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SUMMARY

Migraines are a major health burden, but treatment
is limited because of inadequate understanding of
neural mechanisms underlying headache. Imaging
studies of migraine patients demonstrate changes
in both pain-modulatory circuits and reward-process-
ing regions, but whether these changes contribute to
the experience of headache is unknown. Here, we
demonstrate a direct connection between the ventro-
lateral periaqueductal gray (vlPAG) and the ventral
tegmental area (VTA) that contributes to headache
aversiveness in rats. Many VTA neurons receive
monosynaptic input from the vlPAG, and cranial noci-
ceptive input increases Fos expression in VTA-pro-
jecting vlPAG neurons. Activation of PAG inputs to
the VTA induces avoidance behavior, while inactiva-
tion of these projections induces a place preference
only in animals with headache. This work identifies a
distinct pathway that mediates cranial nociceptive
aversiveness.
INTRODUCTION

Migraine is a chronic relapsing disorder that results in significant

health and socioeconomic loss (Bonafede et al., 2018). The

World Health Organization ranks migraine headache as the 2nd

leading global cause of years lived with disability (GBD 2016 Dis-

ease and Injury Incidence and Prevalence Collaborators, 2017).

Despite the significant clinical impact of migraine, a deeper

understanding of its neurobiology remains elusive. Human imag-

ing data have implicated several diencephalic and brainstem

regions in the pathogenesis of idiopathic headache. Areas

including the periaqueductal gray (PAG) are activated early dur-

ing migraine (Weiller et al., 1995) and may even be active before

the onset of headache pain (Maniyar et al., 2014). Surgical

manipulation of the PAG can trigger headaches (Raskin et al.,

1987), and MRI consistently demonstrates altered functional

connectivity between the PAG and other brain regions in

migraine patients (Chen et al., 2017; Li et al., 2016b; Mainero

et al., 2011).

The PAG is a heterogeneous region that mediates various pain

and stress responses. Activation of the dorsolateral PAG triggers
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defensive behaviors in rats (Bandler and Depaulis, 1988), while

stimulation of the ventrolateral periaqueductal gray (vlPAG) pro-

motes quiescence (Depaulis et al., 1994) and analgesia (Fardin

et al., 1984). Many of these effects involve descending vlPAG

efferents (Behbehani and Fields, 1979; Lovick, 1993; Morgan

and Whitney, 2000), but the vlPAG also projects rostrally to

limbic midbrain structures (Cameron et al., 1995; Mantyh,

1983) including the ventral tegmental area (VTA), which is also

activated early in migraine episodes (Maniyar et al., 2014). The

VTA can generate both appetitive and aversive signals (Lammel

et al., 2012; Qi et al., 2016; van Zessen et al., 2012), raising the

possibility that inputs from the vlPAG could generate either

headache relief or aversiveness.

Although this connection has been largely overlooked, the

vlPAG has reciprocal connections with the VTA (Geisler et al.,

2007; Omelchenko and Sesack, 2010; Suckow et al., 2013),

and a study reported monosynaptic PAG inputs onto VTA dopa-

mine and g-aminobutyric acid (GABA) neurons in mice (Ntamati

et al., 2018). The behavioral role of the PAG-VTA circuit is un-

known; how this connection between the PAG, a hub for central

pain modulation, and the VTA, a critical region for motivation and

reinforcement, contributes to headache is also unknown. Here

we provide evidence that the vlPAG can relay an aversive signal

through the VTA that is necessary for the aversiveness of

headache.

RESULTS

Most VTA Neurons Receive Synaptic Inputs from the
vlPAG
To better understand the nature of PAG inputs within the VTA, we

labeled PAG projections with bilateral injections of AAV2-

hSynapsin (hSyn)-hChR2(H134R)-mCherry into the vlPAG (Fig-

ures 1A–1C). We observed moderately dense fiber staining in

the VTA, distributed evenly throughout its medial-lateral and

rostral-caudal extent (Figure 1D), with axons and bouton-like ap-

positions among tyrosine hydroxylase-positive (TH(+)) neurons

(Figures 1E and 1F).

We examined synaptic connections in this circuit using

whole-cell recordings in horizontal slices containing the VTA

by selective activation of channelrhodopsin (ChR2)-expressing

vlPAG inputs with light pulses (l = 473 nm, 1–10 ms) (Figure 2A).

Most VTA neurons (38/67, 57%) exhibited light-activated post-

synaptic currents (Figures 2B and S1). Most experiments were

completed using a physiological chloride concentration internal
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Figure 1. Fibers from the vlPAG Are Distributed throughout the VTA

(A) Schematic of AAV2-hSyn-ChR2-mCherry injections into bilateral vlPAG.

(B) Sample horizontal slice with bilateral virus injection sites into the vlPAG marked in magenta (Aq, aqueduct; DR, dorsal raphe; scale bar, 500 mm).

(C) Cell bodies in the PAG with mCherry expression (magenta; scale bar, 250 mm).

(D) Sample horizontal brain slice with mCherry-fiber expression and TH immunocytochemical labeling, acquired and stitched with 2D slide scan in MBF Ster-

eoinvestigator (green; scale bar, 250 mm).

(E and F) Confocal images at high magnification of TH(+) neurons (green) in the VTA surrounded by mCherry bouton-like profiles (E) and axon fibers (F) from the

vlPAG (magenta; scale bar, 20 mm).
solution (Figures 2C and 2D), while a few recordings were made

with a high-chloride internal solution to improve detection

of inhibitory inputs (Figure 2E). Sixty-eight percent of light-

activated responses had an excitatory, inward current compo-

nent (26/38). Among recordings made with a normal internal

chloride concentration and Vholding = �60 mV, the mean light-

evoked event amplitude was �51 ± 16 pA (n = 23) (Figures

2C and 2F). These light-evoked excitatory post-synaptic

currents (EPSCs) exhibited short latency from onset of the

light stimulus (2.0 ± 0.2 ms) and were confirmed to be glutamate

receptor mediated, because they were blocked with the

AMPA receptor antagonist 6,7-Dinitroquinoxaline-2,3-dione

(DNQX; �6 ± 2 pA, paired t test, t(10) = �2.40, p = 0.04, tested

in 11/23 cells) (Figures 2C and 2F). A subset of cells (n = 6)

demonstrated light-evoked EPSCswith slower rise times, which

were markedly reduced by the NMDA receptor antagonist

D-(-)-2-Amino-5-phosphonopentanoic acid (APV) in 2 of 2 cells

tested (�21 ± 1 pA in artificial cerebrospinal fluid [aCSF] versus

�5 ± 2 pA in APV) (Figures S2A and S2B), with the remaining

current blocked by DNQX.

A slightly smaller proportion of connected VTA neurons

received inhibitory synaptic input from the vlPAG (19/38,

50%). Light-evoked inhibitory post-synaptic currents (IPSCs)

had an average amplitude of 20 ± 2 pA (recorded at

�40 mV, with a latency of 2.2 ± 0.1 ms from light onset) and

were blocked by the selective GABAA receptor antagonist ga-

bazine (�4 ± 2 pA, paired t test, t(11) = 7.30, p = 0.00002,

tested in 12/19 cells) (Figures 2D and 2G). Because the VTA

has local GABAergic neurons, we investigated whether light-

activated inhibitory currents were direct by showing that

they are recovered with the potassium channel blocker 4-ami-

nopyridine after being abolished with tetrodotoxin (TTX) (Pet-

reanu et al., 2009). This demonstrates that these are monosyn-
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aptic GABAergic responses from the vlPAG (Figures S2C and

S2D). Of 38 tested VTA neurons with detected vlPAG input,

10 (26%) received both excitatory and inhibitory connections

(Figures 2E and 2H).

Some neurons with electrophysiologically confirmed vlPAG

synaptic input were labeled with biocytin and recovered (n =

20); three of these demonstrated co-labeling with TH immunocy-

tochemistry. Furthermore, only 27% of all confirmed dopamine

neurons (3/11) received synaptic input from the vlPAG (Figures

2I and 2J). Neurons lacking (1) TH co-labeling, (2) an Ih (Margolis

et al., 2006), or (3) inhibition by the GABAB receptor agonist bac-

lofen (Margolis et al., 2012) were classified as non-dopamine

neurons. A significantly greater proportion of these VTA non-

dopamine neurons, 20 of 31 (65%), received direct synaptic

input from the vlPAG (Fisher’s exact test, p = 0.04) (Figures 2I

and 2J). Overall these data indicate that the vlPAG-to-VTA

connection is predominantly excitatory and preferentially targets

non-dopamine neurons.

A Subset of vlPAG Neurons Projecting to the VTA Is
Activated with Headache
Dural application of inflammatory mediators (IMs), an estab-

lished model of headache in rats, activates meningeal nocicep-

tors (Strassman et al., 1996) and increases Fos expression in

the trigeminal nucleus caudalis (TNC) (Edelmayer et al., 2009).

Dural IMs cause a reduction in periorbital mechanical withdrawal

thresholds for 2–4 h (Oshinsky and Gomonchareonsiri, 2007),

mimicking allodynia in humans with migraine.

We used dural IMs to determine whether the vlPAG-VTA cir-

cuit is activated by headache (Figure 3A). Dural IMs led to signif-

icant periorbital allodynia, measured 5 min after infusion,

compared with PBS (Figure S3A). Fos activation in the TNC

and vlPAG was examined 2 h after dural IMs using stereological
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Figure 2. Most VTA Neurons Receive Synaptic Inputs from the vlPAG

(A) Schematic of bilateral injection of AAV2-hSyn-ChR2-mCherry into vlPAG. 4–6weeks after injection, acute VTA slices from 20 animals were prepared for whole-

cell recordings.

(B) Graphical representation of the number of VTA neurons with light-stimulated synaptic potentials following ChR2 expression in vlPAG neurons.

(legend continued on next page)
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counting methods (West and Gundersen, 1990); Fos(+) neurons

increased in both the TNC (Figures S3B–S3F) and the vlPAG (Fig-

ures 3B and 3F–3M) with headache. To specifically examine Fos

activation in vlPAG neurons projecting to the VTA, we injected

the retrograde tracer Fluoro-Gold (FG) into the VTA 1 week

before dural IMs (Figures 3A, 3F, and 3J). Approximately 24%

of vlPAG neurons (indicated by NeuN) were labeled by VTA FG

(Figure 3E), with similar numbers of FG-labeled vlPAG neurons

in dural PBS- and IM-treated animals (2,500 ± 400 versus

2,000 ± 400 neurons, n = 3 per condition, t(4) = 0.83, p = 0.45).

Two hours after headache induction with IMs, we found an in-

crease in Fos and FG co-labeled neurons in the vlPAG of animals

treated with IMs compared with those treated with PBS (t(4) =

�6.20, p = 0.003, n = 3 animals per condition) (Figures 3C, 3D,

and 3F–3M). These data demonstrate that headache induction

activates vlPAG neurons, including a significant subpopulation

of neurons that project to the VTA.

Targeted Activation of vlPAG-to-VTA Afferents Is
Aversive in Control Animals
To determine whether activation of this vlPAG-VTA circuit in

awake animals affects behavior, we optogenetically manipu-

lated activity of vlPAG-originating axons in the VTA (Figures

4A and S4A–S4C). Animals were trained in a chamber with

two contexts with different tactile and visual cues separated

by a vestibule. Upon entry into one side (randomized across

animals), vlPAG-VTA terminals expressing ChR2 were acti-

vated using pulsed blue light (l = 473 nm, 20 Hz, 5 ms, 10–

12 mW) delivered bilaterally through optic fibers. A stimulation

frequency of 20 Hz was chosen based on published data from

in vivo single-unit recordings reporting sustained 20 Hz firing

rates in many PAG neurons during fear conditioning with foot

shock (Johansen et al., 2010). By the third 20-min training ses-

sion, activation of the vlPAG-VTA circuit resulted in a real-time

place aversion, while rats injected with control virus expressing

mCherry demonstrated no preference for either the laser or the

no-laser paired side (p = 0.003, n = 6 rats per condition) (Fig-

ure 4D). Reversal of the animal’s side preference could be

achieved repeatedly within a single session by alternating light

stimulation between chambers (Figure 4E). There was a signif-

icant interaction of virus injection with light stimulation over

time within individual animals (mixed ANOVA, F(39, 234) =

3.89, p = 0.0001) and a significant effect of ChR2 virus

compared with mCherry virus between subjects (F(1,6) =

20.9, p = 0.004).
(C and D) Example responses to brief, 470 nm light pulses recorded in voltage clam

of �60 mV (scale bar, 20 pA, 10 ms). Yellow trace (D); after 10 mM gabazine at hol

steps demonstrating Ih (scale bar, 200 pA, 100 ms).

(E) Sample traces from an individual neuron receiving both excitatory and inhibitor

high-chloride (KCl) internal solution (scale bar, 20 pA, 10 ms). Inset: response to

(F) EPSC amplitudes recorded at �60 mV using K-gluconate internal solution, p

white circles represent presumed glutamatergic responses, but DNQX was not b

(G) IPSC amplitudes recorded at �40 mV holding potential reduced with gabazin

(H) Excitatory (magenta) and inhibitory (yellow) inputs from the vlPAG converge o

could be differentiated.

(I) EPSC amplitudes in confirmed non-dopamine neurons compared with TH(+) n

(J) IPSC amplitudes in confirmed non-dopamine neurons compared with TH(+) n

See also Figures S1 and S2.
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The vlPAG-to-VTA Circuit Is Required for Headache
Aversiveness
Because vlPAG-VTA activation is aversive in controls (Figures

4D and 4E), we used optogenetic inhibition of vlPAG terminals

in the VTA to determine their contribution to headache aversive-

ness. Inhibition of vlPAG-to-VTA projections was accomplished

with bilateral injections of AAV2-hSyn-eNpHR3.0-mCherry into

the vlPAG and optic fibers implanted in the VTA (Figures 4G

and S4D–S4F). Five minutes before each training session, one

group was given dural IMs, while the other group received

PBS. Light stimulation in the VTA (l = 525 nm, continuous stim-

ulation, 16–18 mW) was paired with one chamber for three

training sessions in the real-time apparatus every other day,

followed by a test session without dural IMs or light stimulation.

There were significant main effects of difference scores in IM-

treated animals compared with PBS controls (two-way indepen-

dent ANOVA, F(1,33) = 6.38, p = 0.02) and in animals infected

with eNpHR3.0 compared with sham virus (F(1,33) = 8.64, p =

0.006), as well as a significant interaction between active

eNpHR3.0 virus and dural treatment (F(1,33) = 5.72, p = 0.02)

(Figure 4H). Bonferroni post hoc tests revealed a conditioned

preference for the light-paired chamber with IMs and vlPAG

eNpHR3.0 compared with IMs and vlPAG mCherry-only infec-

tion (p = 0.001). In addition, eNpHR3.0-infected animals with

dural IMs exhibited a significant preference for the light-paired

side, while eNpHR3.0-infected animals treated with PBS devel-

oped no preference (p = 0.01), indicating that the vlPAG-VTA

circuit contributed strongly to aversion in headache animals

but did not confer an ongoing aversion in control, non-headache

animals. More specifically, control eNpHR3.0-infected animals

treated with dural PBS did not demonstrate a conditioned pref-

erence or aversion for the light-paired chamber compared with

sham-infected animals (p = 0.7). Furthermore, in animals with

off-target eNpHR3.0 virus expression that were treated with du-

ral IMs, there was no impact on behavior, with no differences

compared with off-target sham virus injections (p > 0.2) (Fig-

ure 4H), but these animals were significantly distinct from ani-

mals with on-target eNpHR3.0 infections (p = 0.0003). Therefore,

specific inactivation of vlPAG-VTA axons with eNpHR3.0 leads

to a conditioned place preference in animals treated with dural

IMs but had no impact in animals without headache. Together

with Fos activation in VTA-projecting vlPAG neurons by induc-

tion of headache, these results are consistent with a significant

contribution of the vlPAG-VTA circuit to the aversiveness of

headache.
p.Magenta trace (C); after bath application of 10 mMDNQX at holding potential

ding potential of �40 mV (scale bar, 5 pA, 10 ms). Insets: responses to voltage

y light-evoked post-synaptic currents with holding potential at�60 mV using a

voltage steps (scale bar, 100 pA, 100 ms).

lotted before and after DNQX application. Each circle represents one neuron;

ath applied.

e (white circles not tested with gabazine).

nto a proportion of VTA neurons from 35 neurons in which EPSCs and IPSCs

eurons.

eurons.
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Figure 3. A Subset of PAG Neurons that Project to the VTA Is Activated with Headache

(A) Schematic of retrogrademarker Fluoro-Gold (FG) injection into the VTA. 5–7 days after injections, animals were treated with dural PBS or IMs. Two hours later,

animals underwent intracardiac perfusion with 4% paraformaldehyde, and coronal slices of the PAG were systematically collected and labeled with a Fos

antibody.

(B and C) Number of Fos(+) cells (B) and double-labeled Fos- and FG-positive cells (C) counted using stereological methods in the vlPAG using an optical

fractionator probe (n = 3 animals per condition, *p < 0.05, **p < 0.01).

(D) Percentage of FG-positive cells that were also Fos(+) (**p < 0.005).

(E) Estimated number of FG- and NeuN-positive cells in the vlPAG (n = 3 animals). All plots represent mean ± SEM.

(F–M) Example coronal slices in animals treated with dural PBS (F, G, H, and I) or IM (J, K, L, and M).

(F and J) Images in (F) and (J), demonstrating unilateral VTA injection sites, were acquired and stitched with 2D slide scan in MBF Stereoinvestigator (scale bar,

500 mm).

(G and K) Coronal vlPAG slices, with indication of the locations of higher-magnification images in (H) and (L), respectively (scale bar, 250 mm).

(H and L) Fos(+) cells (magenta) and FG-positive cells (green) in the vlPAG. White arrows indicate Fos-labeled cells, and arrowheads indicate double-labeled

neurons (scale bar, 25 mm).

(I and M) High magnification of Fos(+) cells with and without FG double-labeling (scale bar, 25 mm).
DISCUSSION

Our studies demonstrate that a direct connection from the vlPAG

to the VTA produces an aversive signal that is activated during

headache. After induction of headache, the number of Fos-

expressing vlPAG neurons that project to the VTA doubles.

Optogenetic activation of this circuit in awake, behaving rats is

aversive, while inactivation is appetitive—but only in the context

of ongoing headache. Clearly, this circuit is necessary for cranial

pain aversiveness, and its activation sufficient to produce an

aversive state.

We found that the direct vlPAG-to-VTA inputs are predomi-

nantly glutamatergic but also include GABA synapses. These

direct connections are predominantly onto non-dopamine neu-

rons. These findings are consistent with anatomical studies
showing that a subset of PAG neurons projecting to the VTA ex-

presses the vesicular glutamate transporter Vglut2mRNA (Geis-

ler et al., 2007), and approximately one-third of cells in the vlPAG

are immunoreactive for glutamate decarboxylase, the enzyme

that converts glutamate to GABA (Barbaresi and Manfrini,

1988). Ultrastructural studies demonstrate asymmetric and

symmetric synapses from PAG axons onto both GABA and

dopamine VTA neurons (Omelchenko and Sesack, 2010). These

putative excitatory and inhibitory synapses appear to arise from

separate PAG neurons (Omelchenko and Sesack, 2010), and

Vglut2 and Vgat, the vesicular GABA transporters, do not appear

to co-localize in PAG neurons (Samineni et al., 2017).

Our findings also generally agree with a report by Ntamati and

colleagues showing both glutamate and GABA PAG input onto

VTA dopamine and GABA neurons in DAT-Cre and GAD65-Cre
Cell Reports 28, 2739–2747, September 10, 2019 2743
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B Figure 4. Activation of vlPAG-to-VTA Affer-

ents Is Aversive and Required for Headache

Aversiveness

(A) Schematic of surgical preparation using ChR2 to

selectively activate vlPAG axon terminals in the VTA

in 3 replicate groups. Control animals were injected

with sham virus, AAV2-hSyn-mCherry. 6–8 weeks

later, optical fibers were implanted, bilaterally aimed

at the VTA. Animals showed no chamber bias at

baseline.

(B) Example track tracing of an animal during testing

in which blue light (473 nm, 20 Hz, 5 ms pulse, 10–12

mW) commenced when the rat entered the right side

of the chamber and was turned off when animal

exited that side of the chamber.

(C) Timeline of the real-time optical stimulation place

pairing protocol. Animals were placed in the test

chamber for 20-min sessions daily in which blue light

stimulation was paired with one side of the chamber.

After 3 sessions with light paired with one side of the

chamber, light was then paired to the opposite

chamber for 3 daily 20-min sessions for reversal

training. After 6 sessions, 4 animals underwent a

40-min session in which light pairing was reversed

every 10 min.

(D) During the 3rd training session, animals with

active ChR2 virus infection avoided the chamber

with light stimulation compared with animals in-

jected with sham virus. The difference score is

calculated as the time spent in the stimulation-

paired chamber minus the time spent in the no-

stimulation chamber (*p < 0.05). Plot represents

mean ± SEM.

(E) Averaged real-time difference score from 4 ani-

mals during the last session, with stimulation alter-

nating between chambers every 10 min.

(F) Timeline of the real-time optical inhibition place

pairing protocol. Animals from 5 replicate groups

received either intradural IMs or PBS 5 min before

being placed into the test chamber. After 3 daily

20-min sessions of green light pairing (525 nm,

16–18 mW) with one side of the chamber, animals

were tested the following day in the chamber without

light inhibition.

(G) Schematic of surgical preparation for the

behavioral experiment using halorhodopsin to

selectively silence vlPAG inputs to the VTA after

dural IMs to induce headache. Sham virus or AAV2-

hSyn-eNpHR3.0-mCherry was injected into the

vlPAG. Bilateral optical fibers were implanted

directed to the VTA 6–8 weeks later.

(H) Difference scores were measured during the

testing session with no stimulation (*p < 0.05, **p <

0.01), demonstrating that inactivation of the vlPAG-

to-VTA connection was appetitive only in rats that

received IMs, suggesting it relieves the aversive state

induced by dural IMs. Plot represents mean ± SEM.

See also Figure S4.
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transgenic mice, respectively (Ntamati et al., 2018). However, we

found that a higher percentage of VTA neurons receive GABA

input, and a quarter of VTA neurons with input from the vlPAG

receive converging excitatory and inhibitory input. Furthermore,

we found that non-dopamine neurons in the VTAweremore likely

than dopamine neurons to receive direct vlPAG synaptic con-

nections, while Ntamati et al. (2018) found that VTA dopamine

and GABA neurons in mice had similar connectivity rates. We

did not directly test whether our non-dopamine VTA neurons

were GABA or glutamate, but this will be essential in future

studies examining downstream VTA targets.

The PAG also contains dopamine neurons that play a role in

pain and reward behaviors (Li et al., 2016a; Taylor et al., 2019).

Omelchenko and Sesack (2010) found that only 3% of PAG

axons in the VTA contain dopamine (Omelchenko and Sesack,

2010). Although these could be fibers of passage, dopamine

release in the VTA from the PAG could be modulating headache

aversiveness. In our slice recordings, optically evoked currents

from PAG axons in the VTA were abolished by a combination

of glutamate and/or GABA receptor antagonists. However, it is

possible that we did not sample enough neurons in the VTA to

find a sparse dopamine-mediated synaptic effect. We may

also not have detected a direct dopaminergic response if dopa-

mine-releasing varicosities from the vlPAG are not synaptic like

the local VTA dopamine connections (Ford et al., 2009). In addi-

tion, TH(+) neurons can co-release glutamate, which has been

demonstrated in the PAG projection to the bed nucleus of the

stria terminalis (Li et al., 2016a). Activation of PAG dopamine

neurons have overall demonstrated antinociceptive effects (Li

et al., 2016a; Taylor et al., 2019), but we cannot rule out the pos-

sibility that a small subset projecting to the VTAmight participate

in a pronociceptive, projection-specific effect.

The population of vlPAG neurons sending projections to the

VTA is distinct from the PAG neuron population with descending

projections to the rostral ventromedial medulla (RVM) (Suckow

et al., 2013), where they synapse onto ON and OFF cells to bidi-

rectionally modulate nociception. This organization allows the

different PAG neurons to differentially control sensory, motor,

and autonomic responses to incoming stimuli and influence

behavior. Classically, the PAG is involved in a range of adaptive

functions, including modulation of pain, response to fear, and

autonomic regulation (Bandler and Depaulis, 1988; Behbehani,

1995). Activation of the vlPAG by focal electrical stimulation or

local application of excitatory amino acids results in analgesia

(Fardin et al., 1984), transient freezing (Morgan et al., 1998),

quiescence (Depaulis et al., 1994), and bradycardia (Carrive

and Bandler, 1991). Fanselow (1991) proposed a model in which

the vlPAG mediates post-encounter defensive responses to a

predator, including opioid-dependent analgesia, to enable inhi-

bition of reflexive motor responses to pain, thus maintaining

freezing behavior.

More recent studies have demonstrated a role for ascending

PAG projections in aversive teaching signals during fear condi-

tioning (Johansen et al., 2010; McNally and Cole, 2006). Human

imaging studies also indicate that PAG activity encodes an aver-

sive prediction error (Roy et al., 2014), and this information may

be transmitted through the limbic system. Consistent with this

human work, Johansen and colleagues demonstrated that an
aversive prediction error is encoded in a subset of rodent PAG

neurons: pharmacological inactivation of the PAG attenuates

acquisition of fear conditioning, partly via downstream disruption

of neural responses to aversive cues in the lateral amygdala (Jo-

hansen et al., 2010). The VTA sends dopamine (Breton et al.,

2019; Swanson, 1982), GABA, and glutamate (Breton et al.,

2019; Taylor et al., 2014) projections to the amygdala; therefore,

onemight speculate that the PAGpromotes an aversive teaching

signal in the amygdala via the VTA. Prolonged activation of the

PAG-to-VTA pathway during headache may maintain and

promote aversive learning, favoring the hypersensitivity and

aversiveness of sensory stimuli (allodynia, photophobia, phono-

phobia, andmovement sensitivity) observed in headache states.

This aversive circuit from the vlPAG to the VTA can be con-

trasted with the neighboring appetitive, glutamatergic pathway

from the dorsal raphe to the VTA in mice that triggers dopamine

release in the nucleus accumbens (Qi et al., 2014; Wang et al.,

2019). Focal electrical stimulation of the dorsal raphe can also

elicit analgesia (Cannon et al., 1982). Therefore, these two adja-

cent midbrain regions provide opposing input to the limbic

system.

Consistent with its role in generating an aversive signal, we

demonstrate that inhibition of vlPAG inputs to the VTA is

rewarding, but only in rats experiencing headache. When these

inputs are inhibited in control animals, there is no obvious behav-

ioral effect, but when these inputs are inhibited during headache,

animals display approach behavior, likely because of the nega-

tive reinforcing effect of decreasing an aversive signal. Similarly,

De Felice and colleagues found that inhibiting descending facil-

itation of pain transmission at the level of the RVM during head-

ache generates conditioned place preference (CPP), which is

accompanied by increased Fos expression in VTA dopamine

neurons and requires dopamine signaling in the nucleus accum-

bens, a major VTA output (De Felice et al., 2013). Based on these

studies, we propose that the vlPAG-VTA circuit produces an

aversive effect by indirectly inhibiting dopamine VTA neurons

projecting to the nucleus accumbens. Alternatively, optogeneti-

cally driving neural activity in lateral habenula-projecting VTA

glutamatergic neurons (Root et al., 2014) or nucleus accumbens

(NAc)-projecting glutamate VTA neurons (Qi et al., 2016) pro-

duces conditioned place aversion in mice. Other non-dopamine

VTA neurons, as well as projections to the amygdala (de la Mora

et al., 2010) and/or the anterior cingulate cortex (Narita et al.,

2010), may also encode aversive signals.

A limitation to our behavioral inhibition studies is uncertainty

about whether activation of eNpHR3.0-containing fibers in the

VTA leads to sustained inhibition. While inhibition of cell bodies

with eNpHR3.0 photoactivation has been demonstrated (Gradi-

naru et al., 2010), inhibition of terminal fibers may also generate a

rebound excitation once light activation is discontinued (Mahn

et al., 2016), potentially because of accumulation of intracellular

Cl�. Although the CPP we observe with activation of eNpHR3.0

may result from inhibition of PAG-to-VTA fibers, one alternative

explanation is that rebound excitation of these fibers results in

aversiveness associated with exiting the chamber paired with

optical stimulation. However, given the current data, the simplest

interpretation, that eNpHR3.0 activation is inhibiting this input, is

consistent with all other observations reported here.
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Further studies will be needed to determine whether the

vlPAG-VTA circuit is sensitive to therapeutic manipulations that

ameliorate headache. Relieving the aversiveness of headache

is a critical unmet need for many patients. Here we show that

the projection from the vlPAG to the VTA contributes to this

signal and that inhibiting this connection is sufficient to produce

relief.
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources, reagents, and protocols should be directed to and will be fulfilled by the Lead

Contact, Maggie Waung (Maggie.waung@ucsf.edu). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
Male Sprague Dawley rats obtained from Charles River Laboratories (South San Francisco, CA) were used in accordance with the

National Institutes of Health Guide for the Care and Use of Laboratory Animals under protocols approved by the Institutional Animal

Care and Use Committee at the University of California, San Francisco. Animals were maintained on a 12-hour light-dark cycle with

lights on at 10:00 PM and allowed access to food and water ad libitum. Animals were group housed until undergoing intracranial

surgery, after which they were single housed.

METHOD DETAILS

Viral Constructs and Antibodies
AAV2-hSyn-hChR2(H134R)-mCherry (titer: 2.9e12), AAV2-hSyn-mCherry (titer: 4.7e12), and AAV2-hSyn-eNpHR3.0-mCherry

(1.5e12) were obtained from the University of North Carolina Vector Core with available stock constructs from the laboratory of K.

Deisseroth at Stanford University.

C-Fos antibody (1:5000, Cell Signaling Technology Cat# 4384, RRID:AB_2106617) was a rabbit polyclonal antibody raised against

a synthetic peptide corresponding to amino acids near the carboxy-terminus of human c-Fos protein. TH antibody (1:250, Millipore

Cat# AB152, RRID:AB_390204) was a rabbit polyclonal antibody raised against denatured tyrosine hydroxylase from rat pheochro-

mocytoma. NeuN antibody (1:1000, EMDMillipore Cat#MAB377, RRID:AB_2298772) was amousemonoclonal antibody, clone A60,

selected from immunoglobulins formed against purified cell nuclei from mouse brain. Secondary antibodies used were purchased

from Jackson Immuno Research (Westgrove, PA): Cy5 Goat anti-rabbit IgG (1:500, Cat# 111-175-144, RRID:AB_2338013), Alexa-

fluor 594 Donkey anti-rabbit IgG (1:500, Cat# 711-585-152, RRID:AB_2340621), Cy5 Goat anti-mouse IgG (1:500, Cat# 115-175-

146, RRID:AB_2338713), and FITC streptavidin (1:200, Cat# 016-010-084, RRID:AB_2337236).

Stereotaxic injections
Rats weighing 100-120 g were anesthetized with 5% isofluorane via inhalation and placed into a stereotaxic frame. Bilateral

craniotomies were created with a dental drill above the injection site. Injections of either AAV2-hSyn-hChR2(H134)-mCherry,

AAV2-hSyn-eNpHR3.0-mCherry, or AAV2-hSyn-mCherry were made into the vlPAG (AP�7.8, DV�5.8, ML ± 0.6 mm from bregma)

using a Nanoject II (Drummond Scientific, Broomall, PA). A volume of approximately 504 nanoliters was injected per side over a

period of 4.5 min. The glass injector tip was left in place for 2 additional min before slow withdrawal to prevent backflow and infection

of tissue dorsal to the vlPAG.

Dural cannula and optic fiber implant surgeries
Four to six weeks later, animals underwent a second cranial surgery to implant 200 mm optic fibers at a 12� angle off sagittal midline

into the bilateral VTA (coordinates AP �5.8, DV �8.6, ML ± 2.4 mm from bregma). For induction of headache, a craniotomy was

created above the superior sagittal sinus, under guidance of a dissecting microscope, with care to not disrupt the underlying

dura. A dural guide cannula (20 gauge, 2mm pedestal, PlasticsOne, Roanoke, VA) was placed over the dura and a stylet inserted

to maintain patency of the cannula. Optic fibers and cannulas were anchored with flat point screws and dental cement.

Animals were treated with subcutaneous carprofen 5 mg/kg and topical 2% lidocaine during the surgery for pain control. After

surgery, animals had access to Tylenol in their drinking water for 3-5 days. Animals were allowed to recover for 1-2 weeks prior

to behavioral studies and pain measurements with periorbital Von Frey testing. All virus injections, as well as fiber and cannula place-

ments, were verified post mortem according to a rat brain atlas (Paxinos and Watson, 1998).

Electrophysiology
Rats were deeply anesthetized with isoflurane, decapitated, and brains were quickly removed into ice-cold artificial cerebrospinal

fluid (aCSF) consisting of (in mM): 119 NaCl, 2.5 KCl, 1.0 NaH2PO4, 26.2 NaHCO3, 11 glucose, 1.3 MgSO4, 2.5 CaCl2, saturated

with 95% O2-5% CO2, with a measured osmolarity 310–320 mOsm/L. 150-200 mm horizontal sections through the VTA were cut

with a Leica VT1000 vibratome. Slices were incubated in oxygenated aCSF at 33 �C and allowed to recover for at least one hour.

A single slice was placed in the recording chamber where it was continuously superfused at a rate of 2-3 mL/min with oxygenated

aCSF. Neurons were visualized with an upright microscope (Olympus BX51WI or Zeiss Axioskop FS 2 plus) equipped with infrared-

differential interference contrast and fluorescent optics. Whole cell recordings weremade at 33�Cusing borosilicate glassmicroelec-

trodes (3-5 MU) filled with either K-gluconate internal solution containing (in mM): 123 K-gluconate, 10 HEPES, 8 NaCl, 0.2 EGTA, 2

MgATP, 0.3 Na3GTP, and 0.1%biocytin or KCl internal solution containing (inmM): 120 KCl, 10 HEPES, 1 EGTA, 0.3 CaCl2, 2MgATP,
Cell Reports 28, 2739–2747.e1–e4, September 10, 2019 e2

mailto:Maggie.waung@ucsf.edu


0.3 Na3GTP, and 0.1% biocytin (pH 7.2 adjusted with KOH; 275 mOsm/L). Liquid junction potentials were not corrected during

recordings. Input and series resistance were monitored throughout the experiment with a hyperpolarizing step of 4 mV every

10-15 s. Series resistance was required to be 5-30 MU and cells with series resistance changes > 25% were excluded.

Signals were recorded using a patch clamp amplifier (Axopatch 1D, Molecular Devices, San Jose, CA). Signals were filtered at

5 kHz and collected at 20 kHz using IGOR Pro (Wavemetrics). Light evoked EPSCs and IPSCs were driven with paired blue light

pulses (473 nm, 1-10 ms) administered 50 ms apart. Light was delivered by either an LED coupled to an optic fiber aimed at the

recorded cell (10-15 mW) or a Xenon Arc laser light source guided onto the back aperture of the microscope objective for widefield

exposure of the recorded slice (2-3 mW). Photostimulation sweeps were collected every 10-15 s. Recordings were made in voltage-

clampmode, with membrane potential clamped at Vm =�60 mV and�40mV, for EPSCs and IPSCs, respectively. EPSCs and IPSCs

with an amplitude at least 2 standard deviations above noise that were time-locked with short latency (< 5 ms) and repeatable were

considered light-evoked. Latency was calculated as time from start of light pulse to 10% of the peak amplitude. Where possible,

DNQX (10 mM) or gabazine (10 mM) was bath applied to identify currents as AMPA or GABAA receptor mediated, respectively. All

recordings were analyzed offline using IGOR Pro with 10-20 sequential stimulations averaged together to estimate synaptic

amplitude. After recordings, slices were drop fixed in 4% paraformaldehyde for 2 hours at 4�C and processed for TH immunocyto-

chemistry and biocytin labeling.

Inflammatory mediators headache model
After at least one week of recovery following implant surgery, animals were treated with dural inflammatory mediators (IMs,

comprised of 1 mM histamine, serotonin, bradykinin, and 0.1 mM prostaglandin E2 in HEPES-buffered saline, pH 7.4). Animals

were gently restrained while a microinjector was inserted into the dural guide cannula. 10 mL of phosphate buffered saline (PBS)

or IMswas slowly infused over 2minutes with a KDScientific (Holliston, MA)microinjection pump fittedwith a 25 mL Hamilton syringe.

A 1 min refractory period followed the injection to allow for diffusion of the injected solution. Five to ten minutes following infusions,

mechanical withdrawal thresholds were evaluated.

Periorbital Von Frey testing
Mechanical threshold testing in the V1 dermatome was conducted using eight Touch Test � fibers (North Coast Medical & Rehabil-

itation Products, Gilroy, CA, USA) ranging from 0.06 to 15 g. Fibers were pressed perpendicularly to the periorbital region above the

eye and held for 2-3 s. A positive response was noted if the head was withdrawn. The 50% withdrawal threshold was obtained and

calculated according to the up-down method (Chaplan et al., 1994).

Retrograde tracing
Similar to virus injections, Fluoro-gold (FG, 55.2 nL 4% in H20, Biotium, Fremont, CA) was injected into the right VTA (AP �5.8, DV

�8.5, ML 0.5 mm from bregma) of animals weighing 275-300 g. In the same surgery, a dural cannula was placed for IM infusions as

described above. One week after FG injection, animals underwent microinjection of PBS or IMs into dural cannulas. Two hours after

injection, animals were deeply anesthetized and perfused.

Brain removal for immunohistochemistry
Animals were deeply anesthetized with an intraperitoneal injection of Euthasol (0.5 mg/kg). After becoming unresponsive to noxious

stimuli, the animals were transcardially perfused with 100 mL of normal saline, followed by 400 mL of 4% paraformaldehyde in 0.1 M

phosphate buffer (PFA). The brains were extracted and immersion-fixed in PFA for 2 h at room temperature, then washed two times

with PBS to remove excess PFA, and stored in PBS at 4�C until they were subsequently sectioned (50 mm slices) using a vibratome

(Leica VT 1000 S).

Histology and immunohistochemistry
Slices were washed three times for 5 minutes each with PBS (GIBCO,Waltham, MA), then blocked with a solution containing: bovine

serum albumin (0.2%), normal goat serum (5%) and Tween20 (0.3%; Sigma-Aldrich, St. Louis, MO) for 2 h at room temperature. For

Fos staining, normal donkey serum (5%) was used in place of normal goat serum. Slices were incubated in primary antibodies diluted

in PBS + 0.3% Tween20 (PBST) for 48 hours at 4�C. After 6 10-minute rinses in PBST, slices were incubated with secondary antibody

overnight at 4�C. After 5, 10-min rinses, brain slices were mounted onto glass slides with Vectashield (Vector Laboratories,

Burlingame, CA). Slices were imaged using a Zeiss Axioskop upright microscope (2.5X, NA = 0.075 or Olympus Plan Apochromat

20X, NA = 0.75).

Stereological neuron counting
Coronal vlPAG slices with a section thickness of 50 mmwere collected from each animal. Three animals were used per condition and

counting was performed blinded to treatment. The optical fractionator methodwas used for cell counting: the first slice was chosen at

random from the first 4 slices and every 4th slice thereafter was sampled to ensure random and systematic sampling throughout the

rostral-caudal axis of the vlPAG, with 16 vlPAG slices collected per animal. For each slice, the vlPAG ipsilateral to the Fluorogold

injection was traced using the 2.5X objective. Z stacks of the entire vlPAG were taken using the 20X objective. For counting of
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Fos and FG double-labeling, the entire area was counted (area sampling fraction, asf = 1). For NeuN counting, the area sampling

fraction was set at 0.05. An estimate of the total number of neurons in the vlPAG (N = 35,200) can be calculated by the equation,

N =
P

Q�,ðt =hÞ,ð1 =asfÞ,ð1 =ssfÞ, whereQ- is the number of NeuN neurons counted (330), t is the sectionmounted thickness, which

accounts for slice shrinkage (40 mm), h is the counting frame height (30 mm), asf (0.05), and ssf is the section sample fraction (0.25). Fos

staining in the TNC (or Sp5C) was counted in the samemanner. The coefficient of error calculated by the Gundersonmethodwas less

than 0.1 for region sections from each animal. Statistics between conditionswere calculated based on total cell counts obtained from

each animal.

Real-time place preference assay
Two-sided chambers with distinct visual (horizontal versus vertical stripes) and textural (thick versus thin mesh flooring) cues

separated by a central vestibule were used. Prior to testing, animals were acclimated to handling and attachment of fiber cables

to intracranial fiber implants in a neutral environment. Animals were allowed up to 3 opportunities to explore the test chambers

for 15-minute baseline sessions. Only animals that spent similar time within 15% of the total time in both chambers by the 3rd session

were included. On testing days, fiber implants were connected to optic fiber cables attached to a 1x 2 fiber optic rotary joint (Doric

Lenses, Quebec, Canada).

For ChR2 activation studies, a laser light source (MBL 473, OEM Laser Systems, East Lansing, MI) was used with light intensity at

the end of the output fiber adjusted to 80-120 mW/mm2 at the fiber tip. One side of the chamber was paired with a light stimulation

pattern of 5 ms pulses at 20 Hz, which commenced when the animal’s head crossed the threshold into the paired chamber and

discontinuedwhen the animal’s head exited the paired chamber. The side of the chamber used for light-pairing was chosen randomly

for each animal and counterbalanced between all animals. Light stimulation was controlled via a custom-made program interface run

on a Raspberry Pi (Cambridge, UK) using a Pixy camera (Charmed Labs, Pittsburgh, PA) to track the animal in real time, triggering the

laser via an Arduino pulse generator (SparkFun, Niwat, CO). Animals were initially placed in the vestibule and allowed to ambulate

freely in the chamber for 20minutes while receiving light stimulation in the paired side. Animals underwent once daily light-stimulation

pairing sessions 3 times on one side followed by 3 sessions with light-pairing to the opposite chamber. The day after the last training

session, animals were placed in the CPP apparatus for 40minutes, and light stimulation was alternated every 10minutes between the

2 chambers (Figure S4).

For in vivo terminal fiber inhibition studies, a laser light source (MSL-III-532, l = 525 nm, CNI Optoelectronics, Changchun, China)

was used with intensity of the output fiber adjusted to 120-160 mW/mm2 at the fiber tip. On testing days, rats were infused with PBS

or IMs. 10-20 minutes later, they were placed in the central vestibule of the testing chamber. One side was paired with continuous

light stimulation. Animals spent 20minutes in the chamber per training day, interleaved with no treatment days to allow recovery from

headache between infusions. Two days after the last infusion, rats were placed in the chamber allowed to roam freely without any

light stimulation. Time spent in each chamber was recorded using Viewer software (Biobserve, Bonn, Germany).

General Experimental Design
For immunohistological and behavioral experiments, subject numberswere determined by pilot studies and power analyses (power =

0.80, significance level = 0.05, effect size = 15%–30%). All behavioral experiments were performed blinded to experimental

condition.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data are expressed as mean ± standard error of the mean in figures and text. Unless otherwise stated, two-tailed t tests were

performed. Significance was set at p < 0.05. Repeated-measures ANOVAs were conducted in SPSS version 25 (IBM Analytics,

Armonk, NY) to compare across greater than 2 independent variables. Replicates are reported in figure captions and sample

numbers are included in the text.

DATA AND CODE AVAILABILITY

Source data for Figures 2, 3, and 4 in the paper are available on Mendeley https://doi.org/10.17632/yhtnjnf2jf.1. Tracking software

code used for this study is available at https://github.com/charmedlabs/pixy. The user interface code used for this study is not central

to generation of the results, but will be made available from the corresponding author upon request.
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Figure S1. VTA neuron locations and PAG injection sites. Related to Figure 2. (A) Location of recorded VTA neurons labeled to 

indicate response to light stimulation and TH immunocytochemistry from animals previously injected with AAV2-hSyn-ChR2-

mCherry into the vlPAG. (B) Localization of vlPAG injections in rats used for recordings, mapped by the presence of dense 

mCherry(+) cell bodies and fibers. Coronal brain outlines in this figure were adapted for use with permission from the publisher of 

“The Rat Brain in Stereotaxic Coordinates” by Paxinos and Watson, 1998. 
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Figure S2. NMDAR EPSCs and monosynaptic GABA IPSCs. Related to Figure 2. (A) Sample light-activated NMDAR current 

from a VTA neuron in the presence of DNQX and gabazine, abolished by APV. (B) Peak EPSC amplitudes plotted before and after 

APV application. Each circle represents one neuron: white circles represent observations of EPSCs where APV was not bath applied. 

Bars represent mean of EPSC amplitudes. (C) Sample trace demonstrating inhibition of optogenetically-induced IPSC by tetrodotoxin 

(TTX) and subsequent rescue with 4- aminopyridine (4 A,P), indicating a monosynaptic connection. (D) Peak IPSC amplitudes plotted 

at baseline, after TTX, and after TTX + 4 A,P bath application.  
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Figure S3. Fos immunostaining in the TNC and withdrawal thresholds after dural IM. Related to Figure 3. (A) Summary of 

mechanical threshold measurements obtained using the up-down method in rats treated with dural infusions of PBS or IMs. Individual 

animals are plotted in gray dots and lines. Some animals only underwent infusions of dural PBS or IMs (*** p < 0.001). (B) Counts of 

Fos(+) cells per TNC section (n = 3 animals per condition, 8 slices per animal, * p < 0.05). Images of example TNC slices treated with 

dural PBS (C) or IMs (G) were acquired and stitched with 2D slide scan in MBF Stereoinvestigator, NeuN = green, Fos = magenta 

(scale bar = 500 µm). High magnification images of Fos (E,I, magenta), NeuN (D,H, green) immunostaining in TNC slices treated 

with dural PBS (D-F) or IMs (H-J). White arrowheads represent Fos(+) cells identified in the plane of focus (scale bar = 50 µm).  
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Figure S4. Behavior Timelines with PAG injection sites and VTA optic fiber placements. Related to Figure 4. (A) Location of 

ChR2-mCherry expression in animals injected with AAV2-hSyn-ChR2-mCherry into the vlPAG (B) Example slice with optic fiber 

tracts positioned dorsal to the VTA. (C) Optic fiber placements in the bilateral VTA for animals used in vlPAG to VTA terminal fiber 

activation experiments. Open circles indicate animals injected with sham AAV2-hSyn-mCherry virus. (D) Placements of 

halorhodopsin-mCherry expression in animals injected with AAV2-hSyn-eNpHR3.0-mCherry into the vlPAG. (E) Example slice with 

optic fiber tracts positioned dorsal to the VTA (F) Bilateral optic fiber placements in the VTA for animals used in vlPAG to VTA 

terminal fiber inactivation experiments. Coronal brain outlines in this figure were adapted for use with permission from the publisher 

of “The Rat Brain in Stereotaxic Coordinates” by Paxinos and Watson, 1998. 
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