
Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
The broad question the authors aim to address is at what difficulty level learning proceeds most 
swiftly.  
 
Moving to an idealized setting of binary prediction, the authors consider the case of a score 
function that is equal to the target variable \Delta plus a zero-mean gaussian noise term. The 
score function is thresholded at zero for the purpose of making a binary prediction. Therefore, the 
error probability of the resulting binary predictor is F(-\Delta/\sigma), where \sigma is the 
standard deviation of the noise term, and F is the cumulative density function of the normal 
distribution.  
 
In the setup of the manuscript, gradient descent can be used to directly optimize F(-
\Delta/\sigma) as an objective function. In other words, a gradient step reduces \sigma and 
shrinks the error pobability. Since the objective has no stationary points (as a function of \sigma) 
in the positive real line (0,\infty), gradient descent converges towards 0.  
 
The authors then ask at what error rate (scaling of \Delta), gradient descent makes the largest 
step. This happens when the derivative of the objective with respect to \sigma is maximized, 
corresponding to an error rate of ~15%.  
 
Some concerns:  
 
- The model assumes that gradient descent directly minimizes the error probability under a 
gaussian noise model. In reality, gradient descent usually minimizes a loss function that typically 
does not directly correspond to this error probability.  
 
- The aforementioned issue is relevant to the claimed Perceptron result. The authors assert that 
the 85% rule applies to Perceptron learning. That's not clear to me at all, since the Perceptron 
algorithm is equivalent to minimizing the so-called hinge loss, which does not correspond to the 
gaussian error probablity that the analysis applies to.  
 
- The authors neglect the relationship between the trainable model parameters (denoted \phi) and 
the scaling of the noise (\sigma). Except in simple linear models, it's often highly non-trivial to 
understand how gradient updates to \phi change the distribution of errors. Taking this into account 
might mean that a larger step size (obtained by optimizing \Delta) isn't necessarily better.  
 
Conclusion:  
 
I like the question the paper asks. The proposed model is pleasingly simple and the 85% rule 
jumps right out of the setup. The manuscript is well written and the authors did a great job with 
the exposition in general.  
 
To which extent this simple model corresponds to realistic learning tasks remains a bit of a leap of 
faith in my opinion.  
 
It would've helped me greatly to see experiments on non-trivial learning problems, even if as 
simple as standard image classification tasks. Curriculum learning has been proposed in this 
context, e.g. [7], but hasn't been empirically successful over the years.  
 
I would've liked to see a more nuanced discussion of cases where the 15% rule fails and why. I 
can think of several situations. Rather than asserting that 15% is the answer in general, it 
would've been more informative to characterize in what scenarios this is a good guide.  



 
The use of the phrase "under fairly mild assumptions" in the introduction should probably be 
changed. The assumptions are extremely strong and apply to the simplest idealistic setting one 
could think of. It's possible that the 15% rule holds well beyond these assumptions, but there is no 
point in being unclear about the nature of the assumptions.  
 
 
Reviewer #2 (Remarks to the Author):  
 
This is a nice paper. The topic is very important with clear implications for learning in humans, 
animals, and machines. The result is surprising in its simplicity.  
 
Most of my comments are relatively minor requests for clarification. I have one more substantial 
suggestion. I was disappointed to see the theory tested only on the simplest types of classifiers, 
e.g. single layer neural networks. The impact of the result will be much more substantial, 
especially in machine learning, if it is demonstrated using more complex models and classification 
problems. For instance, I would love to see a demonstration on image classification, e.g. 
discriminating between two digit classes drawn from MNIST.  
 
Other suggestions and requests for clarification:  
- I believe the analysis hinges on \Delta being independent from the network parameters \phi. This 
assumption wasn't stated explicitly in the text, but it would clarify your analysis.  
- What are the assumptions on the stimulus x (and its distribution)? I could be mistaken, but 
currently the analysis assumes just a single x. This is appropriate for online learning, assuming 
that x is under active control by a teacher and chosen at each step to maintain the 85% rule (as 
reflected in its \Delta). What does your analysis have to say about batch learning? Also, since your 
analysis concerns just one stimulus at a time, all instances of "gradient descent" in the paper 
should be replaced by "stochastic gradient descent."  
- I don't believe the perceptron learning rule is strictly a stochastic gradient descent based rule, 
since the threshold activation function is not differentiable. The analysis cited in [20] refers to an 
artificial neuron with a logistic activation function.  
- It's not clear how Figure 3 was created. How many learning trials were presented for each of the 
network simulations in Figure 3?  
- The discussion states that the analysis applies to Boltzmann machines. It's unclear to me why it 
would, since Boltzmann machines are a generative model rather than a binary classifier.  
- Could your analysis be extended to multi-class classification in future work? This is worth 
commenting on.  
- The paper needs a more substantial reference than a personal communication to support the 
claim that "participant engagement is often maximized when performance is maintained around 
85%." (pg. 8) 



Reviewer #1 (Remarks to the Author): 
 
The broad question the authors aim to address is at what difficulty level learning proceeds most 
swiftly. 
 
Moving to an idealized setting of binary prediction, the authors consider the case of a score 
function that is equal to the target variable \Delta plus a zero-mean gaussian noise term. The 
score function is thresholded at zero for the purpose of making a binary prediction. Therefore, 
the error probability of the resulting binary predictor is F(-\Delta/\sigma), where \sigma is the 
standard deviation of the noise term, and F is the cumulative density function of the normal 
distribution.  
 
In the setup of the manuscript, gradient descent can be used to directly optimize 
F(-\Delta/\sigma) as an objective function. In other words, a gradient step reduces \sigma and 
shrinks the error pobability. Since the objective has no stationary points (as a function of \sigma) 
in the positive real line (0,\infty), gradient descent converges towards 0.  
 
The authors then ask at what error rate (scaling of \Delta), gradient descent makes the largest 
step. This happens when the derivative of the objective with respect to \sigma is maximized, 
corresponding to an error rate of ~15%. 
 
Some concerns: 
 
- The model assumes that gradient descent directly minimizes the error probability under a 
gaussian noise model. In reality, gradient descent usually minimizes a loss function that typically 
does not directly correspond to this error probability. 
 
This is a fair point - to make things tractable we made some fairly strong assumptions about the 
noise.  Our numerical experiments suggest these are reasonable in simple cases, including the 
new example with the MNIST dataset (see below), but there is no guarantee they would hold in 
more complex cases.  One way in which we can relax the assumptions was buried in the 
Methods section of the original paper.  Here we consider a wider class of noise distributions 
(that are parameterized by a scale factor, \beta) to obtain a more general result, presented in 
Equation 26.  This more general expression allows us to compute optimal training error rates for 
other distributions such as Laplacian noise and Cauchy noise, where the optimal training error 
rates change to about 18% and 25% respectively.  We now refer to this analysis more explicitly 
in the Discussion (p. 11) 

 
Of course, in these more complex situations, our assumptions may not always be 
met. For example, as shown in the Methods, relaxing the assumption that the 



noise is Gaussian leads to changes in the optimal training accuracy: from 85% 
for Gaussian, to 82% for Laplacian noise, to 75% for Cauchy noise (Equations 31 
in the Methods).  

 
- The aforementioned issue is relevant to the claimed Perceptron result. The authors assert that 
the 85% rule applies to Perceptron learning. That's not clear to me at all, since the Perceptron 
algorithm is equivalent to minimizing the so-called hinge loss, which does not correspond to the 
gaussian error probability that the analysis applies to. 
 
This is a fair point and we have changed the text as a result. While not strictly gradient descent 
itself, there is a sense in which the Perceptron rule can be related to it.  In MacKay (2003; 
Chapter 39, p. 475), a Perceptron-like learning rule is derived from gradient descent for a 
neuron with a soft threshold (i.e. a softmax activation function) rather than a hard threshold as in 
the traditional Perceptron.  While this soft-threshold model is not quite the Perceptron, it can be 
made arbitrarily close to the hard-threshold model by turning up the softmax gain (or, 
alternatively, by scaling up the inputs x).  To reflect this in the paper, we have changed our 
wording about the Perceptron learning rule to refer to it as  “closely related (albeit not identical) 
to” a gradient descent rule rather than implying equivalence. 
 
- The authors neglect the relationship between the trainable model parameters (denoted \phi) 
and the scaling of the noise (\sigma). Except in simple linear models, it's often highly non-trivial 
to understand how gradient updates to \phi change the distribution of errors. Taking this into 
account might mean that a larger step size (obtained by optimizing \Delta) isn't necessarily 
better.  
 
We now refer more explicitly to this assumption in the derivation right after equation 5  
 
After Eq 5 (p. 5): 

 
Of course, this analysis ignores the effect of changing φ on the form of the noise — 
instead assuming that it only changes the scale factor, β, an assumption that likely holds 
in the relatively simple cases we consider here, although whether it holds in more 
complex cases will be an important question for future work.  

 
Conclusion: 
 
I like the question the paper asks. The proposed model is pleasingly simple and the 85% rule 
jumps right out of the setup. The manuscript is well written and the authors did a great job with 
the exposition in general. 
 
We thank the reviewer for the positive comments! 
 



To which extent this simple model corresponds to realistic learning tasks remains a bit of a leap 
of faith in my opinion. 
 
It would've helped me greatly to see experiments on non-trivial learning problems, even if as 
simple as standard image classification tasks. Curriculum learning has been proposed in this 
context, e.g. [7], but hasn't been empirically successful over the years. 
 
To address this point we tested the effect of training accuracy on test accuracy in the MNIST 
database of handwritten digits. In particular we trained a sigmoidal network with one hidden 
layer with the backprop algorithm. In order to make a binary classification task from this data 
set, we had the network learn to classify either the parity (odd or even) or magnitude (high or 
low) of the numbers in the images. These tasks allowed us to use all the images in the database 
for training and also made for a more difficult learning task than simply discriminating between 
two numbers.  
 
Full details of the simulations are in the revised manuscript in the Methods section and Matlab 
code for the simulations is available at https://github.com/bobUA/EightyFivePercentRule. The 
results of the simulations are shown below, where we plot test accuracy against training error 
rate for the Parity and Magnitude tasks (Figure 3).  For the both tasks, the optimal training 
accuracy peaks at ER = 15%.  

 
 
I would've liked to see a more nuanced discussion of cases where the 15% rule fails and why. I 
can think of several situations. Rather than asserting that 15% is the answer in general, it 
would've been more informative to characterize in what scenarios this is a good guide.  
 
We have tried to tone down the rhetoric throughout the paper and have included the following in 
the discussion to address cases where we can prove the 85% rule does not hold (specifically for 



different noise distributions), but also to highlight other cases such as batch learning and more 
than two categories. 

 
Of course, in these more complex situations, our assumptions may not always be met. 
For example, as shown in the Methods, relaxing the assumption that the noise is 
Gaussian leads to changes in the optimal training accuracy: from 85% for Gaussian, to 
82% for Laplacian noise, to 75% for Cauchy noise (Equation 31 in the Methods). 

 
More generally, extensions to this work should consider how batch-based training 
changes the optimal accuracy, and how the Eighty Five Percent Rule changes when 
there are more than two categories. In batch learning, the optimal difficulty to select for 
the examples in each batch will likely depend on the rate of learning relative to the size 
of the batch. If learning is slow, then selecting examples in a batch that satisfy the 85% 
rule may work, but if learning is fast, then mixing in more difficult examples may be best. 
For multiple categories, it is likely possible to perform similar analyses, although the 
mapping between decision variable and categories will be more complex as will be the 
error rates which could be category specific (e.g. misclassifying category 1 as category 2 
instead of category 3).  

 
 
The use of the phrase "under fairly mild assumptions" in the introduction should probably be 
changed. The assumptions are extremely strong and apply to the simplest idealistic setting one 
could think of. It's possible that the 15% rule holds well beyond these assumptions, but there is 
no point in being unclear about the nature of the assumptions. 
 
We have changed this to: 
 

Under the assumption of a Gaussian noise process underlying the errors this optimal error 
rate is around 85% ... 

 

Reviewer #2 (Remarks to the Author): 
 
This is a nice paper. The topic is very important with clear implications for learning in humans, 
animals, and machines. The result is surprising in its simplicity. 
 
We thank the reviewer for their positive comments! 
 
Most of my comments are relatively minor requests for clarification. I have one more substantial 
suggestion. I was disappointed to see the theory tested only on the simplest types of classifiers, 
e.g. single layer neural networks. The impact of the result will be much more substantial, 



especially in machine learning, if it is demonstrated using more complex models and 
classification problems. For instance, I would love to see a demonstration on image 
classification, e.g. discriminating between two digit classes drawn from MNIST. 
 
We have implemented this suggestion with a two-layer network on the MNIST dataset.  We 
considered two tasks, classifying the parity or magnitude of the numbers.  We used these tasks 
because they were slightly more complex than distinguishing between any two pairs of numbers 
(e.g. 1 vs 2 is quite easy) and because it allowed us to use the whole dataset for training - which 
gives us more training examples at all levels of difficulty. 
 
Full details of the simulations are in the revised manuscript in the Methods section and Matlab 
code for the simulations is available at https://github.com/bobUA/EightyFivePercentRule. The 
results of the simulations are shown below where we plot test accuracy against training error 
rate for the Parity and Magnitude Tasks.  For the both tasks, the optimal training accuracy 
peaks at the optimal difficulty of 15%. 

 
 
 
Other suggestions and requests for clarification: 
- I believe the analysis hinges on \Delta being independent from the network parameters \phi. 
This assumption wasn't stated explicitly in the text, but it would clarify your analysis. 
 
This is correct.  Δ is the “true” decision variable and so, by definition, should be independent of 
the parameters φ.  We have now clarified this in the text in the footnote on page 3 
 

Note that Δ itself, as the `true' decision variable, is independent of φ 
 



- What are the assumptions on the stimulus x (and its distribution)? I could be mistaken, but 
currently the analysis assumes just a single x. This is appropriate for online learning, assuming 
that x is under active control by a teacher and chosen at each step to maintain the 85% rule (as 
reflected in its \Delta).  
 
Apologies for not being more clear in the text, this reflects our bias in coming at this from a 
human/animal perceptual learning angle where stimuli are always presented one at a time. Of 
course in machine learning this is not always the case!  We have tried to be more clear in the 
text on page 5 

 
If stimuli are presented one at a time (i.e. not batch learning), ... 

 
What does your analysis have to say about batch learning?  
 
This is an interesting question.  If learning is slow relative to the batch size, such that error rate 
is approximately constant throughout the batch, then the analysis should carry over.   This 
assumes that the the stimuli in each batch are chosen so that they all have the same difficulty, 
around 85% correct (choosing an 85:15 mixture of very easy and very hard stimuli would also 
give 85% correct for each batch but no learning!).  We have included a paragraph in the 
Discussion on this point.  
 

… in batch  learning,  the  optimal  difficulty  to  select  for  the  examples  in  each  batch 
will  likely depend  on  the  rate  of  learning  relative  to  the  size  of  the  batch.   If 
learning  is  slow,  then selecting examples in a batch that satisfy the 85% rule may 
work,  but if learning is fast, then  mixing  in  more  difficult  examples  may  be  best. 

 
 
Also, since your analysis concerns just one stimulus at a time, all instances of "gradient 
descent" in the paper should be replaced by "stochastic gradient descent." 
 
Thanks for catching this!  The change has been made throughout the paper. 
 
- I don't believe the perceptron learning rule is strictly a stochastic gradient descent based rule, 
since the threshold activation function is not differentiable. The analysis cited in [20] refers to an 
artificial neuron with a logistic activation function. 
 
Agreed.  However, the logistic activation function can be made arbitrary close to the hard 
threshold function by upping the gain (or scaling up the inputs, x).  To reflect this in the text we 
refer to the Perceptron learning rule as being “closely related (albeit not identical)” to gradient 
descent. 
 
- It's not clear how Figure 3 was created. How many learning trials were presented for each of 
the network simulations in Figure 3? 



 
We used up to 1000 learning trials in the Perceptron simulations.  The y-axis in Figure 3A and 
the x-axis in 3B then reflect the additional trials of training up to 1000 extra trials.  Details have 
been added to the Methods section.  

 
To test this prediction we simulated the Perceptron learning rule for a range of training 
error rates between 0.01 and 0.5 in steps of 0.01 (1000 simulations per error rate, 1000 
trials per simulation). 

 
In addition we have uploaded the code for all examples to GitHub at 
 

https://github.com/bobUA/EightyFivePercentRule 
 
- The discussion states that the analysis applies to Boltzmann machines. It's unclear to me why 
it would, since Boltzmann machines are a generative model rather than a binary classifier. 
 
Apologies for this error!  We have removed this reference. 
 
- Could your analysis be extended to multi-class classification in future work? This is worth 
commenting on. 
 
Extending to multi-class classification would indeed be an important next step, and should be 
possible.  There will be additional factors to consider in this case, such as how the decision 
variable maps onto the classes. For example, in one case we could imagine a one-dimensional 
decision variable that is mapped to many categories (e.g. wavelength of light to the name of the 
color), in another we could imagine mapping a D-dimensional decision variable onto D different 
categories. In addition, we may want to consider more than just the error rate and instead 
consider the type of error - e.g. mistaking category 2 for category 1 but not category 3.  We 
have included a reference to this point in the Discussion:  
 

For  multiple  categories,  it  is  likely possible to perform similar analyses, although the 
mapping between decision variable and categories will be more complex, as will be the 
error rates, which could be category specific (e.g.  misclassifying category 1 as category 
2 instead of category 3). 

 
- The paper needs a more substantial reference than a personal communication to support the 
claim that "participant engagement is often maximized when performance is maintained around 
85%." (pg. 8) 
 
Fair enough! We have removed the reference and toned down that particular sentence to (p. 11) 
 



In Psychology and Cognitive Science, the Eighty Five Percent Rule accords with the 
informal intuition of many experimentalists that participant engagement is often 
maximized when tasks are neither too easy nor too hard.  

 
In reality, not a lot of work has probed this question directly, the best evidence comes from the 
staircasing literature. A meta-analysis of 82 studies from this literature showed that most studies 
used staircases targeting 80-85% accuracy (Garcia-Perez, 1998, Table 1) 
 
M A Garcia-Perez. Forced-choice staircases with fixed step sizes: asymptotic and 
small-sample properties. Vision Res, 38(12):1861–81, Jun 1998.  
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REVIEWERS' COMMENTS:  
 
Reviewer #2 (Remarks to the Author):  
 
I had a positive impression of the original manuscript, and the new version confirms my 
impression. The MNIST experiments substantially strengthen the paper and the applicability of the 
conclusions to machine learning tasks. I feel my comments have been adequately addressed.  
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