Supplementary Material

Carboxylesterase-Cleavable Biotinylated Nanoparticle for Tumor-Dual Targeted Imaging

Peiyao Chen,¹ Wen Kuang,¹ Zhen Zheng,¹ Shuye Yang,² Yaling Liu,³ Lanhong Su,⁴ Kui Zhao,^{*2} and Gaolin Liang^{*1}

- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Department of PET Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310003, China
- 3. Jiangsu Institute of Nuclear Medicine, 20 Qianrong Road, Wuxi, Jiangsu 214063, China
- School of Life Sciences, University of Science and Technology of China, 443 Huangshan Road, Hefei, Anhui 230027, China

E-mail: zhaokui0905@zju.edu.cn (K. Z.), gliang@ustc.edu.cn (G.-L. L.).

Supplementary figures and table

Figure S1. ESI/MS spectrum of A.

Figure S2. HR-ESI/MS spectrum of B.

Figure S3. HR-ESI/MS spectrum of C.

Figure S4. HR-ESI/MS spectrum of D.

Figure S5. ¹H NMR spectrum of **NIR-CBT**.

Figure S6. ¹³C NMR spectrum of **NIR-CBT**.

Figure S7. HR-ESI/MS spectrum of NIR-CBT.

Figure S8. DLS measurement of NIR-CBT-NP.

Figure S9. Normalized absorbances at 685 nm of 10 μ M NIR-CBT-NP or free Cy5.5 in PBS (containing 10% DMSO) under 660 nm irradiation (0.25 W/cm²) for 0, 2, 4, 6, 8, or 10 min, respectively. Results are presented as mean \pm S.D., n = 3.

Figure S10. Normalized fluorescence spectra of 10 μM NIR-CBT dissolved in DMSO (red), 10 μM NIR-CBT-NP dissolved in DMSO (*i.e.*, NIR-CBT-Dimer, blue) and 10 μM NIR-CBT-NP dissolved in buffer (black).

Figure S11. Fluorescence spectra of 10 μ M **NIR-CBT-NP** in PBS at 37 °C for 0 h (black), 6 h (red), 12 h (blue), or 24 h (green). Excitation: 685 nm.

Figure S12. ESI-MS spectrum of HPLC peak at 17.2 min in Figure 3B.

Figure S13. ESI-MS spectrum of HPLC peak at 17.0 min in Figure 3B.

Figure S14. (A) Fluorescence spectra of 10 μ M NIR-CBT (black), 10 μ M NIR-CBT incubated with 1 mM TCEP at 37 °C for 1 h (*i.e.*, 10 μ M NIR-CBT-NP dispersion) (red), and 10 μ M NIR-CBT-NP incubated with HepG2 cell lysate at 37 °C for 4 h (blue) in PBS. Excitation: 685 nm. (B) HPLC traces of NIR-CBT (black), NIR-CBT-NP (red), and NIR-CBT-NP incubated with HepG2 cell lysate for at 37 °C for 4 h (blue). TEM images of 25 μ M NIR-CBT-NP dispersion (C) and 25 μ M NIR-CBT-NP incubated with HepG2 cell lysate at 37 °C for 4 h (D) in PBS. Scale bars, 200 nm.

Figure S15. MALDI-MS spectrum of HPLC peak at 17.0 min in Figure S14.

Figure S16. Fluorescence spectra of 10 μ M **NIR-CBT-NP** (red), 10 μ M **NIR-CBT-NP** incubated with HepG2 cell lysate at 37 °C for 4 h (blue) in PBS, 10 μ M **NIR-CBT-NP** incubated with CES inhibitor BNPP (10 mM)-pretreated HepG2 cell lysate at 37 °C for 4 h (green) in PBS, and 10 μ M **NIR-CBT-NP** incubated with serine protease inhibitor AEBSF (10 mM)-pretreated HepG2 cell lysate at 37 °C for 4 h (orange) in PBS. For inhibition experiments, HepG2 cell lysate was pretreated with BNPP or AEBSF at 37 °C for 1 h, before incubated with **NIR-CBT-NP**, respectively. Excitation: 685 nm.

Figure S17. Fluorescence spectra of 10 µM NIR-CBT-NP (red), 10 µM NIR-CBT-NP incubated in

mouse serum at 37 °C for 6 h (blue), 12 h (orange), or 24 h (purple). Excitation: 685 nm.

Figure S18. Fluorescence spectra of 10 μ M **NIR-CBT-NP** in cell culture medium at 37 °C for 0 h (black), 6 h (red), 12 h (blue), or 24 h (green). Excitation: 685 nm.

Figure S19. Effects of **NIR-CBT-NP** on HepG2 cells or LO2 cells apoptosis. The cells were treated with 20 μM **NIR-CBT-NP** for 6 h or 72 h, respectively. Apoptosis was evaluated by annexin V-FITC and PI staining followed by flow cytometry analysis. Percentage of necrotic cells (Q1-UL: annexin V-FITC⁻/PI⁺), late apoptosis cells (Q1-UR: annexin V-FITC⁺/PI⁺), early apoptosis cells (Q1-LR: annexin V-FITC⁺/PI⁻), and living cells (Q1-LL: annexin V-FITC⁻/PI⁻).

Figure S20. MTT assay of 2% DMSO on HepG2 cells and LO2 cells. The experiments were performed in triplicate. Results are representative of three independent experiments. Error bars represent standard deviations.

Figure S21. Time course fluorescence-microscopic images of HepG2 cells incubated with 20 μM NIR-CBT-NP in culture medium containing 2% DMSO at 37 °C. All images have the same scale bar: 20 μm.

Figure S22. Time course fluorescence-microscopic images of HepG2 cells incubated with 20 μ M Cy5.5 in culture medium containing 2% DMSO at 37 °C. All images have the same scale bar: 20 μ m.

Figure S23. Time course of the mean Cy5.5 fluorescence intensity from HepG2 cells treated with **NIR-CBT-NP** (red) or Cy5.5 (blue) verse that at 0 h in Figure S21 and S22, respectively.

Figure S24. Quantification of the average radiant efficiency ($[p/s/cm^2/sr]/[\mu W/cm^2]$) from the tumor regions for the mouse images in Figure 5.

Time (min)	Flow (mL/min)	H ₂ O % (0.1 % TFA)	CH ₃ CN % (0.1 % TFA)
0	1.0	50	50
3	1.0	50	50
35	1.0	5	95
37	1.0	5	95
38	1.0	50	50
40	1.0	50	50

Table S1. HPLC condition for the purification of the compounds in Figure 2, Figures 3B and S14B.