
ISCI, Volume 19
Supplemental Information
An Algorithmic Information

Calculus for Causal Discovery

and Reprogramming Systems

Hector Zenil, Narsis A. Kiani, Francesco Marabita, Yue Deng, Szabolcs Elias, Angelika
Schmidt, Gordon Ball, and Jesper Tegnér

	 1	

Supplementary	Information	
Section	1:	Glossary	of	Terms,	Concepts	and	Definitions	
	
Algorithmic	 causality:	We	define	 as	 the	 causal	 index	 c	 of	 a	 dynamical	 system	St	 running	over	
time	 t	 as	 the	 smallest	 c	 such	 that	𝐶(𝑆!) = |𝑆!| – 𝑐,	 where	 |	 X	 |	 denotes	 the	 size	 of	 X.	 The	
difference	|St|	–	C(St)	 is	thus	an	approximation	of	the	causality	of	St.	The	causal	content	c	of	a	
non-causal	 system	 approximates	 log	 t,	 i.e.	 is	 very	 small,	 meaning	 that	 C(St)	 ~	 |St|,	 and	 the	
trajectory	 of	 St	 is	 algorithmically	 random.	 For	 causal	 systems,	we	 have	 it	 that	 C(St)	 –	 C(St+1)	 ~	
𝑙𝑜𝑔! t,	i.e.	the	complexity	of	a	causal	system	S	is	driven	by	its	evolution	time	t.	All	logarithms	are	
in	base	two	if	not	otherwise	indicated.	
	
Algorithmic	 perturbation	 analysis:	 Is	 the	 estimation	 of	 the	 effects	 of	 perturbations	 (e.g.	 by	
removal/knockout)	of	an	element	e	(or	set	of	elements)	from	S,	denoted	by	S\e,	on	the	original	
algorithmic	 information	content	C(S).	Without	 loss	of	generalization,	 let’s	take	as	a	system	s,	a	
network	G	 =	 {V(G),	 E(G)},	 a	 dynamic	 system,	with	 V(G)	 a	 set	 of	 nodes	 and	 E(G)	 a	 set	 of	 links	
connecting	nodes	in	V(G).	
	
Negative	 information	 element	 (e.g.	 a	 node	 or	 edge):	 an	 element	 (or	 set)	 e	 in	 G	 such	 that:		
𝐶(𝐺) – 𝐶(𝐺\𝑒) < – 𝑙𝑜𝑔!|𝑉(𝐺)|,	i.e.	the	removal	of	e	moves	G	towards	randomness.	
	
Positive	 information	 element	 (e.g.	 a	 node	 or	 edge):	 an	 element	 (or	 set)	 e	 in	 G	 such	 that:		
𝐶(𝐺) – 𝐶(𝐺\𝑒) > 𝑙𝑜𝑔!|𝑉(𝐺)|,	i.e.	the	removal	of	e	moves	G	away	from	randomness.	
	
Neutral	 information	 element	 (e.g.	 a	 node	or	 edge):	 an	 element	 (or	 set)	 e	 in	G	 such	 that	 e	 is	
neither	positive	or	negative:	
–	 𝑙𝑜𝑔!|V(G)|	≤	 C(G)	 –	 C(G\e)	≤	 𝑙𝑜𝑔!|V(G)|,	where	 |V(G)|	 is	 the	 size	 of	 the	 system,	 e.g.	 the	
vertex	count	of	a	network	G.	
	
Algorithmic	system	inference	of	its	generating	mechanism:	Let	s	be	a	dynamical	system	if	C(st)	
–	C(s\e)	~	𝑙𝑜𝑔!t	we	then	call	e	a	neutral	perturbation.	A	perturbation	e	thus	does	not	change	the	
generating	mechanism	of	s	and	st	can	be	recovered	from	st\e	because	st+1\e	=	st.	Otherwise,	e	is	
disruptive	(positive	or	negative),	with	a	degree	of	disruptiveness	C(st\e)	–	C(st).	In	general,	C(st)	–	
C(st-n)	 ~	 n	 𝑙𝑜𝑔!t,	 providing	 the	 means	 to	 reverse	 a	 system	 in	 time	 and	 reveal	 its	 possible	
generating	mechanism	in	the	process.	If	the	system	is	not	reversible,	several	generating	models	
may	be	formulated,	thereby	producing	optimal	hypotheses	in	the	form	of	generative	models.	
	
Spectra(G):	 the	 list	 of	 all	 non-integer	 algorithmic-information	 contribution	 values	 of	 each	
element	of	G	(e.g.	edges	or	nodes,	or	both).	
	
Powerset	spectra(G):	the	list	of	all	non-integer	algorithmic-information	values	of	each	element	
in	the	powerset	of	elements	of	G	(e.g.	edges	or	nodes	or	both).	
	
Red	shifted	spectra(G):	 	spectra(G)	that	contain	more	elements	whose	removal	moves	G	more	
towards	than	away	from	randomness.	
	

	 2	

Blue	shifted	spectra(G):		spectra(G)	that	contain	more	elements	whose	removal	moves	G	away	
from	rather	than	towards	randomness.	
	
σ(G):	 the	 information	signature	(or	 just	signature)	of	G	 is	spectra(G)	 list	sorted	from	largest	to	
smallest	value.	(see	Extended	Data	Figures.	1-2).	
	
Δ(s):	 the	 instantaneous	programmability	 value	of	 an	element	 s	 in	σ(G),	 indicating	how	 fast	or	
slowly	s	can	move	G	towards	or	away	from	randomness.		Formally,	
𝛥(𝑠) = | 𝜎!(𝐺) – 𝜎! − 1(𝐺) / 𝑃(𝜎!(𝐺)) – 𝑃(𝜎! − 1(𝐺)) |.	
	
Incoherent	 information	 set:	 a	 set	 whose	 individual	 elements	 or	 subsets	 have	 different	
information	contribution	values	than	the	whole	set.	
	
Coherent	 information	 set:	 a	 set	 whose	 individual	 elements	 or	 subsets	 have	 the	 same	
information	contribution	value	as	the	whole	set.	
	
Information	 sensitivity:	 the	 derivative	 of	 the	 absolute	max	 value	 of	 the	 programmability	 of	 a	
graph	 in	 the	 (re)programmability	 curve	 (see	 Figures	 S1-S4),	 but	 numerically	 calculated	 by	 the	
rate	of	change	of	σ(G\e)	versus	σ(G)	for	all	elements	(or	sets)	e	in	G,	i.e.	the	list	of	signatures	for	
all	e	(or	signature	of	signatures	of	G)	capturing	the	non-linear	effects	of	perturbations	on	G.		
	
MILS:	Minimal	Information	Loss	Sparsification	is	a	method	to	identify	neutral	elements	that	have	
zero	or	negligible	algorithmic-information	content	value	 in	a	 system	or	network,	and	can	 thus	
safely	be	removed,	ensuring	minimal	information	loss.	
	
MAR:	a	Maximal	Algorithmic	Random	graph	(or	system)	G	is	an	Erdős	-Rényi	(E-R)	graph	that	is	
algorithmically	random,	i.e.	whose	shortest	possible	computer	description	is	not	(much)	shorter	
than	|E(G)|,	where	|E(G)|	is	the	number	of	edges	of	G;	or,	|E(G)|	–	C(G)	<	c.	
	
1st	 Order	 randomness	 deficiency:	 The	 algorithmic-information	 distance	 between	 a	
network/system	and	its	algorithmically	randomised	version,	e.g.	a	MAR	graph	for	networks.	
	
2nd	 Order	 randomness	 deficiency:	 The	 difference	 between	 information	 signatures	 by,	 e.g.,	
Kolmogorov-Smirnoff	distance,	i.e.	how	removed	a	network	is	from	its	algorithmic	(non-causal)	
randomisation.	
	
Simply	directed	graph:	 is	 the	 transformation	of	 an	undirected	graph	 into	a	directed	one	 such	
that	the	edge	directions	are	chosen	to	minimise	the	number	of	independent	paths	and	number	
of	path	collisions.	
	
MAD:	denotes	the	median	absolute	deviation,	and	is	defined	by:	

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛 (|𝑋! – 𝑚𝑒𝑑𝑖𝑎𝑛(𝑋) |).	
MAD	is	a	robust	measure	of	the	variability	of	a	univariate	sample.	
	
Relative	(re)programmability: 𝑃𝑟(𝐺) ∶= 𝑀𝐴𝐷(𝜎(𝐺))) / 𝑛	or	0	if	n	=	0,	where	n	=	max(|σ(G)|).	
This	index	measures	the	shape	of	σ! G 	and	how	it	deviates	from	other	distributions	(e.g.	
uniform	or	normal).	
	

	 3	

Absolute	 (re)programmability:	 𝑃𝐴(𝐺) ∶= |𝑆(𝜎𝑃(𝐺)) − 𝑆(𝜎𝑁(𝐺)) | / 𝑚,	 where	 m	 :=	
𝑚𝑎𝑥(𝑆(𝜎𝑃(𝐺)), 𝑆(𝜎𝑁(𝐺))),	where	𝑚 = 𝑚𝑎𝑥(𝑆(𝜎𝑃(𝐺)), 𝑆(𝜎𝑁(𝐺)))	and		S	is	an	interpolation	
function.	This	measure	of	reprogrammability	captures	not	only	the	shape	of	σ! G 	but	also	the	
sign	of	σ! G 	above	and	below	x	=	0.	
	
Programmability	landscape:	the	Cartesian	product	𝑃𝑟(𝐺) 𝑥 𝑃𝐴(𝐺).	
	
Combined	(re)programmability: | 𝑉! 𝐺 | = 𝑃!!(𝐺) − 𝑃!!(𝐺) ≤ √2.	
The	combined	reprogrammability	 is	a	metric	 induced	by	the	norm	||V_R	(G)||	defined	by	the	
Euclidean	distance	between	two	(re)programmability	indices.	This	metric	combines	the	relative	
and	 absolute	 (re)programmability	 indices,	 and	 takes	 into	 equal	 account	 both	 the	 sign	 of	 the	
signature	σ(G)	of	G	and	the	shape	of	σ(G),	consequently	minimizing	the	impact	of	uncertain	sign	
estimations	 due	 to	 (convergent)	 errors	 in	 the	 calculation	 of	 algorithmic	 complexity	 (Zenil	 and	
Kiani,	 2016)	 attributable	 to	 boundary	 conditions	 (see	 Graph	 Algorithmic	 Probability	 as	 Upper	
Bounds	to	Graph	Randomness).	
	
Natural	 (re)programmability:	 is	 the	 expected	 theoretical	 (re)programmability	 of	 a	 system	 or	
network,	 compared	 to	 its	 estimated	 (re)programmability,	 e.g.	 for	 a	 complete	 graph	 all	 nodes	
and	all	edges	should	have	the	same	algorithmic-information	contribution,	and	thus	σ(G)	can	be	
analytically	derived	(a	flat	uniform	distribution	𝑥 = 𝑙𝑜𝑔 |𝑉(𝐺)|	with	|𝑉(𝐺)|	the	node	count	of	
G).	Thus	all	 the	nodes	of	a	complete	graph	are	 ‘slightly’	positive	 (or	more	precisely,	neutral,	 if	
they	are	‘positive’	by	only	𝑙𝑜𝑔 |𝑉(𝐺)|).	
	
Algorithmic-information	Causal	Interventionist	Calculus	
The	core	of	the	causal	calculus	 is	based	upon	the	change	of	complexity	of	a	system	subject	to	
perturbations,	 particularly	 the	 direction	 (sign)	 and	magnitude	 of	 the	 difference	 of	 algorithmic	
information	content	C	between	two	graphs	G	and	G’,	e.g.	the	removal	of	e	from	G	(denoted	by	
G\e).	The	difference	|	C(G)	–	C(G\e)	|	(see	Supplement,	Section	1)	is	an	estimation	of	the	shared	
algorithmic	 mutual	 information(Chaitin,	 1987)	 of	 G	 and	 G\e.	 If	 e	 does	 not	 contribute	 to	 the	
description	of	G,	 then	 | 𝐶(𝐺) – 𝐶(𝐺\𝑒) | ~ 𝑙𝑜𝑔!|𝑉(𝐺)|,	where	 |V(G)|	 is	 the	node	 count	of	G,	
i.e.	the	difference	will	be	very	small	and	at	most	a	function	of	the	graph	size	and	thus	C(G)	and	
C(G\e)	 have	 almost	 the	 same	 complexity.	 If,	 however,	 | 𝐶(𝐺) – 𝐶(𝐺\𝑒) | < 𝑙𝑜𝑔!|𝑉(𝐺)|	 bits,	
then	G	and	G\e	share	at	least	n	bits	of	algorithmic	information	in	element	e,	and	the	removal	of	
e	 results	 in	 a	 loss	 of	 information.	 In	 contrast,	 if	 𝐶(𝐺) – 𝐶(𝐺\𝑒) > 𝑛,	 then	 𝑒	 cannot	 be	
explained	by	G	alone	nor	is	it	algorithmically	not	contained/derived	from	G,	and	it	is,	therefore,	
a	fundamental	part	of	the	description	of	G	with	e	as	a	generative	causal	mechanism	in	G,	or	else	
it	 is	not	part	of	G	but	has	 to	be	explained	 independently,	e.g.	as	noise.	Whether	 it	 is	noise	or	
part	of	the	generating	mechanism	of	G	depends	on	the	relative	magnitude	of	n	with	respect	to	
C(G)	and	to	the	original	causal	content	of	G	itself.	If	G	is	random	then	the	effect	of	e	will	be	small	
in	either	case,	but	if	G	is	richly	causal	and	has	a	very	small	generating	program,	then	e	as	noise	
will	have	a	greater	impact	on	G	than	would	removing	e	from	the	description	of	an	already	short	
description	of	G.	However,	if	|	C(G)	–	C(G\e)	|	≤ 𝑙𝑜𝑔!|V(G)|,	where	|V(G)|	is	the	vertex	count	
of	G,	then	e	is	contained	in	the	algorithmic	description	of	G	and	can	be	recovered	from	G	itself	
(e.g.	by	running	the	program	from	a	previous	step	until	it	produces	G	with	e	from	G\e).	
	
For	 example,	 in	 a	 complete	 graph	 K10	 (Fig.	 1a,b),	 the	 removal	 of	 any	 single	 node	 leads	 to	 a	
logarithmic	reduction	in	its	algorithmic	complexity,	but	the	removal	of	any	single	edge	leads	to	

	 4	

an	increase	of	randomness.	The	former	because	the	result	is	simply	another	complete	graph	of	a	
smaller	 size,	 and	 the	 latter	 because	 the	 deleted	 link	 would	 need	 to	 be	 described	 after	 the	
description	of	the	complete	graph	itself.	However,	the	removal	of	node	1	(Fig.	1	b)	is	equivalent	
to	 the	 removal	of	 the	 set	of	all	 edges	connecting	 to	node	1,	 so	 the	 set	of	all	 these	edges	 is	a	
positive	 information	 set,	 even	 though	 all	 its	 individual	 edges	 are	 negative,	 a	 nonlinear	
phenomenon	 that	 we	 call	 information	 incoherence.	 Connecting	 two	 complete	 graphs	 at	 a	
random	node	(Figure	1c)	designates	the	connecting	link	as	positive	because	its	removal	pushes	
the	network	towards	simplicity,	the	minimal	description	of	2	K10	graphs	being	shorter	than	the	
minimal	description	of	two	K10	graphs	plus	the	description	of	the	missing	link	at	random	points.	
Such	a	link	can	also	be	seen	as	an	element	connecting	2	networks,	hence	a	network	of	networks.	
Its	 identification	 and	 removal	 would	 thus	 reveal	 the	 separation	 between	 two	 networks.	 In	
general,	positive	elements	will	 identify	 the	major	structures	generated	by	the	most	 likely	 (and	
simplest)	 generating	 mechanism	 given	 the	 observation,	 and	 odd	 elements	 will	 stand	 out	 as	
negative,	 thereby	 identifying	 layers	of	networks	 that	are	 independent	of	 separable	generating	
mechanisms,	even	removing	apparent	noise	(external	information)	from	the	signal	(the	system’s	
natural	evolution)	when	such	networks	are	 richly	 causal.	Random	graphs	are	node-	and	edge-
blueshifted	(see	Fig.	1g	and	Supplementary	Information	Glossary	Section	1);	simple	graphs	such	
as	 complete	 or	 wheel	 graphs	 are	 edge-redshifted.	 Perturbing	 (e.g.	 knocking-out)	 a	 node	 and	
recalculating	 the	 spectra	 changes	 the	original	 spectrum	 in	what	 is	 clearly	 a	 non-reductionistic	
approach	 to	 characterizing	 networks.	 All	 the	methods	 introduced	 here	 also	work	 on	 directed	
(e.g.	Fig.	1d)	and	weighted	graphs	without	any	loss	of	generality.	
	
Real-world	 networks	 as	 generated	 by	 physical	 laws	 are	 recursive	 according	 to	 classical	
mechanics	(deterministic	and	reversible)	and	are	thus	on	the	left	side	in	the	schematic	Extended	
Data	 Figure.	 1,	 but	 they	may	 also	 contain	 information	 about	 other	 interacting	 systems	 or	 be	
captured	 in	 a	 transient	 state	 that	 incorporates	 external	 signals	 pushing	 the	networks	 towards	
randomness.	 We	 have	 quantified	 this	 concept	 by	 proposing	 different	 (Re)	 Programmability	
indices	 (see	 Supplement	 Section	 1).	 	 Extended	 Data	 Figure.	 One	 summarizes	 some	 of	 the	
theoretical	expectations	and	numerical	results.	There	 is	a	thermodynamic	argument	as	to	why	
the	 curve	 is	 negatively	 skewed:	 while	 it	 is	 easy	 and	 fast	 to	 move	 regular	 networks	 towards	
randomness	as	a	function	of	the	number	of	edges—there	being	about	|E(G)|		ways	to	move	the	
network	 towards	 randomness	 such	 that	 the	 description	 of	 G	 moves	 to	 |G|	 +	 |e|,	 i.e.	 the	
description	of,	say,	an	edge	removed,	where	|E(G)|	is	the	edge	count	of	G—there	are	far	fewer	
ways	to	move	a	random	network	away	from	randomness.	A	MAR	graph,	for	example,	cannot	be	
moved	 by	 edge	 or	 node	 deletion	 more	 than	 log	 |E(G)|.	 The	 result	 is	 compatible	 with	 the	
asymmetries	 in	 energy	 landscapes	 between	 moving	 systems	 towards	 fewer	 future	 attractors	
versus	moving	them	back	to	states	of	a	greater	number	of	attractors,	the	latter	requiring	much	
more	energy	than	the	former.		
	
Minimal	Information	Loss	Sparsification	(MILS)	
Our	 causal	 algorithmic	 calculus	 defines	 an	 optimal	 parameter-free	 dimension	 reduction	
algorithm,	which	minimizes	 information	 loss	while	 reducing	 the	 size	 of	 the	 original	 (network)	
object.	 The	 Minimal	 Information	 Loss	 Sparsification	 (or	 MILS)	 method	 is	 based	 on	 removing	
neutral	 elements	 while	 preserving	 the	 information	 content	 of	 a	 network,	 and	 therefore	 its	
properties,	and	it	can	be	used	for	reduction	by	minimizing	the	loss	of	any	informational	feature	
of	G	that	needs	to	be	described	and	cannot	be	compressed	into	some	shorter	description	of	G	
(see	Transparent	Methods	Supplement	Section	2	for	the	pseudocode	and	evaluation).		
	

	 5	

Maximal	Algorithmic	Randomness	Preferential	Attachment	(MARPA)	algorithm	
The	Maximal	Algorithmic	Randomness	Preferential	Attachment	(MARPA)	algorithm	(MARP)	(see	
Supplement	Section	2	for	the	pseudocode	and	evaluation)	can	be	viewed	as	a	reverse	algorithm	
in	 comparison	 to	 MILS.	 MARPA	 seeks	 to	 maximize	 the	 information	 content	 of	 a	 graph	 G	 by	
adding	new	edges	(or	nodes)	at	every	step.	The	process	approximates	a	network	of	a	given	size	
that	has	the	largest	possible	algorithmic	randomness	and	is	also	an	Erdős-Rényi	(ER)	graph.	An	
approximation	of	a	‘Maximal’	Algorithmic-	Random	(MAR)	graph	can	be	produced	as	a	reference	
object	whose	generating	program	 is	not	 smaller	 than	 the	network	 (data)	 itself	 and	can	better	
serve	in	maximum	(algorithmic-)	entropy	modelling.	See	Supplement	Section	1	for	the	proof	of	
the	existence	of	ER	graphs	that	are	not	maximal	algorithmic-random	graphs		
	
Dynamical	simulations	using	Boolean	networks	
A	Boolean	network	consists	of	a	discrete	set	of	Boolean	variables	each	of	which	has	a	Boolean	
function	 (here,	 always	 the	 same	 for	 each	 node),	 which	 takes	 inputs	 from	 a	 subset	 of	 these	
variables.	We	conducted	the	first	experiment	on	single-node	and	single-edge	deletion	effects	on	
all	 possible	 Boolean	 networks	 with	 up	 to	 size	 n	 =	 5	 nodes,	 and	 with	 XOR,	 AND,	 and	 OR	 as	
Boolean	functions.	The	output	of	a	Boolean	network	is	the	state	of	the	numbered	sequence	of	
states	of	its	nodes.	In	a	Boolean	model	in	which	a	network	is	represented	by	a	set	of	n	Boolean	

variables,	either	Off	(0)	or	On	(1),	the	number	of	attractors	cannot	exceed	2n
2n
.		

	
In	general,	in	a	connected	network,	each	node	is	controlled	by	a	subset	of	other	nodes.	The	size	
of	the	controlling	subset	for	each	network	depends	on	the	connectivity	pattern	in	the	network	
[3,	4].	For	example,	in	an	E-R	random	graph	with	edges	equally	distributed	with	edge	density	p,	
if	we	change	the	state	of	any	arbitrary	node	in	the	initial	state,	the	effect	on	the	dynamics	of	a	
network	should	be	about	the	same	on	average,	and	this	means	the	basin	of	attraction	remains	
mostly	unchanged.	If	the	basin	of	attraction	is	of	size	M,	the	number	of	attractors	is	(2n)/M.		The	
size	of	M	will	depend	on	the	network	density	p	with	M	<<	2n.		However,	in	a	simply	connected	
complete	 graph	 (minimizing	 edge	 collision	 c.f.	 Sup.	 Inf.	 Glossary),	 all	 nodes	 control	 all	 other	
nodes,	and	there	is	only	one	attractor	with	the	basin	of	attraction	size	2n.		In	modular	scale-free	
networks,	not	all	edges	are	statistically	equally	distributed,	and	only	a	few	nodes	control	many	
others,	unlike	an	E-R	random	network,	and	they	have	a	significantly	greater	basin	of	attraction	
sizes	 and	 therefore	 a	 smaller	 number	 of	 attractors(Aldana,	 2003a;	Wuensche,	 2004;	 Espanés,	
Osses	and	Rapaport,	2016).				
	
We	estimated	the	algorithmic-information	contribution	of	every	node	n	(and	every	edge	e)	over	
all	 possible	 33,554,432	 5-node	 graphs.	 The	 estimation	 of	 the	 algorithmic-information	
contribution	 (see	 Supplement	 Section	 1))	 considered	 all	 vertices	 in	 the	 same	 orbit	 of	 the	
automorphism	group	of	G,	Aut(G),	and	the	min	of	the	information	value	C(G\n)	with	respect	to	
the	largest	component	of	G	according	to	the	unlabelled	definition	of	algorithmic	complexity	for	
unlabelled	graphs	in	26	(main	text),	thus	correcting	minor	deviations	of	estimations	of	the	complexity	
of	C(G\n)	by	BDM	due	to	boundary	conditions20	 (main	 text).	The	calculation	of	C(G’)	for	every	G’	in	
Aut(G)	is,	however,	not	feasible	in	general,	as	the	production	of	Aut(G)	and	thus	the	calculation	
of	C(G’)	for	all	G’	 in	Aut(G)	is	believed	to	be	in	NP,	thereby	making	the	brute	force	exploration	
computationally	 intractable.	 However,	 it	 has	 also	 been	 shown	 that	 estimations	 of	 K(G)	 are	
similar	to	K(Aut(G)))	up	to	a	constant	(the	size	of	the	graph	generating	program)26	(main	text).	
	

	 6	

We	 performed	 the	 same	 edge	 perturbation	 experiments,	 removing	 all	 edges,	 one	 at	 a	 time,	
from	 larger	 graphs,	 [Fig3e]	 and	 comparing	 with	 state-of-the-art	 algorithms5	 the	 largest	
eigenvalue,	number	of	different	eigenvalues	and	number	of	attractors	on	the	largest	remaining	
connected	 component	 of	 the	 larger	 graphs.	 The	 experiment	 was	 repeated	 with	 Boolean	
functions	AND,	OR	and	XOR	leading	to	the	same	results.	
	
One	can	then	apply	uninformed	perturbations	to	move	networks	towards	statistical	randomness	
based	on	 this	 algorithmic-information	 calculus,	 and	 in	 a	 controlled	 fashion	 towards	 and	 away	
from	algorithmic	randomness,	thus	taking	into	account	non-statistical	and	non-linear	effects	of	
the	 system	as	a	generating	mechanism,	providing	a	 sequence	of	 causal	 interventions	 to	move	
networks	and	systems	at	the	level	of	the	(hypothesized)	generating	model	in	order	to	reveal	first	
principles	and	to	control	the	side	effects	of	such	a	system’s	manipulation	at	every	step.	
	
Random	versus	regular	networks	are	sensitive	in	different	ways.	While	an	algorithmic-	random	
network	 is	 hard	 to	move	 fast	 along	 its	 algorithmic	 -random	 location	 (Extended	Data	 Fig.	 1-4),	
other	 changes	 in	 simple	 regular	 graphs	 have	more	dramatic	 effects	 (Fig1a	 v	 Fig1c),	 displaying	
different	 degrees	 of	 linear	 v.	 non-linear	 behaviour	 for	 different	 perturbations.	 In	 low	
algorithmic-content	networks	such	as	simply	directed	complete	graphs,	all	nodes	are	immune	to	
perturbations,	 leaving	 the	 basins	 of	 attraction	 and	 number	 of	 attractors	 the	 same	 (only	
proportional	to	their	new	size).	From	these	principles,	it	is	evident	that	systems	that	are	far	from	
random	display	 inherent	 regular	 properties,	 and	 are	 thus	more	 robust	 in	 the	 face	 of	 random	
perturbations	because	they	have	deeper	attractors	(See	Supplement	Section	2).	
	
Algorithmic	Causal	Reconstruction	of	Dynamic	Systems		
The	theory	of	algorithmic	complexity	provides	means	to	find	mechanistic	causes	through	most	
likely	 (simplest)	 algorithmic	 models,	 helping	 to	 reverse	 engineer	 partial	 observations	 from	
dynamic	systems	and	networks.		
The	causal	reconstruction	method	of	a	system	(e.g.	a	network	or	cellular	automaton)	M	is	as	
follows:	

1) Estimate	the	information	contribution	of	every	element	e	in	O(n),	the	sequence	of	
instantaneous	observations	O	from	time	0	to	n.	

2) The	set	of	neutral	elements	{e}	is	the	set	of	those	elements	whose	algorithmic-
information	content	contribution	to	the	complexity	O(n)	is	of	a	logarithmic	nature	only	
with	respect	to	C(n).	

3) Remove	neutral	elements	{e}	from	O(n)	and	repeat	(1)	with	reassigned		O(n)	:=	O(n)\{e}.	
4) After	m	iterations	the	reverse	sequence	of	observations	O(n)\{e}	provides	an	indication	

of	 the	 evolution	 of	 the	 system	 in	 time,	 thereby	 yielding	 a	 hypothesis	 about	 the	
generating	mechanism	P	producing	O(n)	for	any	n,	and	unveiling	the	initial	condition	in	
the	last	element	of	the	above	iteration,	or	the	first	after	reversing	it	(see		section	2	for	
more	details	and	an	example).	

	
Section	2:	Parameter-free	and	Unsupervised	Algorithms:	pseudo-codes	

and	evaluations	

	
Dynamical	simulations	by	Boolean	networks	
We	explored	whether	the	algorithmic	content,	or	more	precisely	the	information	spectrum,	of	a	
system/network,	 influences	 transitions	 between	 different	 stable	 states,	 thereby	 effectively	

	 7	

providing	a	tool	with	which	to	steer	and	reprogram	networks.	We	observed	an	average	decrease	
in	 the	 size	 of	 reachable	 states	 for	 all	 nodes	 (mean	 value),	 and	 the	 distribution	 of	 reachable	
states	becomes	more	 clustered	 (standard	deviation),	 and	more	 symmetrical	 (skewness)	 for	all	
graphs	 with	 five	 nodes	 and	 single	 deletion.	 Positive	 info	 nodes	 had	 a	 similar	 effect	 as	 the	
deletion	 of	 a	 hub	 in	 the	 network.	 Absolute	 and	 relative	 negative	 nodes	 have	 a	 similar	 effect,	
whereas	 neutral	 (no	 information	 change)	 nodes	 preserve	 the	distribution	 skewness	 closest	 to	
the	original.	
	
Histograms	of	 perturbation	 effects	 on	 all	 graphs	of	 size	 five	 nodes	using	 functions	 XOR,	AND,	
and	OR	produced	similar	results	(see	Fig3d	&	raw	data	infoedgesmotifs5.csv).	Due	to	the	small	
size	 of	 the	 graph,	 we	 were	 able	 to	 control	 for	 graph	 automorphisms	 to	 correct	 minor	 BDM	
errors	 produced	 by	 boundary	 conditions(Zenil	 et	 al.,	 2016).	 Two	 objects	 x,	 y	 are	 in	 the	 same	
orbit	 if	 there	 is	 an	 automorphism	 ϕ	 in	 Aut(G)	 such	 that	𝜙(𝑋) = 𝑌	 (equivalently,	𝑋 = 𝜙 −
1 (𝑌)).	In	the	algorithmic	perturbation	analysis,	if	elements	e1,	…,	en	in	E	are	in	the	same	orbit	in	
Aut(G)	 we	 take	 the	 perturbation	 of	 every	 element	 in	 E	 to	 be	 	 equal	
to 𝑚𝑖𝑛{| 𝐶(𝐺\𝑒!) – 𝐶(𝐺) |,… , | 𝐶(𝐺\𝑒!) – 𝐶(𝐺) |,… }.	 In	 other	 words,	 the	 effect	 of	 every	
element	ei	in	E	on	G	is	the	same.	The	automorphism	group	Aut(G)	was	generated	with	the	help	
of	public	software(Brendan	D	McKay,	1981;	Mckay	and	Piperno,	2014)	for	this	experiment.	For	
larger	 networks,	 however,	 this	 becomes	 computationally	 expensive,	 in	 the	 context	 of	 the	
perturbation	 analysis,	 and	 thus,	 because	 we	 have	 shown	 that	 K(G)	 ~	 K(Aut(G))

26	 (main	 text),	 we	
continued	calculating	C(G)	only.	
	
In	 the	 exhaustive	 experiment	 over	 all	 connected	 graphs	of	 node	 count	 5,	 deleting	 the	 largest	
versus	 smallest	 node	 degree	 produced	 statistical	 differences	 as	 expected	 and	 previously	
suggested9.	More	 relevant	 to	 our	 purposes,	 it	was	 found	 that	 positive	 versus	 negative	 versus	
neutral	 information	 node/edge	 removal	 led	 to	 statistically	 different	 effects	when	 executed	 in	
connected	networks.	Negative	information	node	removal	was	interestingly	not	similar	to	lowest	
degree	 removal,	 yet	 significantly	 different	 statistically	 from	 control	 (random)	 node	 removal.	
Absolute	 and	 relative	 negative	 information	 removal	 had	 similar	 effects,	 and	 neutral	 (no	
information	 change)	 nodes/edges	 kept	 the	 distribution	 skewness	 closest	 to	 the	 original	
distribution,	 in	accordance	with	 the	 theory.	 For	negative	edges,	 the	number	of	attractors	was	
significantly	increased	(Fig5d),	as	the	theory	predicted.	
	
Minimal	Information	Loss	Sparsification	(MILS)	
Below,	 we	 provide	 the	 pseudo-code	 for	 the	 MILS	 algorithm.	 MILS	 allows	 dimensionality	
reduction	 of	 a	 graph	 (or	 any	 object)	 by	 deletion	 of	 neutral	 elements,	 thus	 maximizing	
preservation	 of	 the	 most	 important	 properties	 of	 an	 object	 as	 the	 algorithmic	 information	
content	is	invariant	under	neutral	node	perturbation.		Let	G	be	a	graph.	Then:		

1. Calculate	the	powerset	spectra(G)	and	let	Ej	be	the	subset	j	in	the	set	of	all	non-empty	
proper	subsets	of	edges	{e1,	.	.	.	,	en}	in	G.	

2. Remove	the	subset	Ej
	such	that	C(G\Ej)	<	|C(G\Ei)|	for	all	Ei	in	powerset	spectra(G)	(see	

Glossary	section	1),	where	|C|	is	the	absolute	value	of	C.		
3. Repeat	1	such	that	𝐺 ∶= 𝐺\𝐸𝑗	until	final	target	size	is	reached.	

The	 algorithm	 time	 complexity	 class	 is	 in	 O(2p(n))	 (if	 there	 are	 no	 subsets	 with	 the	 same	
information	value)	because	of	the	combinatorial	explosion	of	the	power	set,	but	a	more	efficient	

	 8	

suboptimal	version	of	MILS	iterates	only	over	singletons:	

1. Calculate	G\ei	for	all	i	∈	{e1,...,en}	i.e.	spectra(G).		
2. Remove	edge	ej	in	spectra(G)	such	that	C(G\ej)	<	|C(G\ei)|.	
3. Repeat	1	with	G	:=	G\ej	until	final	target	size	is	reached.		

We	call	 ej	 a	neutral	 information	edge	because	 it	 is	 the	edge	 that	 contributes	 less	 information	
content	 (in	particular,	 it	minimizes	 information	 loss	or	 introduces	spurious	 information)	 to	the	
network	according	to	the	information	difference	when	removed	from	the	original	network.	
	
Assuming	that	the	estimations	of	C(G)	and	spectra(G)	are	definite	and	fixed	(in	reality	one	can	
always	 find	 tighter	 upper	 bounds,	 though,	 due	 to	 C’s	 semi-computability),	 and	 MILS	 is	 a	
deterministic	algorithm.	Let	G	be	a	network	and	i(e)	=	C(G)	−	C(G\e)	be	the	information	value	of	
element	e	in	G	with	respect	to	G.	If	i(e’)	>	i(e)	then	MILS	algorithm	removes	e	first	(by	definition)	
because	 it	minimizes	the	 loss	of	 information	 if	 the	choice	 is	 to	remove	either	e	or	e’.	Thus	we	
have	it	that	C(G\e1)	=	C(G\e2)	if,	and	only	if,	i(e1)	=	i(e2).	However,	it	does	not	hold	in	general	that	
C(G\e1\e2)	=	C(G\e2\e1),	 that	 is,	 the	removal	of	e1	 followed	by	the	removal	of	e2	 from	G,	 is	not	
equal	to	the	removal	of	e2	followed	by	the	removal	of	e1	from	G,	even	for	i(e1)	=	i(e2),	because	of	
non-linear	effects	(i.e.	the	removal	of	ei	may	modify	the	information	contribution	of	all	other	ej	
in	G\ei).	This	suggests	that	the	only	way	to	deal	with	these	cases	for	MILS	to	be	deterministic	is	
the	simultaneous	removal	of	the	set	of	elements	{e1,	…	en}	such	that	i(e1)	=	…	=	i(en).	The	time	
complexity	of	MILS	thus	ranges	between	the	original	O(n2)	 in	 the	worst	case	to	O(1),	when	all	
nodes	have	the	same	information	value/contribution	to	G	and	are	thus	removed	in	a	single	step.	
Therefore,	 set	 removal	 turns	MILS	 into	 a	 proper	 deterministic	 algorithm	 that	 yields	 the	 same	
object	 for	 any	 run	 of	 MILS	 over	 an	 object	 G.	 Because	 any	 property	 of	 a	 network	 ultimately	
contributes	 to	 its	 information	content	 (the	amount	of	 information	 to	describe	 it),	 information	
minimization	will	preserve	any	potential	measure	of	interest.	We	show	in	the	following	section	
that	minimizing	loss	of	information	maximizes	the	preservation	of	graph	theoretic	properties	of	
networks	 such	 as	 edge	 and	 node	 betweenness,	 clustering	 coefficient,	 graph	 distance,	 degree	
distribution	and	finally	information	content	itself	(Fig	S5-S6).	
	
	
Maximal	Algorithmic	Randomness	Preferential	Attachment	(MARPA)	algorithm	
MARPA	 allows	 constructions	 of	 a	 maximally	 random	 graph	 (or	 any	 object)	 by	 filling	 out	 the	
blanks,	i.e.	adding	edges,	for	any	given	graph	in	such	a	manner,	that	randomness	increases.	Let	
G	be	a	network	and	C(e)	the	information	value	of	e	with	respect	to	G	such	that	C(G)	–	C(G\e)	=	n.	
Let	P	=	{p1,	p2,	…,	pn}	the	set	of	all	possible	perturbations.	P	is	finite	and	bounded	by	P	<	2|E(G)|	
where	E(G)	is	the	set	of	all	elements	of	G,	e.g.	all	edges	of	a	network	G.	We	can	find	the	set	of	
perturbations	e’	in	P	such	that	C(G)	–	C(G\e’)	=	n’	with	n’	<	n.	As	we	iterate	over	all	e	in	G	and	
apply	 the	 perturbations	 that	 make	 n’	 <	 n,	 for	 all	 e,	 we	 go	 through	 all	 2|E(G)|	 possible	
perturbations	(one	can	start	with	all	|E(G)|	single	perturbations	only)	maximizing	the	complexity	
of	 G’	 =	 max{G	 |	 C(G)	 –	 C(G\e)	 =	 max	 among	 all	 p	 in	 P	 and	 e	 in	 G}.	 Alternatively,	 there	 is	 a	
configuration	 of	 all	 edges	 in	 G	 that	 maximizes	 the	 algorithmic	 randomness	 of	 G.	 Let	 such	 a	
maximal	complexity	be	denoted	by	maxC(G).	Then	we	find	the	sequential	set	of	perturbations	
{P}	 such	 that	maxC(G)	 -	 C(G)	 =	 0,	where	C(G)	 -	maxC(G)	 is	 a	measure,	 related	 to	 randomness	
deficiency,(Buhrman	 et	 al.,	 1999;	 Antunes	 et	 al.,	 2009)	 of	 how	 removed	 G	 is	 from	 its	
(algorithmic-)	randomized	version	maxC(G)	(notice	that	C(G)	is	upper	bounded	by	maxC(G),	and	

	 9	

so	the	difference	is	always	positive).	Fig.	3a-c,	shows	how	we	numerically	(single-element	wise)	
moved	a	regular	network	towards	randomness	(in	particular	an	E-R	graph).	Notice	that	while	an	
ER	network	with	 edge	density	 0.5	 is	 of	maximal	 entropy,	 it	 can	be	of	 high	or	 low	algorithmic	
randomness,	 i.e.	 recursively	 generated	 or	 not,(Zenil	 and	 Kiani,	 2016)	 but	 a	 high	 algorithmic-
random	 graph	 is	 also	 ER	 because,	 if	 not,	 then	 by	 contradiction	 it	 would	 be	 statistically	
compressible	and	thus	non-algorithmic	random,	because	a	graph	with	any	statistical	regularity	
cannot	 also	 be	 an	 algorithmic-random	 or	 an	 ER	 graph.	 One	 can	 also	 consider	 the	 absolute	
maximum	algorithmic-random	graph,	denoted	by	amaxC(G)	and	disconnected	from	the	number	
of	elements	of	G	(thus	not	a	randomization	of	G),	that	is,	the	graph	comprising	the	same	number	
of	 nodes,	 but	 an	 edge	 arrangement	 such	 that	 C(G)	 <	 C(amax(G))	 ≤	 2k	
where 𝑘 = (|𝐸(𝐺)|(|𝐸(𝐺)| − 1))/4	 is	 the	maximum	 number	 of	 edges	 in	 G	 divided	 by	 2	 (at	
edge	density	0.5	 it	reaches	max	algorithmic	randomness.	The	process	approximates	a	network	
of	a	size	that	has	the	greatest	possible	algorithmic	randomness	and	is	also	an	Erdős-Rényi	(ER)	
graph.	The	pseudo-code	is	as	follows:		
	

1. Start	with	graph	G	(can	be	empty).	
2. Attach	edge	ej	to	edge	ej’	in	G	such	that	𝐶(𝐺 ∪ 𝑒𝑗’) > 𝐶(𝐺).	
3. Repeat	1	with	𝐺 ∶= 𝐺 ∪ 𝑒𝑗’	until	final	target	size	of	graph	is	reached.		

	

Generating	 a	 MAR	 graph	 is	 computationally	 very	 expensive	 with	 time	 complexity	 	 O(2n
2	
)	

because	at	every	step	all	possible	attachments	have	to	be	tested	and	evaluated	(i.e.	all	possible	
permutations	of	 the	adjacency	matrix	of	 size	n×n),	but	 small	MAR	graphs	are	computationally	
feasible,	and	they	represent	approximations	of	“perfect”	ER	random	graphs,	but	unlike	some	ER	
graphs	 they	cannot,	 in	principle,	be	 recursively	generated	with	 small	 computer	programs.	The	
intuition	 behind	 the	 construction	 of	 a	 MAR	 graph	 is	 that	 the	 shortest	 computer	 program	
(measured	in	bits)	that	can	produce	the	adjacency	matrix	of	the	MAR	graph,	is	of	about	the	size	
of	 the	 adjacency	 matrix	 and	 not	 significantly	 shorter.	 Thus	 it	 can	 in	 some	 strict	 sense	 be	
considered	the	perfect	ER	graph.	Every	time	that	a	 larger	graph,	and	therefore	the	addition	of	
new	edges,	is	needed,	the	computer	program	that	generates	it	grows	proportionally	to	the	size	
of	the	adjacency	matrix	(See	Supplement	section	1	for	algorithm	and	more	details).			
	
Algorithmic	Causal	Reconstruction	of	Dynamic	Systems	
There	are	systems	whose	internal	kinetics	fully	determine	the	system’s	behaviour,	i.e.	attractor	
structure,	such	as	Hopfield	networks13	and	Boltzmann	machines14,	which	is	independent	of	their	
fixed	topology	(complete	graphs).	Other	networks	are,	however,	more	dependent	on	topology	
or	 geometry	 (e.g.	 disease	 networks	 or	 geographical	 communication	 networks).	 Boolean	
networks	are	governed	both	by	their	topological	and	internal	kinetic	properties	as	encoded	by	
the	 connectivity	 of	 the	 node	 with	 the	 assigned	 Boolean	 function(Kauffman,	 1969;	 Aldana,	
2003b)	to	that	very	node.	Each	observation	of	a	system	is	necessarily	only	a	partial	snapshot	of	
the	 system’s	 trajectory	 in	 phase	 space	 and	 it	 reveals	 only	 certain	 aspects	 of	 the	 generating	
cause,	yet	without	any	loss	of	generality	one	can	use	the	causal	calculus	introduced	here	either	
on	T,	D	or	a	combination	of	T	and	D	in	order	to	produce	algorithmic	models	of	causal	generating	
mechanisms	approaching	P	and	producing	T	and	D	(see	Fig.2M).	While	the	focus	of	 the	causal	
calculus	 introduced	 here	 is	 on	 T,	 it	 can	 readily	 incorporate	 D	 by	 moving	 to	 the	 phase	 space	
without	 any	 essential	modification.	We	 have	 included	 some	 examples	 using	 discrete	 dynamic	
systems	 such	 as	 cellular	 automata	 to	 show	 how	 the	 same	 calculus	 can	 be	 utilized.	 The	 same	

	 10	

elements	in	D	that	move	a	system	towards,	or	away,	from	randomness	are,	conversely,	positive	
and	negative	elements	like	those	defined	for	T	(see	Fig2a-d)	in	the	application	to	networks.		
	
Reverse-engineering	discrete	dynamical	systems	from	disordered	observations:	
A	cellular	automaton	(CA)	is	defined	by	a	rule	for	computing	the	new	value	of	each	position	in	a	
configuration	 based	 only	 on	 the	 values	 of	 cells	 in	 a	 finite	 neighborhood	 surrounding	 a	 given	
position.	Commonly	a	CA	evolves	on	a	square	grid	or	lattice	of	cells	updated	according	to	a	finite	
set	of	local	rules	which	are	synchronously	applied	in	parallel.	A	snapshot	in	time	of	the	symbols	
of	the	cells	is	called	a	configuration.	A	snapshot	in	space	and	time	(the	characteristic	CA	grid)	is	
called	evolution.	
	
A	local	and	a	global	function	f	and 𝜆	can,	therefore,	define	a	cellular	automaton.	Let	S	be	a	finite	
set	of	symbols	of	a	cellular	automaton	(CA).	A	finite	configuration	is	a	configuration	with	a	finite	
number	of	symbols,	which	differs	from	a	distinguished	state	b	(the	grid	background)	denoted	by	
0∞b0∞	where	b	is	a	sequence	of	symbols	in	S	(if	binary	then	S	=	{0,	1}).	A	stack	of	configurations	
in	which	each	configuration	is	obtained	from	the	preceding	one	by	applying	the	updating	rule	is	
called	evolution.	Formally,	Let	f	:	SZ	→	SZ	where	Z	is	the	set	of	positive	integers	and	n,	i	∈	N	then	
𝑓(𝑟𝑡) = 𝜆(𝑥𝑖 − 𝑟 . . . 𝑥𝑖. . . 𝑥𝑖 + 𝑟),	where	f	 is	a	configuration	of	the	CA	and	rt	a	row	with	t	∈	N	
and	r0	the	initial	configuration	(or	initial	condition).	The	function	f	is	also	called	the	global	rule	of	
the	CA,	with	λ	:	Sn	→	S	the	local	rule	determining	the	values	of	each	cell	and	r	the	neighborhood	
range	or	radius	of	the	cellular	automaton,	that	is,	the	number	of	cells	taken	into	consideration	
to	the	left	and	right	of	a	central	cell	xi	in	the	rule	that	determines	the	value	of	the	next	cell	x.		
All	cells	update	their	states	synchronously.	Cells	at	the	extreme	end	of	a	row	must	be	connected	
to	 cells	 at	 the	 extreme	 right	 of	 a	 row	 for	 f	 to	 be	 considered	 well	 defined.	 The	 function	 𝜆	
indicates	the	local	state	dependency	of	the	cellular	automata	and	f	updates	every	row.	Depicted	
(FigS4)	 is	the	Elementary	Cellular	Automaton	(ECA)	rule	254	(in	Wolfram’s	enumeration17)	that	
generates	 a	 typical	 1-dimensional	 cone	 from	 the	 simplest	 initial	 condition	 (black	 cell)	 running	
downwards	over	 time	for	20	steps.	ECA	 is	CA	that	consider	only	 the	closest	neighbours	 to	the	
right	and	left	and	itself,	thus	three	cells,	each	with	a	binary	choice	for	𝜆.	Every	ECA	such	as	a	rule	
254	can	thus	be	seen	as	a	23	=	8-bit	computer	program	represented	by	its	rule	icon	representing	
its	 function	 f	 (Fig1a	P(t))	or	a	 function	determining	 its	 local	and	global	dynamics	 (Fig.1M	D(t)).	
Any	 perturbation	 of	 the	 simple	 evolution	 of	 the	 rule	 leads	 to	 an	 increase	 of	 its	 complexity	
because	 a	 rule	 with	 a	 longer	 description	 than	 rule	 254	 would	 be	 needed	 to	 incorporate	 the	
random	perturbation	introduced	(blue	rows).	Thus	every	row	in	rule	254	is	information	negative,	
except	for	the	random	rows	whose	deletion	would	bring	the	rule	to	its	simplest	description	(rule	
254).	Unlike	the	rest	of	the	dynamic	system,	the	last	step	in	the	evolution	of	a	dynamic	system	is	
information	neutral	because	 it	does	not	add	or	 remove	any	complexity,	 so	 removal	of	neutral	
elements	reverses	the	system’s	unfolding	evolution	to	its	original	cause	(the	black	cell)	and	the	
rule	can	be	derived	by	reversing	the	sequence	of	the	neutral	elements	at	every	step,	effectively	
peeling	back	the	dynamic	system	from	a	single	instant	of	a	sequence	of	observations	(in	optimal	
conditions,	 e.g.	 no	 noise	 and	 full	 accuracy,	 and	 good	 enough	 approximations	 of	 algorithmic-
information	content).	
When	 clustering	 consecutive	 rows	 of	 the	 evolution	 of	 all	 Elementary	 Cellular	 Automata	 (256	
rules),	we	found	that	the	later	the	perturbations	in	time,	the	more	neutral,	thus	conforming	to	
the	theoretical	expectation	(Fig.	3		main	texts).	When	taking	a	sample	of	representative	ECA,	this	
was	also	clearly	 the	case	 (Fig.	3	main	texts).	We	proceeded	to	reverse	engineer	 the	rule	of	an	
ECA	by:	
	

	 11	

1) Producing	the	space-time	diagram	O(n)	of	an	ECA	from	time	0	(initial	condition)	to	time	
n.	

2) Scrambling	the	observations	from	O(n)	(worse	case	of	an	observation,	to	lose	track	of	
their	order)	

3) Sorting	the	scrambled	observations	to	maximize	the	algorithmic	probability	and	thus	
find	the	most	likely	generating	mechanism	(with	lowest	algorithmic	complexity).	

4) From	2	and	3	estimating	the	algorithmic-information	content	of	every	(hypothesized)	
step.	

5) Comparing	among	them	and	sorting	from	the	lowest	contribution	to	the	highest.	
6) Finding	the	initial	condition	and	generating	rule	by	reversing	the	order	of	the	sequence	

of	neutral	elements	from	O(n).	
	

Finding	the	lowest	complexity	configuration	of	disordered	observations,	we	show	how	we	found	
the	correct	times,	thus	generating	a	most	powerful	method	to	reverse	engineer	and	find	design	
principles	and	 the	generating	mechanism	of	evolving	systems.	Running	 the	sequence	 forward,	
one	 can	 also	make	 predictions	 about	 the	 phase	 space	 configuration	 of	 the	 dynamic	 evolving	
system.	 Fig.	 2	 shows	 that	 the	 predicted	 point	 in	 the	 phase	 space	 does	 not	 diverge	 from	 the	
actual	position	of	the	system	in	phase	space,	thus	providing	good	estimations	of	the	evolution	of	
the	system	both	backward	and	forward.	
	

In	 this	paper,	we	choose	to	work	at	 the	 level	of	T	 (see	Fig.	2	main	texts)	 for	 the	same	
convenient	simplifying	 reasons	 followed	by	other	network-based	approaches,	but	unlike	other	
possible	approaches,	the	theory	and	methods	hold	in	general	for	non-linear	dynamical	systems	
and	not	only	for	static	or	evolving	networks.	When	working	on	T	only,	we	assume	that	lossless	
descriptions	are	of	the	observations	(e.g.	only	T)	and	not	of	full	descriptions	of	T	and	D	or	even	P	
(the	 true	 generating	 mechanism,	 e.g.	 a	 computer	 program	 P)	 that	 is	 the	 unknown.	 To	 date,	
there	have	been	no	other	alternatives	to	applying	non-linear	interventions	to	complex	systems	
in	the	phase	space	other	than	to	calculate	the	dynamical	properties	of	a	system,	often	assumed	
with	little	knowledge	or	else	assumed	to	be	linear	and	in	fixed	states,	requiring	computationally	
intractable	 simulations.	 This	 new	 calculus,	 however,	 requires	much	 less	 information	 to	make	
educated	causal	interventions	that	prove	to	be	extremely	useful	and	powerful.	
	
Entropy-deceiving	graphs		
We	 introduced	 a	 method6	 (main	 text)	 for	 building	 a	 family	 of	 recursive	 graphs	 of	 which	 one	 is	
denoted	by	‘ZK’	with	the	property	of	being	recursively	constructed	and	thus	of	low	algorithmic	
(Kolmogorov-Chaitin-Solomonoff)	complexity	(hence	causal)	but	that	to	an	uninformed	observer	
would	 appear	 statistically	 random	 and	 thus	 as	 having	 maximal	 Entropy.	 These	 graphs	 were	
proven	 to	have	maximal	Entropy	 for	 some	 lossless	descriptions	but	minimal	Entropy	 for	other	
lossless	 descriptions	 of	 exactly	 the	 same	 object,	 thereby	 demonstrating	 how	 Entropy	 fails	 at	
unequivocally	and	unambiguously	characterizing	a	graph	independent	of	a	particular	feature	of	
interest	 reflected	 in	 the	 choice	 of	 natural	 probability	 distributions.	 A	 natural	 probability	
distribution	of	an	object	is	given	by	the	uniform	distribution	suggested	by	the	object	dimension	
and	 its	 alphabet	 size.	 For	 example,	 if	 a	 graph	 G	 is	 losslessly	 (with	 no	 loss	 of	 information)	
described	 by	 its	 adjacency	 matrix	 M,	 then	 in	 the	 face	 of	 no	 other	 information,	 the	 natural	
distribution	 is	 the	probability	 space	of	all	matrices	of	dimensions	|M|	and	binary	alphabet.	 If,	
however,	G	is	losslessly	described	by	its	degree	sequence	S,	with	no	other	information	provided	
about	G,	the	natural	distribution	is	given	by	the	probability	space	of	all	sequences	of	length	|S|	
and	 alphabet	 size	 |{S}|,	 where	 {S}	 denotes	 the	 number	 of	 different	 n-ary	 symbols	 in	 S.	 The	

	 12	

natural	distribution	 is	thus	the	 less	 informative	state	of	an	observer	with	no	knowledge	of	the	
source	 or	 nature	 of	 the	 object	 (e.g.	 its	 recursive	 character).	 We	 denote	 by	 ‘ZK’	 the	 graph	
(unequivocally)	constructed	as	follows:	
	

1. Let	1	→	2	be	a	starting	graph	G	connecting	a	node	with	label	1	to	a	node	with	label	2.	If	
a	node	with	label	n	has	degree	n,	we	call	it	a	core	node,	otherwise,	we	call	it	a	
supportive	node.	

2. Iteratively	add	a	node	n	+	1	to	G	such	that	the	number	of	core	nodes	in	G	is	maximized.	
3. The	resulting	graph	is	typified	by	the	one	in	Fig3c	in	the	main	text.	

	
Supporting	nodes	are	always	the	latest	to	be	added	at	each	iteration.	Perturbing	elements	of	the	
network	 other	 than	 the	 last	 elements	 will	 break	 the	 generating	 program	 and	 thus	 these	
elements	will	move	the	network	towards	randomness,	whereas	removing	the	 latest	nodes	has	
little	 to	 no	 impact	 because	 it	 only	moves	 the	 network	 back	 in	 time,	 the	 originating	 program	
remaining	the	same	and	only	needing	to	run	again	to	reach	the	same	state	as	before.	Thus	by	
inspecting	 elements	 that	 do	 not	 contribute	 or	 make	 the	 network	 slightly	 simpler,	 one	 can	
reverse	 the	 network	 in	 time,	 thereby	 revealing	 its	 generating	mechanism	 (See	 the	 subsection	
titled	Algorithmic	Causal	Reconstruction	of	Dynamic	Systems).	
We	 have	 shown	 that	 Entropy	 is	 highly	 observer	 dependent6	 (main	 text),	 even	 in	 the	 face	 of	 full	
accuracy	 and	 access	 to	 lossless	 object	 descriptions.	 For	 these	 specific	 complexity-deceiving	
graphs	Entropy	produces	disparate	values	when	the	same	object	is	described	in	different	ways	
(thus	 with	 different	 underlying	 probability	 distributions),	 even	 when	 the	 descriptions	
reconstruct	 exactly	 the	 same,	 and	 only	 the	 same,	 object.	 This	 drawback	 of	 Shannon	 Entropy,	
ultimately	related	to	 its	dependence	on	distribution,	 is	all	 the	more	serious	because	 it	 is	often	
overlooked	for	objects	other	than	strings,	such	as	graphs.	For	an	object	such	as	a	graph,	we	have	
shown	 that	 changing	 the	 descriptions	 may	 not	 only	 change	 the	 values	 but	 that	 divergent,	
contradictory	values	are	produced.	This	means	that	one	not	only	needs	to	choose	a	description	
of	 interest	 to	apply	a	definition	of	Entropy--	 such	as	 the	adjacency	matrix	of	a	network	 (or	 its	
incidence	or	Laplacian)	or	its	degree	sequence--but	that	as	soon	as	the	choice	is	made,	Entropy	
becomes	a	trivial	counting	function	of	the	feature--	and	only	the	feature--of	interest.	In	the	case	
of,	 for	example,	 the	adjacency	matrix	of	a	network	 (or	any	 related	matrix	associated	with	 the	
graph,	such	as	the	incidence	of	Laplacian	matrices),	Entropy	becomes	a	function	of	edge	density,	
while	 for	 degree	 sequence,	 Entropy	 becomes	 a	 function	 of	 sequence	 normality.	 Entropy	 can	
thus	trivially	be	replaced	by	such	functions	without	any	loss,	but	it	cannot	be	used	to	profile	the	
object	(randomness,	or	information	content)	in	any	way,	independent	of	an	arbitrary	feature	of	
interest.	The	measures	introduced	here	are	robust	measures	of	(graph)	complexity	independent	
of	 object	 description	 based	 upon	 the	 mathematical	 theory	 of	 randomness	 and	 algorithmic	
probability	 (that	 includes	 statistical	 randomness),	 which	 are	 sensitive	 enough	 to	 deal	 with	
causality	and	provide	the	framework	for	a	causal	interventional	calculus.	
	
Section	 3:	 Evaluation	 and	 validation	 of	 the	 causal	 calculus	 using	
transcriptional	data	and	genetic	regulatory	networks.	
	
E-Coli	Transcription	Factor	Network	Ontology	Enrichment	Analysis	
We	estimated	 the	 information	 node	 values	 of	 a	 highly	 curated	 E.	 coli	 transcriptional	 network	
(only	 experimentally	 validated	 connections)	 from	 the	 RegulonDB	
(http://www.ccg.unam.mx/en/projects/collado/regulondb).	 Info	 values	 were	 clustered	 into	 6	

	 13	

clusters	by	using	partitioning	around	K-medoids	and	optimum	average	 silhouette	width.	Gene	
clusters	were	 tested	 for	enrichment	of	biological	 functions	according	 to	Gene	Ontology,	KEGG	
and	 EcoCyc	 databases,	 using	 the	 topGO	 “weight01”	 algorithm	 for	 GO	 or	 hypergeometric	
enrichment	 test	 for	KEGG	and	EcoCyc.	BDM	values	did	not	 correlate	with	degree	distribution,	
compression	or	Shannon	entropy.	The	numerical	results	suggest	that	more	positive	information	
genes	in	E-Coli	are	related	to	homeostatic	processes,	while	more	negative	info	genes	are	related	
to	processes	of	specialization,	which	is	in	agreement	with	the	idea	that	cellular	development	is	
an	 unfolding	 process	 in	 which	 core	 functions	 are	 algorithmically	 developed	 first,	 then	 more	
specialized	 functions,	 enabling	 training-free	 and	 parameter-free	 gene	 profiling	 and	 targeting.	
Figures	S8-S16	show	that	other	measures	 fell	 short	at	producing	statistically	significant	groups	
for	 a	 gene	ontology	 analysis,	 and	 also	 provide	 details	 of	 the	 clusters	 found	 and	 the	 elements	
comprising	them.	
	
Information	spectral	and	enrichment	analysis	of	Th17	differentiation		
We	applied	our	method	to	a	dataset	on	differentiation	of	T-helper	17	(Th17)	cells.	Th17	cells	are	
one	of	the	major	subsets	of	T-helper	cells,	which	in	addition	to	Th17	comprise	several	sub-types	
such	as	Th1,	Th2	and	Treg	cells.	These	subsets	all	differentiate	from	a	common	naïve	CD4+	T	cell	
precursor	cell	type	based	on	environmental	signals	and	are	classified	by	certain	lineage-defining	
markers.	 Th17	 cells	 are	necessary	 to	protect	 the	host	 from	 fungal	 infections,	but	 at	 the	 same	
time	 are	 involved	 in	 the	 pathogenesis	 of	 several	 autoimmune	 diseases,	 hence	 the	 processes	
driving	Th17	differentiation	are	of	great	 interest	 to	 the	 scientific	 community20.	 From	the	gene	
ontology	 analysis	 taking	 the	 experimentally	 known	 genes	 involved	 in	 the	 process	 of	
differentiation	 from	 T	 naïve	 to	 Th17	 (Fig.	 3	 e),	 it	 is	 shown	 that	 precisely	 these	 genes	 are	
distributed	 non-uniformly	 and	 in	 different	 ways	 along	 the	 3	 time	 points,	 suggesting	 that	 the	
algorithmic	 perturbation	 analysis	 succeeds	 at	 identifying	 such	 genes	 (otherwise,	 the	
distributions	would	have	appeared	uniform	in	all	cases).	
	
Information	spectral	analysis	
The	 information	 spectral	 analysis	 used	 a	 reconstructed	 regulatory	 network	 from	 functional	
perturbation	and	 transcriptional	data	corresponding	 to	 the	Th17	differentiation.	The	data	was	
divided	into	3	time	windows:	0.5	to	2	hours,	4	to	16	hours,	and	20	to	72	hours,	here	referred	to	
as	 EarlyNet,	 IntermediateNet	 and	 FinalNet	 respectively.	 We	 were	 interested	 in	 investigating	
whether	genes	with	strongly	negative	or	positive	information	values	would	include	genes	known	
to	be	crucial	in	Thelper	cell	differentiation	and/or	novel	putative	Th17	regulators,	and	whether	
these	genes	would,	according	to	our	predictions,	change	their	 information	content	throughout	
the	Th17	differentiation	process.	We	noted	that	in	general,	genes	classified	as	having	the	most	
positive	 or	 negative	 information	 values	 covered	 several	 genes	 known	 to	 be	 involved	 in	 T	 cell	
differentiation,	such	as	 transcription	 factors	 from	the	 IRF	or	STAT	families	 (see	Figure	S5).	The	
genes	assigned	to	the	Th17	regulating	modules19	were	present	along	the	spread	of	information	
values,	with	some	enrichment	at	extreme	positive	values.	However,	not	all	genes	with	extreme	
information	 values	were	 identified	 in	 the	 original	 study,35(main	 text)	 suggesting	 that	 our	method	
may	identify	additional	regulators	Figure	S5).	When	analyzing	those	genes	that	are	present	in	all	
3	 networks	 and	 determining	 their	 evolution	 over	 time	 (Figure	 S5),	 we	 noted	 that	 genes	 for	
chemokines/chemokine	 receptors	were	 switching	 from	negative	 values	 in	 EarlyNet	 to	positive	
values	 in	 FinalNet.	 In	 the	 gene	 group	 switching	 from	 positive	 in	 EarlyNet	 via	 negative	 in	
IntermediateNet	back	 to	positive	 in	FinalNet,	many	 transcription	 factors	 from	 the	STAT	 family	
were	 represented.	 Extreme	 (mostly	 positive)	 information	 values	 were	 assigned	 to	 many	
members	of	 the	 IRF	 family	of	 transcription	 factors,	which	 comprises	well-known	 regulators	of	

	 14	

Thelper	differentiation	(Figure	S5),	including	Th17-inhibiting	roles	for	IRF8	which	appears	at	the	
top	 of	 the	 lists	 in	 IntermediateNet	 and	 FinalNet	 (Figure	 S5).	 Only	 three	 genes	were	 assigned	
negative	 information	 values	 in	 FinalNet,	 namely	 STAT6,	 TCFEB	 and	 TRIM24,	 suggesting	 that	
removing	these	might	enhance	the	Th17	profile.		
	
Clustering	
The	networks	were	clustered	using	 the	k-means	algorithm	with	5	clusters	per	network	 (Figure	
S5).	The	list	of	genes	that	changed	from	most	negative	information	values	in	EarlyNet	(cluster	5)	
toward	most	positive	information	values	in	FinalNet	(cluster	1)	contained	several	genes	involved	
in	T	helper	cell	subset	differentiation	and	function,	for	example,	HIF1a,	FOXO1,	IKZF4,	IL2,	IL21,	
IL2RA,	 IL6ST.	 Conversely,	 the	 list	 of	 genes	 with	 the	 highest	 information	 values	 in	 EarlyNet	
overlapping	with	the	lowest	information	values	in	FinalNet	was	more	restricted	in	number	and	
contained	some	general	transcription	factors	such	as	RelA	and	Jun.	
We	noted	that	 in	general,	genes	classified	as	having	the	most	negative	or	positive	 information	
values	 comprised	 many	 genes	 known	 to	 be	 involved	 in	 T	 cell	 differentiation,	 such	 as	
transcription	factors	from	the	IRF	or	STAT	families,	chemokine	receptors,	cytokines	and	cytokine	
receptors.	This	was	particularly	evident	for	networks	1	and	3.	When	analyzing	those	genes	that	
have	 negative	 information	 values	 in	 network	 1	 and	 that	 change	 towards	 positive	 information	
values	 in	 network	 3,	 we	 found	 that	 the	 common	 elements	 in	 both	 lists	 contain	 several	 such	
genes	involved	in	T	helper	cell	subset	differentiation	and	function,	for	example,	HIF1a,	FOXO1,	
IKZF4,	 IFNg,	 IL2,	 IL21,	 IL2RA,	 IL6ST,	CXCL10,	CXCR3,	CXCR5.	 Interestingly,	 the	 list	of	genes	with	
positive	information	values	in	network	1	or	with	negative	information	values	in	network	3	was	
much	more	restricted	in	number	and	did	not	overlap,	yet	contained	highly	interesting	genes.	In	
network	 1,	 these	 were	 mostly	 transcription	 factors,	 including	 several	 IRFs,	 STATs	 as	 well	 as	
RUNX1	 and	 SMAD2,	 all	 known	 to	 be	 important	 in	 T	 cell	 differentiation.	 The	 few	 genes	 with	
negative	information	values	in	network	3	were	STAT6,	TCFEB	and	TRIM24	(interestingly	these	3	
genes,	STAT6,	TCFEB,	TRIM24	are	amongst	the	few	centered	around	0,	 i.e.	neutral,	 in	network	
1),	 and	 it	 is	 tempting	 to	 speculate	 that	 over-activation	 of	 these	might	 be	 able	 to	 reprogram	
differentiated	 Th17	 cells	 to	 another	 lineage.	 Indeed,	 STAT6	 is	 a	 well-known	 factor	 in	 IL-4	
response	and	Th2	induction.	Notably,	in	network	2,	which	may	be	viewed	as	a	transition	state,	3	
genes	were	assigned	the	most	positive	information	values	and	all	of	these	belonged	to	the	IRF	
family	 of	 transcription	 factors,	 which	 comprises	 well-known	 regulators	 of	 Thelper	
differentiation,	including	Th17-inhibiting	roles	for	IRF8	which	appears	in	said	list.	
	
Enrichment	Analysis		
To	assess	to	what	extent	our	informational	spectral	analysis	identifies	genes,	which	are	relevant	
to	 the	 differentiation	 process	 in	 Th17	 cells,	 we	 perform	 an	 enrichment	 analysis	 based	 on	 a	
literature	survey.	To	this	end	we	collected	9	 landmark	papers	 in	 the	Th17	 literature	 (Carneiro,	
Chaouiya	and	Thieffry,	2010;	Ghoreschi	et	al.,	2010;	Zhu,	Yamane	and	Paul,	2010;	Hong	et	al.,	
2011;	Ciofani	et	al.,	2012;	Lee	et	al.,	2012;	Tuomela	et	al.,	2012;	Yosef	et	al.,	2013;	Gaublomme	
et	al.,	2015)28.	
From	 each	 paper	 a	 list	 of	 genes	was	 extracted	 (manually),	 in	 an	 attempt	 to	 select	 the	 set	 of	
genes,	which	the	text	identified	as	relevant	to	Th17	differentiation.	The	script	calculates	all	the	
intersections	between	these	sets,	with	genes	at	a	greater	number	of	intersections	given	a	higher	
weight	 as	 being	 more	 relevant	 in	 the	 Th17	 literature	 (the	 list	 of	 genes	 is	 in	 Sup.	 file	
output_with_kuchroo.txt).	The	data	is	represented	in	a	network	diagram	(Figure	S8-S13)	where	
a	 co-occurrence	 analysis	 highlighted	 genes	 that	 were	 commonly	 identified	 across	 several	
studies.		

	 15	

	
The	 enrichment	 analysis	 revealed	 that	 positive	 and	 negative	 information	 elements	 were	 not	
distributed	 equally,	 thus	 indicating	 that	 information	 values	were	 not	 distributed	 by	 chance	 in	
any	of	the	three	time	steps,	and	that	these	changed	over	time	according	to	the	theoretical	and	
biological	expectations.	That	 is,	at	early	stages	the	naïve	cell	has	two	strong	sets	of	genes	that	
act	as	handles	to	steer	the	network	towards	or	away	from	randomness,	with	a	larger	component	
of	negative	elements	that	indicate	signals	that	are	either	activating	the	cells	or	perturbing	cells	
among	the	stable	naïve	cells	that	are	key	to	the	original	(undifferentiated	steady	state)	program.	
Then	cells	are	activated	and	fewer	negative	genes	are	present,	while	there	is	a	distribution	skew	
of	 the	positive	patch	 towards	neutral	elements	 that	pinpoint	 the	evolving	genes	 from	the	cell	
activation	for	differentiation	(high	peak	in	the	enrichment	analysis).	At	the	final	step,	the	cells	no	
longer	have	negative	elements,	indicating	that	the	program	has	reached	a	steady	state	and	the	
cells	 have	 been	 fully	 differentiated,	 with	 all	 remaining	 elements	 either	 positive	 or	 closer	 to	
neutral.	
	
CellNet	Waddington	landscape	
CellNet	is	a	network	biology-based	computational	platform	that	assesses	the	fidelity	of	cellular	
engineering	 and	 claims	 to	 generate	 hypotheses	 for	 improving	 cell	 derivations(Cahan	 et	 al.,	
2014)(main	text).	We	merged	networks	of	the	same	tissue	type	into	a	single	larger	entity.	The	result	
led	to	a	set	of	networks	of	networks	of	the	following	16	Homo	Sapiens	cell	types:	B-cell,	colon,	
endothelial,	 esc	 (embryonic	 stem	 cell),	 fibroblast,	 heart,	 hspc	 (Hematopoietic	 stem	 cells),	
kidney,	 liver,	 lung,	 macrophage,	 muscleSkel,	 neuron,	 ovary,	 skin	 and	 tcell,	 each	 with	 the	
following	vertex	count:	12006,	4779,	5098,	16581,	8124,	6584,	21758,	5189,	4743,	1694,	5667,	
6616,	 10665,	 1623,	 3687	 and	 11914,	 on	 which	 we	 applied	 the	 causal	 calculus	 and	
reprogrammability	measures	(SI	Section	1).		
	
REFERENCES	
Aldana,	M.	(2003a)	‘Boolean	dynamics	of	networks	with	scale-free	topology’,	185(May),	pp.	45–
66.	doi:	10.1016/S0167-2789(03)00174-X.	
Aldana,	M.	(2003b)	‘Boolean	dynamics	of	networks	with	scale-free	topology’,	Physica	D:	
Nonlinear	Phenomena,	185(May),	pp.	45–66.	doi:	10.1016/S0167-2789(03)00174-X.	
Antunes,	L.	et	al.	(2009)	‘Depth	as	Randomness	Deficiency’,	pp.	724–739.	doi:	10.1007/s00224-
009-9171-0.	
Brendan	D	McKay	(1981)	‘Practical	graph	isomorphism’,	Congressus	Numerantium,	30,	pp.	45–
87.	
Buhrman,	H.	et	al.	(1999)	‘Kolmogrov	Random	Graphs	and	the	Incompressibility	Method’,	
Society	for	Industrial	and	Applied	Mathematics,	29(2),	pp.	590–599.	
Cahan,	P.	et	al.	(2014)	‘CellNet:	Network	Biology	Applied	to	Stem	Cell	Engineering’,	Cell,	158(4),	
pp.	903–915.	doi:	10.1016/j.cell.2014.07.020.	
Carneiro,	J.,	Chaouiya,	C.	and	Thieffry,	D.	(2010)	‘Diversity	and	Plasticity	of	Th	Cell	Types	
Predicted	from	Regulatory	Network	Modelling’,	6(9),	pp.	9–12.	doi:	
10.1371/journal.pcbi.1000912.	
Chaitin,	G.	(1987)	Algorithmic	Information	Theory.	Cambridge	University	Press.	
Ciofani,	M.	et	al.	(2012)	‘A	validated	regulatory	network	for	Th17	cell	specification’,	Cell.	
2012/10/02,	151(2),	pp.	289–303.	doi:	10.1016/j.cell.2012.09.016.	
Espanés,	P.	M.	De,	Osses,	A.	and	Rapaport,	I.	(2016)	‘BioSystems	Fixed-points	in	random	Boolean	
networks :	The	impact	of	parallelism	in	the	Barabási	–	Albert	scale-free	topology	case	ଝ’,	

	 16	

BioSystems.	Elsevier	Ireland	Ltd,	150,	pp.	167–176.	doi:	10.1016/j.biosystems.2016.10.003.	
Gaublomme,	J.	T.	et	al.	(2015)	‘Single-Cell	Genomics	Unveils	Critical	Regulators	of	Th17	Cell	
Pathogenicity’,	Cell.	Elsevier	Inc.,	pp.	1–13.	doi:	10.1016/j.cell.2015.11.009.	
Ghoreschi,	K.	et	al.	(2010)	‘Generation	of	pathogenic	T(H)17	cells	in	the	absence	of	TGF-β	
signalling.’,	Nature,	467(7318),	pp.	967–71.	doi:	10.1038/nature09447.	
Hong,	T.	et	al.	(2011)	‘A	mathematical	model	for	the	reciprocal	differentiation	of	T	helper	17	
cells	and	induced	regulatory	T	cells.’,	PLoS	computational	biology,	7(7),	p.	e1002122.	doi:	
10.1371/journal.pcbi.1002122.	
Kauffman,	S.	a	(1969)	‘Metabolic	stability	and	epigenesis	in	randomly	constructed	genetic	nets.’,	
Journal	of	theoretical	biology,	22(3),	pp.	437–467.	doi:	10.1016/0022-5193(69)90015-0.	
Lee,	Y.	et	al.	(2012)	‘Induction	and	molecular	signature	of	pathogenic	TH17	cells.’,	Nature	
immunology,	13(10),	pp.	991–9.	doi:	10.1038/ni.2416.	
Mckay,	B.	D.	and	Piperno,	A.	(2014)	‘Practical	graph	isomorphism,	II’,	journal	of	symbolic	
computation,	60,	pp.	94–112.	
Tuomela,	S.	et	al.	(2012)	‘Identification	of	early	gene	expression	changes	during	human	Th17	cell	
differentiation.’,	Blood,	119(23),	pp.	e151-60.	doi:	10.1182/blood-2012-01-407528.	
Wuensche,	A.	(2004)	‘Basins	of	attraction	in	network	dynamics :	A	conceptual	framework	for	
biomolecular	networks’,	in	Wagner,	G.	and	Schlosser,	G.	(eds).	Chicago	University	Press,	pp.	1–
17.	
Yosef,	N.	et	al.	(2013)	‘Dynamic	regulatory	network	controlling	TH17	cell	differentiation’,	Nature,	
496(7446),	pp.	461–468.	doi:	10.1038/nature11981.	
Zenil,	H.	et	al.	(2016)	‘A	Decomposition	Method	for	Global	Evaluation	of	Shannon	Entropy	and	
Local	Estimations	of	Algorithmic	Complexity’,	pp.	1–48.	
Zenil,	H.	and	Kiani,	N.	(2016)	‘Low	Algorithmic	Complexity	Entropy-deceiving	Graphs’.	
Zhu,	J.,	Yamane,	H.	and	Paul,	W.	E.	(2010)	‘Differentiation	of	Effector	CD4	T	Cell	Populations	*’,	
Annual	Review	of	Immunology,	28(1),	pp.	445–489.	doi:	10.1146/annurev-immunol-030409-
101212.	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 17	

	
Supplementary	Figures	
	

	
	
Figure	S1,	related	to	Figures	3,4,	5:	Algorithmic	complexity	(numerically	approached	by	way	of	
Algorithmic	 Probability)	 adds	 an	 additional	 dimension	 (depth),	 complementary	 but	 different	
from	 the	 notion	 of	 entropy,	 when	 performing	 network	 analysis.	 Unlike	 statistical	 mechanical	
approaches	such	as	Shannon	Entropy	(for	strings	or	networks),	algorithmic	complexity	improves	
over	Entropy	by	assigning	lower	Entropy	and	thus	higher	causal	content	to	objects	that	not	only	
appear	statistically	simple	but	also	algorithmically	simple	by	virtue	of	having	a	short	generating	
mechanism	capable	of	reproducing	the	causal	content	of	a	network.	Without	such	an	additional	
dimension,	 causal	 and	 non-causal	 networks	 are	 collapsed	 into	 the	 same	 typical	 Bernoulli	
distribution.	 Indeed,	 a	 random-looking	 network	 with	 maximal	 Shannon	 entropy	 can	 be	
recursively	 generated	 by	 a	 short	 algorithm	 that	 Entropy	 would	 misclassify	 as	 random.	 This	
additional	dimension	that	we	introduce	in	the	study	of	dynamic	systems,	in	particular	networks,	
together	with	methods	 and	 tools,	 is	 thus	 key	 to	 better	 tackling	 the	problem	of	 revealing	 first	
principles	and	discovering	causal	mechanisms	in	dynamic	evolving	systems.	The	new	dimension	
can	account	for	all	types	of	structures	and	properties	and	is	sensitive	in	both	directions,	where	
computable	or	 statistical	measures	would	not	 be.	 Indeed,	 an	 Erdös-Rényi	 graph,	 for	 example,	
can	be	recursive	or	not,	with	recursivity	meaning	that	it	is	actually	pseudo-random	and	only	has	
the	 properties	 of	 a	 random	 graph	 but	 is	 not	 algorithmic-random.	 This	 distinction	 is	 key	 in	
science,	 where	 evolving	 systems	may	 be	 random-looking	 but	 are	 governed	 by	 rules	 that	 are	
otherwise	concealed	by	apparent	noise.	
	

	 18	

	
Figure	S2,	rela:	Entropy	can	easily	be	fooled.	Here	is	a	preferential	attachment	algorithm	(B-A)	
creating	networks	of	growing	density	(edge	number	per	node)	showing	Entropy	when	calculated	
on	 adjacency	 matrices	 by	 only	 capturing	 graph	 density,	 assigning	 dense	 B-A	 graphs	 higher	
entropy	than	Erdös-Rényi	(E-R)	graphs.	This	result	was	reproduced	in	30	replicates	using	20	node	
graphs	 and	 20	 replicates/graphs	 and	 the	 experiment	was	 repeated	 approximately	 10	 times29.	
The	 main	 Fig2c	 shows	 another	 graph	 created	 recursively	 (and	 thus	 of	 low	 algorithmic	
complexity)	 that	 suggests	 divergent	 values	 of	 Entropy	 for	 the	 same	 object	 but	 with	 different	
descriptions,	suggesting	different	probability	distributions.	A	different,	more	robust	approach	to	
characterizing	networks	and	systems	is	thus	needed	to	be	able	to	tell	these	cases	apart,	moving	
into	the	algorithmic	mechanics/calculus	introduced	here	and	thus	
improving	over	traditional	techniques	that	draw	heavily		upon	statistical	mechanics.		
	
	
	
	

	
	
Figure	 S3	 related	 to	 Figures	 3,4	 and	 5.	 A	 thermodynamic-like	 effect	 based	 on	
(re)programmability,	a	measure	of	sophistication:	Moving	random	networks	by	edge	removal	is	
significantly	 more	 difficult	 than	 moving	 simple	 networks	 towards	 randomness.	 For	 random	
graphs,	 there	 are	 only	 a	 few	 elements,	 if	 any,	 that	 can	 be	 used	 to	 move	 it	 slowly	 towards	
simplicity.	In	contrast,	a	greater	number	of	elements	can	move	a	simple	network	faster	towards	
randomness.	 This	 relationship,	 described	by	 the	 reprogrammability	 rate	Δ(G)	 <	Δ(G’)	 (see	 Sup	
Mat)	 for	 G	 simple	 and	 G’	 random	 graphs	 of	 the	 same	 size	 (vertex	 count),	 induces	 a	
thermodynamic-like	asymmetry	based	on	algorithmic	probability	and	reprogrammability.	A	MAR	
graph,	which	 is	of	the	highest	algorithmic	randomness,	has	Δ(MAR)	=	 log	n	for	all	 its	elements	

	 19	

after	n	element	removals,	and	thus	cannot	be	easily	moved	towards	greater	randomness.	This	
reprogrammability	 landscape	 is	 thus	 also	 expected	 to	 be	 related	 to	 the	 dynamical	 space	
(epigenetic)	 landscape	with	 controlled	 effects	 in	 the	phase	 space	 according	 to	 the	 complexity	
and	 the	 reprogrammability	 indices	 of	 a	 system,	 	 simple	 connected	 graphs	 having	 fewer	
attractors	than	random	graphs	of	the	same	size.	As	we	have	found	and	reported	in	the	main	text	
and	 S.I.,	 moving	 connected	 networks	 towards	 randomness	 tends	 to	 increase	 the	 number	 of	
attractors	 (and	 therefore	 make	 them	 shallower),	 providing	 key	 insights	 into	 the	 epigenetic	
Waddington	landscape	and	a	tool	to	move	systems	and	networks	hitherto	impossible	to	induce	
to	 perform	 in	 optimal	 ways	 other	 than	 by	 actual	 simulation.	 Conversely,	 moving	 connected	
networks	 away	 from	 randomness	 will	 tend	 to	 reduce	 the	 number	 of	 attractors	 (and	 thereby	
increase	the	depth	of	the	remaining	ones).	
	
	
	
	
	
	

	
Figure	S4	related	to	Figure	2	and	3	.	Qualitative	reconstruction	by	representing	each	row	in	a	CA	
as	a	binary	vector,	which	produces	a	2n+1	dimensional	phase	space,	where	n	is	the	CA	runtime	
for	a	sample	of	representative	ECAs.	The	hamming	distance	between	the	binary	vectors	is	used	
to	 calculate	 the	 behaviour	 of	 the	 moving	 particle	 indicating	 the	 state	 of	 the	 ECA	 (top	 plot).	
Applying	the	same	procedure	to	the	hypothesized	generating	mechanism,	as	identified	from	our	
causal	 calculus,	 we	 find	 that	 the	 moving	 average	 (bottom	 plot)	 of	 the	 predicted	 particle	

	 20	

qualitatively	moves	 in	 a	 similar	 fashion	 (e.g.	 increasing	 v.	 decreasing/constant)	 as	 the	original	
ECA,	and	the	order	among	the	lines	corresponds	to	the	original	one.	
	
	

	
	
Figure	S5	related	to	Figure	1M	:	Evaluating	MILS	using	nine	benchmark	networks	common	in	the	
literature39	 as	 regards	 its	 ability,	 compared	 to	 two	 state-of-the-art	 network	 dimensionality	
reduction	 methods,	 to	 preserve	 the	 clustering	 coefficient	 of	 the	 original	 networks	 while	
removing	up	 to	60%	of	all	 the	network	edges	 40.	Similarly,	MILS	preserved	edge	betweenness,	
degree	distribution	 (see	Main	Figure	1	 l-p)	and	 information	 signatures	 (by	design)	better	 than	
mainstream	 state-of-the-art	 methods	 such	 as	 transitive	 and	 spectral	 sparsification	 and	 null-
methods	such	as	random	edge/node	deletion	and	lowest	degree	node	deletion	(Figure	S6).	This	
is	to	be	expected	because	all	these	properties	of	a	network	are	part	of	its	description.	MILS	thus	
minimizes	 the	 loss	 of	 information	 by	maximizing	 the	 preservation	 of	 all	 the	 properties	 of	 the	
original	networks.	
	

	
	

	 21	

Figure	S6	related	to	Figure	1M.	Histograms	showing	the	preservation	of	degree	distributions	by	
MILS	 against	 a	 benchmark	 dimensionality-reduction	 algorithm	 based	 on	 graph	 spectra	 that	
maximizes	the	preservation	of	 the	graph	eigenvalues	when	removing	20%	of	 the	edges	 (blue),	
40%	 (yellow),	 60%	 (orange)	 and	 80%	 (pink).	 The	 colour	 green	 represents	 the	 overlapping	 of	
areas	for	each	graph	and	each	method.	The	graphs	used	are	a	set	of	benchmarking	graphs	in	the	
literature39.	
	
	
	

	
	
	
Figure	S7	related	to	Figure	5:	Network	Venn	diagram	of	genes	(square	nodes)	occurring	in	the	9	
major	 papers	 in	 the	 literature	 (black	 elliptic	 nodes)	 covering	 investigations	 of	 Th17	 cells30-39.	
These	papers	 cover	 the	majority	of	genes	which	have	been	associated	with	Th17	cells.	 Linked	
genes	in	the	figure	are	genes	found	in	common	between	two	or	more	papers.	Black	lines	show	
the	number	of	genes	 found	 in	common	between	two	papers	 (with	 the	 thickness	denoting	 the	
size	 of	 the	 overlap).	 These	 genes	 were	 used	 in	 main	 Figure	 4f,g,h	 in	 the	 gene	 enrichment	
analysis	of	the	Th17	differentiation	network.	
	

	 22	

	
Figure	 S8	 related	 to	 Figure	 5.	 Six	 clusters	 were	 selected	 using	 partitioning	 around	 medoid	
clustering.	The	number	of	clusters	was	estimated	by	optimum	average	silhouette	width.	
	

	

Figure	S9	related	to	Figure	5.	Gene	Ontology	GO	database	(Biological	Process	category):	over-
represented	categories	tested	with	TopGO	weight01	method	(Fisher	p<0.05)	

●●
●●
●
●

●●●●●

●●
●●

●●●●●●●●

●●●●●●
●●●

●●●
●●

●●

●●●

●●●
●●●

●●
●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●
●
●

●

●

−200

0

200

0 500 1000
gene

BD
M

TF
●

●

FALSE

TRUE

●●
●●
●
●

●●●●●

●●
●●

●●●●●●●●

●●●●●●
●●●

●●●
●●

●●

●●●

●●●
●●●

●●
●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●
●
●

●

●

−200

0

200

0 500 1000
gene

BD
M

Cluster
●

●

●

●

●

●

1

2

3

4

5

6

	 GO.ID	 Term	 Pval	

Cl
us
te
r	1

	

GO:0006094	 gluconeogenesis	 1.60E-06	

GO:0006096	 glycolysis	 0.00036	

GO:0008615	 pyridoxine	biosynthetic	process	 0.0124	

GO:0009255	 Entner-Doudoroff	pathway	 0.0124	

GO:0042330	 taxis	 0.02035	

GO:0016052	 carbohydrate	catabolic	process	 0.02911	

2	 -	 -	 -	

3	 -	 -	 -	

4	 -	 -	 -	

5	 -	 -	 -	

lll
	

GO:0006793	 phosphorus	metabolic	process	 2.10E-08	

GO:0009252	 peptidoglycan	biosynthetic	process	 2.90E-07	

GO:0006777	 Mo-molybdopterin	 cofactor	 biosynthetic	
process	 1.20E-05	

GO:0009086	 methionine	biosynthetic	process	 0.0027	

GO:0009242	 colanic	acid	biosynthetic	process	 0.0124	

GO:0006164	 purine	nucleotide	biosynthetic	process	 0.0196	

GO:0009228	 thiamine	biosynthetic	process	 0.0254	

GO:0009243	 O	antigen	biosynthetic	process	 0.0254	

	 23	

	
	

	

	Figure	S10	related	to	Figure	5.	Over-represented	KEGG	pathways	database	(p<0.05)	
	

	 EcoCyc	pathway	 Term	

Cl
us
te
r	1

	

superpathway	of	glycolysis	and	Entner-Doudoroff	 5.37E-07	
Sugar	Alcohols	Degradation	 4.82E-06	
superpathway	of	hexitol	degradation	(bacteria)	 1.91E-05	
glycolysis	I	(from	glucose-6P)	 1.91E-05	
glycolysis	II	(from	fructose-6P)	 1.91E-05	
gluconeogenesis	I	 2.56E-04	
Gluconeogenesis	 2.56E-04	
Sugar	Derivatives	Degradation	 0.003115401	
Secondary	Metabolites	Degradation	 0.003131693	

	 KEGG	ID	 Term	 Pval	
Cl
us
te
r	1

	
00010	 Glycolysis	/	Gluconeogenesis	 1.76E-08	

00051	 Fructose	and	mannose	metabolism	 7.13E-06	

02030	 Bacterial	chemotaxis	 6.32E-05	

02020	 Two-component	system	 7.55E-04	

00620	 Pyruvate	metabolism	 4.08E-03	

00030	 Pentose	phosphate	pathway	 5.14E-03	

02060	 Phosphotransferase	system	(PTS)	 5.45E-03	

00680	 Methane	metabolism	 6.70E-03	

01110	 Biosynthesis	of	secondary	metabolites	9.59E-03	

01120	
Microbial	 metabolism	 in	 diverse	
environments	 1.44E-02	

2	 -	 -	 -	
3	 	 	 	
4	 -	 -	 -	
5	 -	 -	 -	

6	

00550	 Peptidoglycan	biosynthesis	 1.01E-07	
01100	 Metabolic	pathways	 6.74E-04	

04122	 Sulfur	relay	system	 4.11E-03	
00621	 Dioxin	degradation	 9.20E-03	

00622	 Xylene	degradation	 9.20E-03	
00360	 Phenylalanine	metabolism	 1.48E-02	

00300	 Lysine	biosynthesis	 2.48E-02	
00230	 Purine	metabolism	 3.50E-02	
00670	 One	carbon	pool	by	folate	 3.73E-02	

	 24	

superpathway	of	 glycolysis,	 pyruvate	dehydrogenase,	 TCA,	
and	glyoxylate	bypass	 0.004830985	
TCA	cycle	 0.004830985	
Glycolysis	 0.005196795	
Generation	of	Precursor	Metabolites	and	Energy	 0.005701038	
sedoheptulose	bisphosphate	bypass	 0.037381258	
Entner-Duodoroff	Pathways	 0.037381258	
Entner-Doudoroff	pathway	I	 0.037381258	
CpxAR	Two-Component	Signal	Transduction	System	 0.037381258	
Signal	transduction	pathways	 0.045972995	

2	 -	 -	
3	 -	 -	
4	 -	 -	
5	 -	 -	

Cl
us
te
r	6

	

methylphosphonate	degradation	I	 9.40E-06	
Phosphorus	Compounds	Metabolism	 9.40E-06	
Methylphosphonate	Degradation	 9.40E-06	
Pyrimidine	Nucleobases	Degradation	 0.003167986	
Uracil	Degradation	 0.003167986	
uracil	degradation	III	 0.003167986	
peptidoglycan	 biosynthesis	 (meso-diaminopimelate	
containing)	 0.003167986	
Peptidoglycan	Biosynthesis	 0.003167986	
Cell	Wall	Biosynthesis	 0.003167986	
putrescine	degradation	II	 0.005063846	
3-phenylpropionate	 and	 3-(3-hydroxyphenyl)propionate	
degradation	 0.018877832	
proline	to	cytochrome	bo	oxidase	electron	transfer	 0.019695489	
UDP-N-acetylmuramoyl-pentapeptide	biosynthesis	I	(meso-
DAP-containing)	 0.028546946	
UDP-N-Acetylmuramoyl-Pentapeptide	Biosynthesis	 0.028546946	

	 2-oxopentenoate	degradation	 0.04015748	

	 Putrescine	Degradation	 0.0413727	

	 Pyrimidine	Nucleotides	Degradation	 0.06959294	

	 superpathway	of	ornithine	degradation	 0.075477235	

	 Purine	Nucleotides	De	Novo	Biosynthesis	 0.075477235	

	 superpathway	of	purine	nucleotides	de	novo	biosynthesis	II	 0.075477235	

	

superpathway	of	arginine,	putrescine,	and	4-aminobutyrate	
degradation	 0.09681385	

	 L-rhamnose	degradation	I	 0.09815362	

	 L-rhamnose	Degradation	 0.09815362	
Figure	S11	related	to	Figure	5.	Over-represented	EcoCyc	pathways	(FDR<0.05)	
	

	 25	

	
Figure	S12	related	 to	Figure	5.	Three	clusters	 (above	baseline,	baseline,	below	baseline)	were	
identified	 for	 Entropy	which	 proved	 to	 be	 less	 sensitive,	 clustering	most	 elements	 over	 the	 X	
axis.	Non-baseline	nodes	are	enriched	for	Transcription	Factors.	
	

	

Figure	S13	related	to	Figure	5.	Gene	Ontology	(Biological	Process):	over-represented	categories	
tested	 with	 TopGO	 weight01	 method	 (Fisher	 p<0.05)	 using	 Shannon	 Entropy.	 No	 significant	
groups	were	found	after	GO	enrichment	analysis.	
	

	

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●
●●●
●●●●
●●●
●●
●
●

●
●●●

●●●●●●●●●●●
●●●●●●●
●●●●●
●●●●●●
●●●●
●

●
●

●

●●●

●

●

−0.02

−0.01

0.00

0.01

0 500 1000
gene

EN
TR

O
PY TF

●

●

FALSE
TRUE

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●
●●●
●●●●
●●●
●●
●
●

●
●●●

●●●●●●●●●●●
●●●●●●●
●●●●●
●●●●●●
●●●●
●

●
●

●

●●●

●

●

−0.02

−0.01

0.00

0.01

0 500 1000
gene

EN
TR

O
PY

Cluster
●

●

●

1
2
3

●

●

●●●
●●●●●●
●

●

●

●●●●●●●●●
●●

●
●●●●●●●●●●●●
●●●●●
●●●●●●●

●●

●●0

500

1000

1500

2000

0 500 1000
gene

CO
M
PR

ES
SI
O
N

TF
●

●

FALSE
TRUE

●

●

●●●
●●●●●●
●

●

●

●●●●●●●●●
●●

●
●●●●●●●●●●●●
●●●●●
●●●●●●●

●●

●●0

500

1000

1500

2000

0 500 1000
gene

CO
M
PR

ES
SI
O
N

Cluster
●

●

1
2

	 GO.ID	 Term	 Pval	

Cluster	1	

GO:0006805	 xenobiotic	metabolic	process	 0.0033	

GO:0009268	 response	to	pH	 0.0147	

GO:0006355	
regulation	 of	 transcription,	 DNA-
dependent	 0.0298	

Cluster	2	 GO:0006457	 protein	folding	 0.025	

Cluster	3	
GO:0009255	 Entner-Doudoroff	pathway	 0.0023	

GO:0009435	 NAD	biosynthetic	process	 0.0108	

	 26	

Figure	 S14	 related	 to	 Figure	 5.	 Two	 clusters	 identified	 using	 Compress	 (above	 baseline,	
baseline).	 Above-baseline	 nodes	 are	 enriched	 for	 Transcription	 Factors.	 No	 significant	 groups	
were	found	after	GO	enrichment	analysis.	
	

	 GO.ID	 Term	 Pval	

Cluster	1	

GO:0006805	 xenobiotic	metabolic	process	 0.003	

GO:0009255	 Entner-Doudoroff	pathway	 0.014	

GO:0006355	 regulation	of	transcription,	DNA-dependent	 0.029	

Cluster	2	 	-	 -		
	Figure	S15.	Gene	Ontology	(Biological	Process):	Over-represented	categories	tested	with	TopGO	

weight01	method	(Fisher	p<0.05)	using	lossless	compression	(Compress	algorithm).	
	

																

	 27	

Figure	S16	related	to	Figure	5.	Unlike	graph-theoretic	measures	that	can	be	described	as	single	
or	composed	functions	of	other	graph-theoretic	measures,	BDM	was	not	found	to	correlate	with	
any	 of	 these	 measures,	 just	 as	 it	 did	 not	 correlate	 with	 lossless	 compression	 and	 Shannon	
entropy.	 Control	 Experiments:	 All	 attempts	 to	 produce	 statistically	 significant	 clusters	 from	
graph-theoretic	 measures,	 lossless	 compression	 and	 Shannon	 entropy	 failed	 when	 tested	
against	the	same	Gene	Ontology	databases.	
	
	
	
	
	
	
	
	
	

