA scores demog_sites_pca_scores <- demog_sites_pca$x demog_sites_pca_scores <- cbind(demog_sites_complete_records[,1], demog_sites_pca_scores) # #PCA for all sites using non-demographic indicators only # all_sites_non_demog_fields_pca <- prcomp(all_sites_non_demog_fields[,c(2:5)], center=TRUE, scale.=TRUE) # print(all_sites_non_demog_fields_pca) # summary(all_sites_non_demog_fields_pca) # plot(all_sites_non_demog_fields_pca, type = "lines") # #Matrix of each site with its PCA scores # all_sites_non_demog_fields_pca_scores <- all_sites_non_demog_fields_pca$x # all_sites_non_demog_fields_pca_scores <- cbind(all_sites_non_demog_fields[,1], all_sites_non_demog_fields_pca_scores) # # #PCA for demog sites using demographic indicators only at demographic sites # demog_sites_demog_fields_pca <- prcomp(demog_sites_demog_fields[,c(2:4)], center=TRUE, scale.=TRUE) # print(demog_sites_demog_fields_pca) # summary(demog_sites_demog_fields_pca) # plot(demog_sites_demog_fields_pca, type = "lines") # #Matrix of each site with its PCA scores # demog_sites_demog_fields_pca_scores <- demog_sites_demog_fields_pca$x # demog_sites_demog_fields_pca_scores <- cbind(demog_sites_demog_fields[,1], demog_sites_demog_fields_pca_scores) ``` Creates PCA ordination plots ```{r PCA ordination plots} #PCA ordination plots for sites with demographic data using demog and non-demog (i.e. all) indicators demog_sites_pca_plot <- ggbiplot(demog_sites_pca, obs.scale = 1, var.scale = 1) demog_sites_pca_plot <- demog_sites_pca_plot + scale_color_discrete(name = '') demog_sites_pca_plot <- demog_sites_pca_plot + theme(legend.direction = 'horizontal', legend.position = 'top') demog_sites_pca_plot <- demog_sites_pca_plot + ggtitle("PCA for sites with demographic data") print(demog_sites_pca_plot) # #PCA ordination plots for demographic indicators at demographic sites # demog_pca_plot <- ggbiplot(demog_sites_demog_fields_pca, obs.scale = 1, var.scale = 1) # demog_pca_plot <- demog_pca_plot + scale_color_discrete(name = '') # demog_pca_plot <- demog_pca_plot + theme(legend.direction = 'horizontal', # legend.position = 'top') # demog_pca_plot <- demog_pca_plot + ggtitle("PCA for demographic indicators at sites with demographic data") # print(demog_pca_plot) # # #PCA ordination plots for all sites using non-demographic indicators only # non_demog_pca_plot <- ggbiplot(all_sites_non_demog_fields_pca, obs.scale = 1, var.scale = 1) # non_demog_pca_plot <- non_demog_pca_plot + scale_color_discrete(name = '') # non_demog_pca_plot <- non_demog_pca_plot + theme(legend.direction = 'horizontal', # legend.position = 'top') # non_demog_pca_plot <- non_demog_pca_plot + ggtitle("PCA for non-demographic indicators at all sites") # print(non_demog_pca_plot) ``` Correlations between all pairs of indicators ```{r Correlations between indicators} #Sites with coral demographic data that have all indicator values (i.e. excludes 8 sites that did not have any demogrphic data) chart.Correlation(demog_sites_complete_records[,c(2:9)], histogram=TRUE, method=c("spearman"), pch=".") demog_indic_cor <- cor(demog_sites_complete_records[,c(2:9)], use="pairwise.complete.obs", method=c("spearman")) # pairs.panels(demog_sites_complete_records[,c(2:9)], method="spearman", lm=TRUE, ellipses=FALSE) # #Sites with demographic data but just using the indicators that don't come from the demographic surveys # chart.Correlation(all_sites_non_demog_fields[,c(2:6)], histogram=TRUE, method=c("spearman"), pch=".") # # pairs.panels(all_sites_non_demog_fields[,c(2:6)], method="spearman", lm=TRUE, ellipses=FALSE) write.table(demog_indic_cor, file = paste("demog_indic_Pearson_", Sys.Date(), ".csv", sep=""), row.names = FALSE) ``` Factor analysis between all indicators Sources include: http://www.statpower.net/Content/312/R%20Stuff/Exploratory%20Factor%20Analysis%20with%20R.pdf https://www.promptcloud.com/blog/exploratory-factor-analysis-in-r/ http://www.di.fc.ul.pt/~jpn/r/factoranalysis/factoranalysis.html#introduction ```{r Factor analysis between all indicators} #Conducts the factor analysis using varimax rotation demog_fa <- factanal(demog_sites_complete_records[,c(2:9)], factors=4, rotation="varimax") demog_fa #Scree plot of factors' importance to show how many factors to use scree.plot(demog_fa$correlation) #Plots the loadings of the indicators on two of the factors demog_fa_load <- demog_fa$loadings[,c(1:2)] plot(demog_fa_load, type="n") text(demog_fa_load, labels=names(demog_sites_complete_records[,c(2:9)]), cex=0.7) ``` Rescales indicators ```{r Rescale indicators} #Divides each indicator by the largest value for that indicator across all sites with demographic data demog_sites_rescaled <- t(t(demog_sites_complete_records[,c(2:9)])/apply(demog_sites_complete_records[,c(2:9)], 2, function(x) max(na.omit(x)))) #Binds the rescaled indicators to the raw indicators demog_sites_rescaled <- cbind(demog_sites_complete_records[,c(1:9)], demog_sites_rescaled) #Renames the columns to distinguish the raw indicators from the rescaled indicators colnames(demog_sites_rescaled)[1] <- colnames(demog_sites_attribs)[1] colnames(demog_sites_rescaled)[c(2:9)] <- paste(colnames(demog_sites_rescaled)[c(2:9)], "_raw", sep="") colnames(demog_sites_rescaled)[c(10:17)] <- paste(colnames(demog_sites_rescaled)[c(10:17)], "_rescaled", sep="") # #Turns unweighted indicators into long form for box plot. Also reorders the variables for box plot. # demog_sites_rescaled_long <- melt(demog_sites_rescaled[,c(10:17)]) # demog_sites_rescaled_long$variable <- factor(demog_sites_rescaled_long$variable, levels=c("SimpsonDiv_rescaled", "FractNotDiseased_rescaled","ThermalTol_rescaled", "HardCoralCover_rescaled", "AlgaeCover_rescaled", "Rugosity_rescaled", "HerbivoreBiomass_rescaled", "TempVar_rescaled")) # # #creates boxplot of each rescaled indicator (1 is maximum value) # p <- ggplot(data=demog_sites_rescaled_long, aes(x=variable, y=value)) + geom_boxplot(aes(fill=variable)) # p <- p + theme(legend.position="none") # p <- p + theme(axis.text.x = element_text(angle = 65, vjust = 0.6)) # p <- p + labs(x = "Indicator", y = "Rescaled value") # p <- p + scale_fill_manual(values=c("#999555", "#999555", "#999555", "#999555", "#999555", "#999555", "#999555", "#999555")) # p ``` Functions to calculate composite resilience scores, ranks, and rank quartiles at sites with demographic data: 1) using all indicators, and 2) without the temperature variation indicator ```{r Functions to calculate unweighted resilience scores} #Calculates the composite resilience score by averaging the rescaled indicators resilScore <- function(rescaled_indics) { #Creates empty fields for the resilience scores rescaled_indics$resil_all_indic <- NA rescaled_indics$resil_no_temp_var <- NA #Calculates resilience scores with all indicators and without the temperature variation indicator. resil_all_indic_demog <- rowMeans(rescaled_indics[which(rescaled_indics$demo == 1), c(10:17)], na.rm = TRUE) resil_no_temp_var_demog <- rowMeans(rescaled_indics[which(rescaled_indics$demo == 1), c(10:15,17)], na.rm = TRUE) # resil_all_indic_non_demog <- rowMeans(rescaled_indics[which(rescaled_indics$demo == 0), c(10:17)], na.rm = TRUE) # resil_no_temp_var_non_demog <- rowMeans(rescaled_indics[which(rescaled_indics$demo == 0), c(10:15,17)], na.rm = TRUE) #Rescales the resilience scores to the highest resilience score #Rescaled resilience scores are calculated separetly for sites with an without demographic data because their indicators are different. resil_all_indic_demog <- resil_all_indic_demog/max(resil_all_indic_demog) resil_no_temp_var_demog <- resil_no_temp_var_demog/max(resil_no_temp_var_demog) # resil_all_indic_non_demog <- resil_all_indic_non_demo/max(resil_all_indic_non_demog) # resil_no_temp_var_non_demog <- resil_no_temp_var_non_demo/max(resil_no_temp_var_non_demog) #Attaches the resilience scores (all indicators and without temperature variation) to the rescaled indicator table rescaled_indics[which(rescaled_indics$demo == 1), ]$resil_all_indic <- resil_all_indic_demog rescaled_indics[which(rescaled_indics$demo == 1), ]$resil_no_temp_var <- resil_no_temp_var_demog # rescaled_indics[which(rescaled_indics$demo == 0), ]$resil_all_indic <- resil_all_indic_non_demo # rescaled_indics[which(rescaled_indics$demo == 0), ]$resil_no_temp_var <- resil_no_temp_var_non_demo return(rescaled_indics) } #Calculates the resilience score rank (1 is highest resilience) for each site resilRank <- function(rescaled_indics) { rescaled_indics <- as.data.frame(rescaled_indics) #Creates empty columns for the resilience ranks rescaled_indics$resil_rank_all_indic <- NA rescaled_indics$resil_rank_no_temp_var <- NA #Resilience ranks for demographic sites using all indicators rescaled_indics[which(rescaled_indics$demo == 1),]$resil_rank_all_indic <- rank(-rescaled_indics[which(rescaled_indics$demo == 1),]$resil_all_indic, na.last = "keep", ties.method = "first") # #Resilience ranks for non-demographic sites using all indicators # rescaled_indics[which(rescaled_indics$demo == 0),]$resil_rank_all_indic <- rank(-rescaled_indics[which(rescaled_indics$demo == 0),]$resil_all_indic, na.last = "keep", ties.method = "first") #Resilience ranks for demographic sites using all indicators except temperature variation rescaled_indics[which(rescaled_indics$demo == 1),]$resil_rank_no_temp_var <- rank(-rescaled_indics[which(rescaled_indics$demo == 1),]$resil_no_temp_var, na.last = "keep", ties.method = "first") # #Resilience ranks for non-demographic sites using all indicators except temperature variation # rescaled_indics[which(rescaled_indics$demo == 0),]$resil_rank_no_temp_var <- rank(-rescaled_indics[which(rescaled_indics$demo == 0),]$resil_no_temp_var, na.last = "keep", ties.method = "first") return(rescaled_indics) } #Calculates the quartile of resilience that each site is in (1 is most resilient quartile, 4 is least resilient quartile resilQuartile <- function(rescaled_indics) { #Creates empty columns for the resilience rank quartiles rescaled_indics$resil_quart_all_indic <- NA rescaled_indics$resil_quart_no_temp_var <- NA #Resilience rank quartiles for demographic sites using all indicators rescaled_indics[which(rescaled_indics$demo == 1),]$resil_quart_all_indic <- cut(rescaled_indics[which(rescaled_indics$demo == 1),]$resil_rank_all_indic, breaks=quantile(rescaled_indics[which(rescaled_indics$demo == 1),]$resil_rank_all_indic, probs=seq(0, 1, 0.25)), include.lowest=TRUE, labels = 1:4) # #Resilience rank quartiless for demographic sites using all indicators except temperature variation # rescaled_indics[which(rescaled_indics$demo == 0),]$resil_quart_all_indic <- # cut(rescaled_indics[which(rescaled_indics$demo == 0),]$resil_rank_all_indic, breaks=quantile(rescaled_indics[which(rescaled_indics$demo == 0),]$resil_rank_all_indic, probs=seq(0, 1, 0.25)), include.lowest=TRUE, labels = 1:4) #Resilience rank quartiles for non-demographic sites using all indicators rescaled_indics[which(rescaled_indics$demo == 1),]$resil_quart_no_temp_var <- cut(rescaled_indics[which(rescaled_indics$demo == 1),]$resil_rank_no_temp_var, breaks=quantile(rescaled_indics[which(rescaled_indics$demo == 1),]$resil_rank_no_temp_var, probs=seq(0, 1, 0.25)), include.lowest=TRUE, labels = 1:4) # #Resilience rank quartiles for non-demographic sites using all indicators except temperature variation # rescaled_indics[which(rescaled_indics$demo == 0),]$resil_quart_no_temp_var <- # cut(rescaled_indics[which(rescaled_indics$demo == 0),]$resil_rank_no_temp_var, breaks=quantile(rescaled_indics[which(rescaled_indics$demo == 0),]$resil_rank_no_temp_var, probs=seq(0, 1, 0.25)), include.lowest=TRUE, labels = 1:4) return(rescaled_indics) } ``` Calculates resilience scores, ranks, and quartiles for unweighted indicators ```{r Calculates resilience scores, ranks, and quartiles for unweighted indicators} demog_sites_rescaled <- as.data.frame(demog_sites_rescaled) #Attaches the site attributes to the indicators and resilience scores demog_sites_rescaled_attribs <- merge(x = demog_sites_rescaled, y = sta_props, by.x = "Station", by.y = "survey_index") #Resilience scores based on rescaled indicators demog_sites_rescaled_scores <- resilScore(demog_sites_rescaled_attribs) #Resilience ranks based on the composite resilience scores demog_sites_rescaled_ranks <- resilRank(demog_sites_rescaled_scores) #Resilience quartiles based on the resilience ranks (1 is most resilient quartile, 4 is least resilient quartile) demog_sites_rescaled_quartiles <- resilQuartile(demog_sites_rescaled_ranks) #Adds a field with the weighting system for the indicators. This one is unweighted. demog_sites_rescaled_quartiles["weighting_sys"] <- 0 #Deletes a redundant field demog_sites_rescaled_quartiles <- demog_sites_rescaled_quartiles[,-c(21)] #Adds four fields for comparing the unweighted and weighted ranks and quartiles (two for ranks/quartiles with all indicators and two for ranks/quartiles without temperature variation). Does not apply for the unweighted data, of course. demog_sites_rescaled_quartiles["quartile_change_all_indic"] <- "N/A" demog_sites_rescaled_quartiles["diff_unweighted_weighted_all_indic"] <- "N/A" demog_sites_rescaled_quartiles["quartile_change_no_temp_var"] <- "N/A" demog_sites_rescaled_quartiles["diff_unweighted_weighted_no_temp_var"] <- "N/A" #Saves the unweighted data in its own dataframe data_demog_sites_unweighted <- demog_sites_rescaled_quartiles write.table(data_demog_sites_unweighted, file = paste("demog_sites_unweighted_", Sys.Date(), ".csv", sep=""), row.names = FALSE) ``` Calculates resilience scores for each site using different weighting systems ```{r Calculates resilience scores using different weighting systems} #Creates a new dataframe for weighted data data_demog_sites_weighted <- demog_sites_rescaled_quartiles for(i in 2:nrow(indic_weights)) { #Creates an empty weighting table weighted <- NA #Iterates through every station for(j in 1:nrow(data_demog_sites_unweighted)) { #Multiplies the rescaled values by the indicator weights weighted_new <- data_demog_sites_unweighted[j,c(10:17)]*indic_weights[i,c(1:8)] weighted <- rbind(weighted, weighted_new) } #Removes the empty first row of the weighted table weighted <- weighted[-c(1),] #Adds the station property columns to the weighted values and rearranges columns so they match the unweighted table weighted <- cbind(data_demog_sites_weighted[c(1:nrow(data_demog_sites_unweighted)),c(1:9)], weighted) weighted <- cbind(weighted, data_demog_sites_weighted[c(1:nrow(data_demog_sites_unweighted)),c(18:ncol(data_demog_sites_weighted))]) #Resilience scores based on all rescaled indicators available at a site weighted <- resilScore(weighted) #Resilience ranks (separate for sites with and without demographic indicators (111 and 119, respectively)) weighted <- resilRank(weighted) #Resilience quartiles (separate for sites with and without demographic indicators (111 and 119, respectively)) weighted <- resilQuartile(weighted) #Adds a field with the weighting system for the indicators weighted["weighting_sys"] <- i-1 #Adds four fields for comparing the unweighted and weighted ranks and quartiles (two for ranks/quartiles with all indicators and two for ranks/quartiles without temperature variation). Does not apply for the unweighted data, of course. weighted["quartile_change_all_indic"] <- NA weighted["diff_unweighted_weighted_all_indic"] <- NA weighted["quartile_change_no_temp_var"] <- NA weighted["diff_unweighted_weighted_no_temp_var"] <- NA #Adds and populates columns for storing changes in resilience rank and quartile between the unweighted and weighted systems weighted$quartile_change_all_indic <- paste(data_demog_sites_unweighted$resil_quart_all_indic, " to ", weighted$resil_quart_all_indic) weighted$diff_unweighted_weighted_all_indic <- data_demog_sites_unweighted$resil_rank_all_indic - weighted$resil_rank_all_indic weighted$quartile_change_no_temp_var <- paste(data_demog_sites_unweighted$resil_quart_no_temp_var, " to ", weighted$resil_quart_no_temp_var) weighted$diff_unweighted_weighted_no_temp_var <- data_demog_sites_unweighted$resil_rank_no_temp_var - weighted$resil_rank_no_temp_var #Gives the weighted table the same column names as the unweighted table colnames(weighted) <- colnames(data_demog_sites_weighted) #Adds the weighted table to the end of the previous table data_demog_sites_weighted <- rbind(data_demog_sites_weighted, weighted) } write.table(data_demog_sites_weighted, file = paste("resil_with_weighting_", Sys.Date(), ".csv", sep=""), row.names = FALSE) ``` Plots comparing ranks of unweighted resilience ranks and some of the weighted resilience ranks against each other Also calculates the root mean square error of ranks under the weighting systems against the ranks under the unweighted system ```{r Plots comparing ranks of unweighted resilience ranks and some of the weighted resilience ranks against each other. Also, calculated RMSE of weighted vs. unweighted.} #Function to plot the resilience score ranks. Run separately on sites with and without demographic indicators. This is just for resilience ranks calculated without the temperature variation indicator. resilRankCompare <- function(sensit_table, demog) { #Table of unweighted ranks unweighted_table <- sensit_table[which(sensit_table$demo==demog & sensit_table$weighting_sys == 0),]$resil_rank_no_temp_var rank_table <- data.frame(unweighted_table) colnames(rank_table) <- "Unweighted" #Iterates through the chosen weighting systems for (i in c(3,7,9)){ #For each weighting system, a dataframe with the ranks weighted_table <- sensit_table[which(sensit_table$demo==demog & sensit_table$weighting_sys == i),]$resil_rank_no_temp_var weighted_table <- data.frame(weighted_table) colnames(weighted_table) <- paste("Weighting_", i, sep="") #Attaches the table with weighted ranks rank_table <- cbind(rank_table, weighted_table) } #Creates the plot g_total<- ggplot(rank_table, aes(x = Unweighted, y = Weighted_7, color = Weighting)) + geom_point(aes(y = rank_table[,2], col = gsub("_", " ", colnames(rank_table)[2])), shape=19, size=3) + geom_point(aes(y = rank_table[,3], col = gsub("_", " ", colnames(rank_table)[3])), shape=15, size=3) + geom_point(aes(y = rank_table[,4], col = gsub("_", " ", colnames(rank_table)[4])), shape=18, size=3) + scale_color_grey(start=0.65, end=0.05) g_total <- g_total + labs(x = "Unweighted rank", y = "Weighted rank", color = "Weighting system") g_total <- g_total + xlim(0, nrow(rank_table)+10) g_total <- g_total + ylim(0, nrow(rank_table)+10) # g_total <- g_total + ggtitle("Weighted vs. unweighted resilience score ranks") # g_total <- g_total + labs(subtitle = "For select weighting systems") g_total <- g_total + theme(plot.title = element_text(hjust = 0.5)) g_total <- g_total + theme(plot.subtitle=element_text(hjust = 0.5)) g_total <- g_total + scale_x_continuous(breaks=c(seq(0,nrow(rank_table)+10,25))) g_total <- g_total + scale_y_continuous(breaks=c(seq(0,nrow(rank_table)+10,25))) g_total <- g_total + theme_bw() g_total <- g_total + guides(color = guide_legend(override.aes = list(shape = c(19,15,18)))) g_total <- g_total + theme(legend.position = c(0.9,0.2)) # #Different subtitles depending on whether demographic sites or non-demographic sites are being plotted # if (demog==0) { # g_total<- g_total+ labs(subtitle = "Only sites without demographic indicators") # } # if (demog==1) { # g_total<- g_total+ labs(subtitle = "Only sites with demographic data (no temperature variation indicator)") # } return(g_total) } # p1 <- resilRankCompare(all_data_rescaled_attribs, 0) # p1 p2 <- resilRankCompare(data_demog_sites_weighted, 1) p2 ggsave("indic_sensit_analysis.jpg", plot = p2, device = "jpeg", width=10, height=8, dpi=300) ####Calculates root mean square error (RMSE)for each comparison of weighted and unweighted indicator rankings #Creates an empty dataframe rmse_weights <- data.frame(matrix(NA, nrow=9, ncol=1)) colnames(rmse_weights) <- "RMSE" #Unweighted ranks unweighted_ranks <- data_demog_sites_weighted[which(data_demog_sites_weighted$weighting_sys == 0),]$resil_rank_no_temp_var #Calculates RMSE for each weighted ranking system for (i in 1:max(data_demog_sites_weighted$weighting_sys)){ weighted_ranks <- data_demog_sites_weighted[which(data_demog_sites_weighted$weighting_sys == i),]$resil_rank_no_temp_var rmse_weights[i,1] <- rmse(unweighted_ranks, weighted_ranks) } print(rmse_weights) ``` Plots comparing the difference between weighted resilience ranks against unweighted ranks ```{r Plots comparing the difference between weighted resilience ranks against unweighted ranks} #Function to plot the resilience score ranks. Run separately on sites with and without demographic indicators. This is just for resilience ranks calculated without the temperature variation indicator. resilRankDiff <- function(sensit_table, demog) { #Table of unweighted ranks unweighted_table <- sensit_table[which(sensit_table$demo==demog & sensit_table$weighting_sys == 0),]$resil_rank_no_temp_var rank_table <- data.frame(unweighted_table) colnames(rank_table) <- "Unweighted" #Iterates through the chosen weighting systems for (i in c(3,7,9)){ #For each weighting system, a dataframe with the rank differences weighted_table <- sensit_table[which(sensit_table$demo==demog & sensit_table$weighting_sys == i),]$diff_unweighted_weighted_no_temp_var weighted_table <- data.frame(weighted_table) colnames(weighted_table) <- paste("Weighting_", i, sep="") #Attaches the table with weighted ranks rank_table <- cbind(rank_table, weighted_table) } #Converts the rank differences into numbers rank_table[,c(2:4)] <- lapply(rank_table[,c(2:4)], function(x) as.numeric(as.character(x))) #Creates the plot g_diff<- ggplot(rank_table, aes(x = Unweighted, y = Weighted_7, color = Weighting)) + geom_point(aes(y = rank_table[,2], col = colnames(rank_table)[2])) + geom_point(aes(y = rank_table[,3], col = colnames(rank_table)[3])) + geom_point(aes(y = rank_table[,4], col = colnames(rank_table)[4])) g_diff<- g_diff+ labs(x = "Unweighted rank", y = "Difference from unweighted rank") g_diff<- g_diff+ ggtitle("Difference between weighted and unweighted ranks") g_diff<- g_diff+ theme(plot.title = element_text(hjust = 0.5)) g_diff<- g_diff+ theme(plot.subtitle = element_text(hjust = 0.5)) g_diff <- g_diff + theme_bw() #Different subtitles depending on whether demographic sites or non-demographic sites are being plotted if (demog==0) { g_diff<- g_diff+ labs(subtitle = "Only sites without demographic indicators") } if (demog==1) { g_diff<- g_diff+ labs(subtitle = "Only sites with demographic data (no temperature variation indicator)") } return(g_diff) } # p3 <- resilRankCompare(all_data_rescaled_attribs, 0) # p3 p4 <- resilRankDiff(data_demog_sites_weighted, 1) p4 ``` Matrix of how many sites change quartiles using different weighting systems. Only for quartiles assigned without the temperature variation indicator. ```{r Table of how many sites change quartiles using different weighting systems} #Makes the quartile change field a factor data_demog_sites_weighted$quartile_change_no_temp_var <- as.factor(data_demog_sites_weighted$quartile_change_no_temp_var) #dataframe for quartile changes that is one column for each weighting scheme and one row for each quartile change found in the data quartile_change <- data.frame(matrix(0, nrow = nlevels(data_demog_sites_weighted$quartile_change_no_temp_var), ncol = max(data_demog_sites_weighted$weighting_sys))) #Assigns row and column names row.names(quartile_change) <- c(levels(data_demog_sites_weighted$quartile_change_no_temp_var)) colnames(quartile_change) <- paste("Weighting_", c(1:max(data_demog_sites_weighted$weighting_sys)), sep="") #Deletes the empty first row quartile_change <- quartile_change[-c(nrow(quartile_change)),] #Iteratres through all the weighting schemes (i.e. columns of the quartile_change dataframe) for (i in 1:max(data_demog_sites_weighted$weighting_sys)) { #Pulls out just the appropriate weighting weighted <- data_demog_sites_weighted[which(data_demog_sites_weighted$weighting_sys == i),] #Iterates through every row (i.e. station) of the weighting to pull out its quartile transition for (j in 1:nrow(weighted)) { #The actual transition for the row (station) of the weighting system that is being added to the transition matrix change <- weighted$quartile_change_no_temp_var[j] #Increments the value in the transition matrix by 1 for each transition found value <- as.integer(subset(quartile_change, rownames(quartile_change) %in% change)[i]) + 1 quartile_change[which(rownames(quartile_change) %in% change),i] <- value } } #Sums the number of transitions for each weighting system. It should be 230. quartile_change["Sum",] <- colSums(quartile_change) quartile_change <- quartile_change/nrow(data_demog_sites_unweighted) print(quartile_change) write.table(quartile_change, file = paste("sensit_analysis_quartile_change_", Sys.Date(), ".csv", sep=""), row.names = TRUE) ``` Merges LBSP and fishing stressor data with indicator data and makes boxplots of rescaled stressors and indicators ```{r Merges LBSP and fishing stressor data with indicator data and makes boxplots} #Calculates the average of the rescaled nitrogen and sediment values for each site LBSP$StrdLBSP <- rowMeans(LBSP[,c("StrdNtrgen", "StrdSedmnt")]) #Replaces the non-existent LBSP values with NAs LBSP[LBSP$StrdNtrgen == -99999, ]$StrdNtrgen <- NA LBSP[LBSP$StrdSedmnt == -99999, ]$StrdSedmnt <- NA LBSP[LBSP$StrdLBSP == -99999, ]$StrdLBSP <- NA #Only the necessary columns from the fishing data, and changes field names fishing_no_attribs <- fishing[,c(4, 32:36)] colnames(fishing_no_attribs)[c(2:6)] <- paste(colnames(fishing_no_attribs)[c(2:6)], "_fishing", sep="") #New dataset that will have indicators and stressors demog_sites_with_stressors <- data_demog_sites_weighted #Merges the fishing data to the indicator data demog_sites_with_stressors <- merge(x = demog_sites_with_stressors, y = fishing_no_attribs, by.x = "Station", by.y = "SurveyIndx") #Merges the LBSP data to the indicator data demog_sites_with_stressors <- merge(x = demog_sites_with_stressors, y = LBSP[,-c(1)], by.x = "Station", by.y = "StationID") #Rescales fishing values to a highest value of 1 for the sites in the assessment demog_sites_with_stressors$all_total_fishing_rescaled <- demog_sites_with_stressors$all_total_fishing/max(demog_sites_with_stressors$all_total_fishing, na.rm=TRUE) #Rescales the LBSP values to a highest value of 1 for the sites in the assessment demog_sites_with_stressors$StrdNtrgen <- demog_sites_with_stressors$StrdNtrgen/max(demog_sites_with_stressors$StrdNtrgen, na.rm=TRUE) demog_sites_with_stressors$StrdSedmnt <- demog_sites_with_stressors$StrdSedmnt/max(demog_sites_with_stressors$StrdSedmnt, na.rm=TRUE) demog_sites_with_stressors$StrdLBSP <- demog_sites_with_stressors$StrdLBSP/max(demog_sites_with_stressors$StrdLBSP, na.rm=TRUE) #Since the above merges changed the order of the rows, reorders the indicator/stressor data by the weighting system, then by the station ID demog_sites_with_stressors <- demog_sites_with_stressors[order(demog_sites_with_stressors$weighting_sys, demog_sites_with_stressors$Station),] #Turns unweighted indicators and stressors into long form for box plot. Also reorders the variables for box plot. demog_sites_rescaled_long <- melt(demog_sites_with_stressors[which(demog_sites_with_stressors$weighting_sys == 0),c(10:17, 41,42, 64:67)]) demog_sites_rescaled_long$variable <- factor(demog_sites_rescaled_long$variable, levels=c("SimpsonDiv_rescaled", "FractNotDiseased_rescaled","ThermalTol_rescaled", "HardCoralCover_rescaled", "AlgaeCover_rescaled", "Rugosity_rescaled", "HerbivoreBiomass_rescaled", "TempVar_rescaled", "resil_all_indic", "resil_no_temp_var", "StrdNtrgen", "StrdSedmnt", "StrdLBSP", "all_total_fishing_rescaled")) #creates boxplot of each rescaled indicator (1 is maximum value) p <- ggplot(data=demog_sites_rescaled_long, aes(x=variable, y=value)) + geom_boxplot(aes(fill=variable)) p <- p + theme_bw() p <- p + theme(text = element_text(size=14), axis.text.x = element_text(angle = 0, vjust = 0.6)) p <- p + labs(x = "Metric \n (indicator, stressor, or resilience score)", y = "Rescaled value") p <- p + scale_fill_manual(values=c("#999555", "#999555", "#999555", "#999555", "#999555", "#999555", "#999555", "#999555", "blue", "blue", "#999999", "#999999", "#999999", "#999999")) p <- p + scale_x_discrete(labels=c("Simpson \n diversity ", "Colonies \n not \n diseased","Coral \n thermal \n tolerance", "Hard \n coral \n cover", "Macroalgae \n cover", "Rugosity", "Herbivore \n biomass", "Temperature \n variation", "Resilience- \n all indicators", "Resilience- \n without \n temperature \n variation", "Nitrogen \n level", "Sediment \n level", "N + sed \n average", "Fishing \n pressure")) p <- p + scale_y_continuous(breaks=c(seq(0,1,0.2))) p <- p + theme(legend.position="none") #Minimum, mean, and maximum values of raw indicators, where appropriate simpson_min <- min(data_demog_sites_unweighted$SimpsonDiv_raw) simpson_mean <- mean(data_demog_sites_unweighted$SimpsonDiv_raw) simpson_max <- max(data_demog_sites_unweighted$SimpsonDiv_raw) disease_min <- min(data_demog_sites_unweighted$FractNotDiseased_raw) disease_mean <- mean(data_demog_sites_unweighted$FractNotDiseased_raw) disease_max <- max(data_demog_sites_unweighted$FractNotDiseased_raw) thermalTol_min <- min(data_demog_sites_unweighted$ThermalTol_raw) thermalTol_mean <- mean(data_demog_sites_unweighted$ThermalTol_raw) thermalTol_max <- max(data_demog_sites_unweighted$ThermalTol_raw) coralCover_min <- min(data_demog_sites_unweighted$HardCoralCover_raw) coralCover_mean <- mean(data_demog_sites_unweighted$HardCoralCover_raw) coralCover_max <- max(data_demog_sites_unweighted$HardCoralCover_raw) algaeCover_min <- min(data_demog_sites_unweighted$AlgaeCover_raw) algaeCover_mean <- mean(data_demog_sites_unweighted$AlgaeCover_raw) algaeCover_max <- max(data_demog_sites_unweighted$AlgaeCover_raw) rugosity_min <- min(data_demog_sites_unweighted$Rugosity_raw) rugosity_mean <- mean(data_demog_sites_unweighted$Rugosity_raw) rugosity_max <- max(data_demog_sites_unweighted$Rugosity_raw) herbiv_min <- min(data_demog_sites_unweighted$HerbivoreBiomass_raw) herbiv_mean <- mean(data_demog_sites_unweighted$HerbivoreBiomass_raw) herbiv_max <- max(data_demog_sites_unweighted$HerbivoreBiomass_raw) tempVar_min <- min(data_demog_sites_unweighted$TempVar_raw) tempVar_mean <- mean(data_demog_sites_unweighted$TempVar_raw) tempVar_max <- max(data_demog_sites_unweighted$TempVar_raw) #Adds minimum, mean and maximum values of raw indicators, where applicable p <- p + annotate("text", x=0.6, y=1.1, label="Min", size = 4) p <- p + annotate("text", x=0.6, y=1.15, label="Mean", size = 4) p <- p + annotate("text", x=0.6, y=1.2, label="Max", size = 4) p <- p + annotate("text", x=1, y=1.1, label=round(simpson_min, 2), size = 4) p <- p + annotate("text", x=1, y=1.15, label=round(simpson_mean, 2), size = 4) p <- p + annotate("text", x=1, y=1.2, label=round(simpson_max, 2), size = 4) p <- p + annotate("text", x=2, y=1.1, label=paste(round(disease_min*100, 0), "%", sep=""), size = 4) p <- p + annotate("text", x=2, y=1.15, label=paste(round(disease_mean*100, 0), "%", sep=""), size = 4) p <- p + annotate("text", x=2, y=1.2, label=paste(round(disease_max*100, 0), "%", sep=""), size = 4) p <- p + annotate("text", x=3, y=1.1, label=round(thermalTol_min, 2), size = 4) p <- p + annotate("text", x=3, y=1.15, label=round(thermalTol_mean, 2), size = 4) p <- p + annotate("text", x=3, y=1.2, label=round(thermalTol_max, 2), size = 4) p <- p + annotate("text", x=4, y=1.1, label=paste(round(coralCover_min, 0), "%", sep=""), size = 4) p <- p + annotate("text", x=4, y=1.15, label=paste(round(coralCover_mean, 0), "%", sep=""), size = 4) p <- p + annotate("text", x=4, y=1.2, label=paste(round(coralCover_max, 0), "%", sep=""), size = 4) p <- p + annotate("text", x=5, y=1.1, label=paste(round(algaeCover_min, 0), "%", sep=""), size = 4) p <- p + annotate("text", x=5, y=1.15, label=paste(round(algaeCover_mean, 0), "%", sep=""), size = 4) p <- p + annotate("text", x=5, y=1.2, label=paste(round(algaeCover_max, 0), "%", sep=""), size = 4) p <- p + annotate("text", x=6, y=1.1, label=round(rugosity_min, 2), size = 4) p <- p + annotate("text", x=6, y=1.15, label=round(rugosity_mean, 2), size = 4) p <- p + annotate("text", x=6, y=1.2, label=round(rugosity_max, 2), size = 4) p <- p + annotate("text", x=7, y=1.08, label=paste(round(herbiv_min, 2), "\n g/100 m^2"), size = 4) p <- p + annotate("text", x=7, y=1.15, label=round(herbiv_mean, 0), size = 4) p <- p + annotate("text", x=7, y=1.2, label=round(herbiv_max, 0), size = 4) p <- p + annotate("text", x=8, y=1.1, label=paste(round(tempVar_min, 2), "C"), size = 4) p <- p + annotate("text", x=8, y=1.15, label=paste(round(tempVar_mean, 2), "C"), size = 4) p <- p + annotate("text", x=8, y=1.2, label=paste(round(tempVar_max, 2), "C"), size = 4) #Adds annotation saying that summary stats for raw values aren't applicable for (i in 9:14) { p <- p + annotate("text", x=i, y=1.15, label="N/A", size=4) } p ggsave("indic_resil_stressor_box_plot.jpg", plot = p, device = "jpeg", width= 15, height=7, dpi=300) ``` Functions for management queries ```{r Functions for management queries} #Identifies sites that are conducive to coral restoration #Criteria: 1) hard coral cover is lower than the average across all sites, and 2) site resilience is in the upper two quartiles (excluding the temperature variation indicator) restorn_axn <- function(indics_stressors, i, cutoff_quartile) { #Average hard coral cover across all sites coral_cov_avg <- mean(indics_stressors[,c("HardCoralCover_rescaled")], na.rm=TRUE) #Determines whether each site fits the restoration criteria for (j in 1:nrow(indics_stressors)) { #Applies the two criteria to each site if(indics_stressors[j,"HardCoralCover_rescaled"] < coral_cov_avg && indics_stressors[j,"resil_quart_no_temp_var"] <= cutoff_quartile){ #If the site meets both critera, it is labeled "TARGET" demog_sites_with_queries[i*nrow(indics_stressors) + j, "restorn_axn"] <- "RESTORE" } else { #If the site does not meet both criteria, it is labeled "NOT TARGET" demog_sites_with_queries[i*nrow(indics_stressors) + j, "restorn_axn"] <- "NOT TARGET" } } return(demog_sites_with_queries) } #Identifies sites that are conducive to LBSP reduction #Criteria: 1) LBSP is higher than the average across all sites, and 2) site resilience is in the upper two quartiles (excluding the temperature variation indicator) LBSP_axn <- function(indics_stressors, i, cutoff_quartile) { #Average LBSP values (sediment and nitrogen combined) across all sites that had LBSP values LBSP_avg <- mean(indics_stressors[,c("StrdLBSP")], na.rm=TRUE) #Determines whether each site fits the LBSP management criteria for (j in 1:nrow(indics_stressors)) { #Marks the site as not having LBSP data if(is.na(indics_stressors[j, "StrdLBSP"])) { demog_sites_with_queries[i*nrow(indics_stressors) + j, "LBSP_axn"] <- "NO LBSP DATA" } #Applies the management criteria to each site else if(indics_stressors[j,"StrdLBSP"] > LBSP_avg && indics_stressors[j,"resil_quart_no_temp_var"] <= cutoff_quartile) { #If the site meets both critera, it is labeled "TARGET" demog_sites_with_queries[i*nrow(indics_stressors) + j, "LBSP_axn"] <- "LBSP" } else { #If the site does not meet both criteria, it is labeled "NOT TARGET" demog_sites_with_queries[i*nrow(indics_stressors) + j, "LBSP_axn"] <- "NOT TARGET" } } return(demog_sites_with_queries) } #Identifies sites that are conducive to bleaching management #Criteria: 1) Bleaching resistance is lower than the average across all sites, and 2) herbivore biomass is lower than average across all sites bleaching_axn <- function(indics_stressors, i) { #Average herbivore biomass across all sites HerbivoreBiomass_avg <- mean(indics_stressors[,c("HerbivoreBiomass_rescaled")], na.rm=TRUE) #Average coral thermal tolerance across all sites ThermalTol_avg <- mean(indics_stressors[,c("ThermalTol_rescaled")], na.rm=TRUE) #Determines whether each site fits the bleaching management criteria for (j in 1:nrow(indics_stressors)) { #Marks the site as not having coral demographic data if(is.na(indics_stressors[j, "ThermalTol_rescaled"])) { demog_sites_with_queries[i*nrow(indics_stressors) + j, "bleaching_axn"] <- "NO DEMOG DATA/NO CORAL COLONIES" } #Applies the management criteria to each site else if(indics_stressors[j,"HerbivoreBiomass_rescaled"] < HerbivoreBiomass_avg && indics_stressors[j,"ThermalTol_rescaled"] < ThermalTol_avg) { #If the site meets both critera, it is labeled "TARGET" demog_sites_with_queries[i*nrow(indics_stressors) + j, "bleaching_axn"] <- "BLEACHING" } else { #If the site does not meet both criteria, it is labeled "NOT TARGET" demog_sites_with_queries[i*nrow(indics_stressors) + j, "bleaching_axn"] <- "NOT TARGET" } } return(demog_sites_with_queries) } #Identifies sites that are conducive to tourism outreach #Criteria: 1) Coral diversity is higher than average, 2) algae cover is lower than average, and 3) herbivore biomass is higher than average tourism_axn <- function(indics_stressors, i) { #Average coral diversity across all sites SimpsonDiv_avg <- mean(indics_stressors[,c("SimpsonDiv_rescaled")], na.rm=TRUE) #Average algae cover across all sites AlgaeCover_avg <- mean(indics_stressors[,c("AlgaeCover_rescaled")], na.rm=TRUE) #Average herbivore biomass across all sites HerbivoreBiomass_avg <- mean(indics_stressors[,c("HerbivoreBiomass_rescaled")], na.rm=TRUE) #Determines whether each site fits the tourism outreach criteria for (j in 1:nrow(indics_stressors)) { #Marks the site as not having the necessary data if(is.na(indics_stressors[j, "SimpsonDiv_rescaled"])) { demog_sites_with_queries[i*nrow(indics_stressors) + j, "tourism_axn"] <- "NO DEMOG DATA/NO CORAL COLONIES" } #Applies the management criteria to each site else if(indics_stressors[j,"SimpsonDiv_rescaled"] > SimpsonDiv_avg && indics_stressors[j,"AlgaeCover_rescaled"] < AlgaeCover_avg & indics_stressors[j,"HerbivoreBiomass_rescaled"] > HerbivoreBiomass_avg) { #If the site meets all critera, it is labeled "TARGET" demog_sites_with_queries[i*nrow(indics_stressors) + j, "tourism_axn"] <- "TOURISM" } else { #If the site does not meet both criteria, it is labeled "NOT TARGET" demog_sites_with_queries[i*nrow(indics_stressors) + j, "tourism_axn"] <- "NOT TARGET" } } return(demog_sites_with_queries) } #Identifies sites that are conducive to fishery management and enforcement #Criteria: 1) Herbivore biomass is lower than the average across all sites, and 2) fishing pressure is higher than average across all sites fishing_axn <- function(indics_stressors, i) { #Average herbivore biomass across all sites HerbivoreBiomass_avg <- mean(indics_stressors[,c("HerbivoreBiomass_rescaled")], na.rm=TRUE) #Average fishing pressure across all sites fishing_avg <- mean(indics_stressors[,c("all_total_fishing_rescaled")], na.rm=TRUE) #Determines whether each site fits the fishing management criteria for (j in 1:nrow(indics_stressors)) { #Applies the two criteria to each site if(indics_stressors[j,"HerbivoreBiomass_rescaled"] < HerbivoreBiomass_avg && indics_stressors[j,"all_total_fishing_rescaled"] > fishing_avg){ #If the site meets both critera, it is labeled "TARGET" demog_sites_with_queries[i*nrow(indics_stressors) + j, "fishing_axn"] <- "FISHING" } else { #If the site does not meet both criteria, it is labeled "NOT TARGET" demog_sites_with_queries[i*nrow(indics_stressors) + j, "fishing_axn"] <- "NOT TARGET" } } return(demog_sites_with_queries) } #Identifies sites that are conducive to disease monitoring #Criteria: 1) Coral cover is higher than average across all sites, and 2) disease prevalence is higher than the average across all sites disease_axn <- function(indics_stressors, i) { #Average coral cover across all sites CoralCover_avg <- mean(indics_stressors[,c("HardCoralCover_rescaled")], na.rm=TRUE) #Average fraction of colonies without disease across all sites NotDiseased_avg <- mean(indics_stressors[,c("FractNotDiseased_rescaled")], na.rm=TRUE) #Determines whether each site fits the disease management criteria for (j in 1:nrow(indics_stressors)) { #Marks the site as not having the necessary data if(is.na(indics_stressors[j, "FractNotDiseased_rescaled"])) { demog_sites_with_queries[i*nrow(indics_stressors) + j, "disease_axn"] <- "NO DEMOG DATA/NO CORAL COLONIES" } #Applies the two criteria to each site else if(indics_stressors[j,"HardCoralCover_rescaled"] > CoralCover_avg && indics_stressors[j,"FractNotDiseased_rescaled"] < NotDiseased_avg){ #If the site meets both critera, it is labeled "TARGET" demog_sites_with_queries[i*nrow(indics_stressors) + j, "disease_axn"] <- "DISEASE" } else { #If the site does not meet both criteria, it is labeled "NOT TARGET" demog_sites_with_queries[i*nrow(indics_stressors) + j, "disease_axn"] <- "NOT TARGET" } } return(demog_sites_with_queries) } #Identifies sites that are conducive to coral protection #Criteria: 1) LBSP is moderate, 2) fishing is moderate, and 3) resilience is in the upper two quartiles (excluding the temperature variation indicator) protexn_axn <- function(indics_stressors, i, cutoff_quartile) { #Average and standard deviation of LBSP values (sediment and nitrogen combined) across all sites that had LBSP values LBSP_avg <- mean(indics_stressors[,c("StrdLBSP")], na.rm=TRUE) LBSP_stdev <- sd(indics_stressors[,c("StrdLBSP")], na.rm=TRUE) #Average and standard deviation of fishing pressure across all sites fishing_avg <- mean(indics_stressors[,c("all_total_fishing_rescaled")], na.rm=TRUE) fishing_stdev <- sd(indics_stressors[,c("all_total_fishing_rescaled")], na.rm=TRUE) #Determines whether each site fits the protection criteria for (j in 1:nrow(indics_stressors)) { #Marks the site as not having LBSP data if(is.na(indics_stressors[j, "StrdLBSP"])) { demog_sites_with_queries[i*nrow(indics_stressors) + j, "protexn_axn"] <- "NO LBSP DATA" } #Applies the management criteria to each site else if(indics_stressors[j,"StrdLBSP"] <= LBSP_avg + LBSP_stdev && indics_stressors[j,"StrdLBSP"] >= LBSP_avg - LBSP_stdev && indics_stressors[j,"all_total_fishing_rescaled"] <= fishing_avg + fishing_stdev && indics_stressors[j,"all_total_fishing_rescaled"] >= fishing_avg - fishing_stdev && indics_stressors[j,"resil_quart_no_temp_var"] <= cutoff_quartile) { #If the site meets both critera, it is labeled "TARGET" demog_sites_with_queries[i*nrow(indics_stressors) + j, "protexn_axn"] <- "PROTECT" } else { #If the site does not meet both criteria, it is labeled "NOT TARGET" demog_sites_with_queries[i*nrow(indics_stressors) + j, "protexn_axn"] <- "NOT TARGET" } } return(demog_sites_with_queries) } ``` Runs management queries using indicators, resilience scores, and fishing/LBSP stressor values ```{r Runs management queries using indicators, resilience scores, and fish/LBSP stressor values} #Dataframe that stores the management query results demog_sites_with_queries <- demog_sites_with_stressors #The number of higher resilience quartiles which are being used for querying management #e.g., "2" means that sites in the two highest quartiles will be considered for the management actions cutoff_quartile <- 2 #Column that stores whether each site is a restoration target demog_sites_with_queries$restorn_axn <- NA #Column that stores whether each site is a LBSP reduction target demog_sites_with_queries$LBSP_axn <- NA #Column that stores whether each site is a bleaching management target demog_sites_with_queries$bleaching_axn <- NA #Column that stores whether each site is a tourism outreach target demog_sites_with_queries$tourism_axn <- NA #Column that stores whether each site is a fishing management target demog_sites_with_queries$fishing_axn <- NA #Column that stores whether each site is a coral disease monitoring and management target demog_sites_with_queries$disease_axn <- NA #Column that stores whether each site is a protection target demog_sites_with_queries$protexn_axn <- NA #Identifies sites that meet the management action query criteria. Uses resilience scores without temperature variation indicator, wherever applicable. #Iterates through each weighting system. for (i in 0:max(demog_sites_with_queries$weighting_sys)) { #Determines whether each site is a restoration target under each weighting system demog_sites_with_queries <- restorn_axn(demog_sites_with_queries[which(demog_sites_with_queries$weighting_sys == i),], i, cutoff_quartile) #Determines whether each site is an LBSP management target under each weighting system demog_sites_with_queries <- LBSP_axn(demog_sites_with_queries[which(demog_sites_with_queries$weighting_sys == i),], i, cutoff_quartile) #Determines whether each site is a bleaching monitoring and management target under each weighting system demog_sites_with_queries <- bleaching_axn(demog_sites_with_queries[which(demog_sites_with_queries$weighting_sys == i),], i) #Determines whether each site would be a good target for tourism outreach demog_sites_with_queries <- tourism_axn(demog_sites_with_queries[which(demog_sites_with_queries$weighting_sys == i),], i) #Determines whether each site would be a good target for fishing management demog_sites_with_queries <- fishing_axn(demog_sites_with_queries[which(demog_sites_with_queries$weighting_sys == i),], i) #Determines whether each site would be a good target for disease management demog_sites_with_queries <- disease_axn(demog_sites_with_queries[which(demog_sites_with_queries$weighting_sys == i),], i) #Determines whether each site is a protection target under each weighting system demog_sites_with_queries <- protexn_axn(demog_sites_with_queries[which(demog_sites_with_queries$weighting_sys == i),], i, cutoff_quartile) } #Column that stores all of the actions that can be used at that site demog_sites_with_queries$all_axns <- apply(demog_sites_with_queries[,c(68:74)], 1, paste, collapse= " ") #Removes the text saying which actions don't apply; leaves only which actions do apply at that site demog_sites_with_queries$all_axns <- gsub("NOT TARGET ", "", demog_sites_with_queries$all_axns) demog_sites_with_queries$all_axns <- gsub("NO DEMOG DATA/NO CORAL COLONIES ", "", demog_sites_with_queries$all_axns) demog_sites_with_queries$all_axns <- gsub("NOT TARGET", "", demog_sites_with_queries$all_axns) demog_sites_with_queries$all_axns <- gsub("NO LBSP DATA ", "", demog_sites_with_queries$all_axns) demog_sites_with_queries$all_axns <- gsub("NO LBSP DATA", "", demog_sites_with_queries$all_axns) demog_sites_with_queries$all_axns <- gsub(" $", "", demog_sites_with_queries$all_axns) demog_sites_with_queries$all_axns <- gsub("^$", "NO_ACTION", demog_sites_with_queries$all_axns) #Column that stores just the first letter or each action demog_sites_with_queries$all_axns_brief <- demog_sites_with_queries$all_axns #Supplies the first letter of each action demog_sites_with_queries$all_axns_brief <- gsub("RESTORE", "R", demog_sites_with_queries$all_axns_brief) demog_sites_with_queries$all_axns_brief <- gsub("LBSP", "L", demog_sites_with_queries$all_axns_brief) demog_sites_with_queries$all_axns_brief <- gsub("BLEACHING", "B", demog_sites_with_queries$all_axns_brief) demog_sites_with_queries$all_axns_brief <- gsub("TOURISM", "T", demog_sites_with_queries$all_axns_brief) demog_sites_with_queries$all_axns_brief <- gsub("FISHING", "F", demog_sites_with_queries$all_axns_brief) demog_sites_with_queries$all_axns_brief <- gsub("DISEASE", "D", demog_sites_with_queries$all_axns_brief) demog_sites_with_queries$all_axns_brief <- gsub("PROTECT", "P", demog_sites_with_queries$all_axns_brief) demog_sites_with_queries$all_axns_brief <- gsub(" ", "", demog_sites_with_queries$all_axns_brief) write.table(demog_sites_with_queries, file = paste("resil_with_queries_", Sys.Date(), ".csv", sep=""), row.names = FALSE) ``` ```{r Adds the year of onset of annual bleaching under RCP8.5} demog_sites_with_bleaching <- merge(demog_sites_with_queries, annual_bleaching_rcp85[,c("Station", "onset_yr_annual_bleaching_rcp85", "outside_annual_bleaching_proj_raster")], by.x = "Station", by.y = "Station") #Since the above merges changed the order of the rows, reorders the indicator/stressor data by the weighting system, then by the station ID demog_sites_with_bleaching <- demog_sites_with_bleaching[order(demog_sites_with_bleaching$weighting_sys, demog_sites_with_bleaching$Station),] #Field to categorize sites by their temperature exposure (annual significant bleaching onset year) demog_sites_with_bleaching$exposure <- NA #Field to store vulnerablity of sites (combination of exposure and resilience) demog_sites_with_bleaching$vulnerability <- NA #Iterates through every row for(i in 1:nrow(demog_sites_with_bleaching)) { #Categorizes sites by their temperature exposure if(demog_sites_with_bleaching[i,"onset_yr_annual_bleaching_rcp85"] < 2042) { demog_sites_with_bleaching[i,"exposure"] <- "HIGH" } else { demog_sites_with_bleaching[i,"exposure"] <- "LOW" } #Categorizes each row into vulnerability levels (low, moderate, high) based on temperature projection exposure and resilience quartile (without temperature variation indicator) if(demog_sites_with_bleaching[i,"exposure"] == "LOW" & demog_sites_with_bleaching[i,"resil_quart_no_temp_var"] < 3) { demog_sites_with_bleaching[i,"vulnerability"] <- "LOW" } else if(demog_sites_with_bleaching[i,"exposure"] == "LOW" && demog_sites_with_bleaching[i,"resil_quart_no_temp_var"] > 2) { demog_sites_with_bleaching[i,"vulnerability"] <- "MODERATE" } else if(demog_sites_with_bleaching[i,"exposure"] == "HIGH" && demog_sites_with_bleaching[i,"resil_quart_no_temp_var"] < 3) { demog_sites_with_bleaching[i,"vulnerability"] <- "MODERATE" } else { demog_sites_with_bleaching[i,"vulnerability"] <- "HIGH" } } write.table(demog_sites_with_bleaching, file = paste("resil_with_bleaching_onset_", Sys.Date(), ".csv", sep=""), row.names = FALSE) ``` Miscellaneous calculations ```{r Miscellaneous calculations} #Standard deviations of resilience scores with and without temperature variation indicator sd(data_demog_sites_unweighted$resil_all_indic) sd(data_demog_sites_unweighted$resil_no_temp_var) #Correlation between resilience scores with and without temperature variation indicator cor(data_demog_sites_unweighted$resil_all_indic, data_demog_sites_unweighted$resil_no_temp_var, method="pearson") ``` Canonical analysis of principal coordinates From BiodiverstiyR package. Used by Maynard et al. 2015 for CNMI report and described in Maynard et al. 2017 UN report ```{r Canonical analysis of principal coordinates (CAP)} #Data.frame of rescaled indicators indics <- data_demog_sites_unweighted[,c(10:17)] indics_df <- as.data.frame(indics) #the variable being classified by is resilience quartile without temperature variation indics.env <- data_demog_sites_unweighted[,c(43:46)] indics.env[,4] <- as.factor(indics.env[,4]) #Runs the model indic_model <- CAPdiscrim(indics_df~resil_quart_no_temp_var, data=indics.env, dist="bray", axes=2, m=0, add=FALSE) indic_model colvec <- c("green4", "orange", "yellow", "red") #Plots the CAP groupings indic_plot <- ordiplot(indic_model, type="none", xlab="CAP1", ylab="CAP2", col=colvec) ordisymbol(indic_plot, indics.env, "resil_quart_no_temp_var", legend=TRUE) ordiellipse(indic_model, indics.env$resil_quart_no_temp_var, scaling="symmetric", col=1:4, draw="polygon", label=TRUE) ```