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Kinetic Model of Glycolysis/Gluconeogenesis and the Pentose 

Phosphate Pathway 

 

The irreversible reactions and transport of glucose are described by Michaelis-Menten kinetics: 

𝑣 = 𝑣𝑚𝑎𝑥

𝑐𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒

𝑐𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 + 𝐾𝑀
 

Similar to previous studies(Link, Kochanowski and Sauer, 2013) we assume that reversible 

reactions are near equilibrium and the law of mass action describes the kinetics for the forward 

(+) and backward (-) direction in these cases.  

𝑣+ = 𝑘+𝑐𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 

𝑣− = 𝑘−𝑐𝑃𝑟𝑜𝑑𝑢𝑐𝑡 

The detailed equations are given below: 

Kinetic rate equations – irreversible reactions: 

Reaction 1 

glucose specific phosphotransferase system 

𝑣𝑃𝑇𝑆 =  𝑣𝑚𝑎𝑥,𝑃𝑇𝑆

𝑐𝐺𝑙𝑢𝑐𝑜𝑠𝑒

𝑐𝐺𝑙𝑢𝑐𝑜𝑠𝑒 + 𝐾𝑃𝑇𝑆,𝐺𝑙𝑢𝑐𝑜𝑠𝑒
 

Reaction 2 

phosphofructokinase (PFK) 

𝑣𝑃𝐹𝐾 =  𝑣𝑚𝑎𝑥,𝑃𝐹𝐾

𝑐𝐹6𝑃

𝑐𝐹6𝑃 + 𝐾𝑃𝐹𝐾,𝐹6𝑃
 

Reaction 3 

fructose-1,6-bisphosphatase (FBPase) 

𝑣𝐹𝐵𝑃𝑎𝑠𝑒 =  𝑣𝑚𝑎𝑥,𝐹𝐵𝑃𝑎𝑠𝑒

𝑐𝐹𝐵𝑃

𝑐𝐹𝐵𝑃 + 𝐾𝐹𝐵𝑃𝑎𝑠𝑒,𝐹𝐵𝑃
 

Reaction 4 

glucose-6-phosphatedehydrogenase (G6PDH) 

𝑣𝐺6𝑃𝐷𝐻 =  𝑣𝑚𝑎𝑥,𝐺6𝑃𝐷𝐻

𝑐𝐺6𝑃

𝑐𝐺6𝑃 + 𝐾𝐺6𝑃𝐷𝐻,𝐺6𝑃
 

Reaction 5 

6-phosphogluconate dehydrogenase (GND) 



𝑣𝐺𝑁𝐷 =  𝑣𝑚𝑎𝑥,𝐺𝑁𝐷

𝑐6𝑃𝐺

𝑐6𝑃𝐺 + 𝐾𝐺𝑁𝐷,6𝑃𝐺
 

Reaction 6 

pyruvate kinase (PYK) 

𝑣𝑃𝑌𝐾 =  𝑣𝑚𝑎𝑥,𝑃𝑌𝐾

𝑐𝑃𝐸𝑃

𝑐𝑃𝐸𝑃 + 𝐾𝑃𝑌𝐾,𝑃𝐸𝑃
 

Reaction 7 

phosphoenolpyruvate synthetase (PPS) 

𝑣𝑃𝑃𝑆 =  𝑣𝑚𝑎𝑥,𝑃𝑃𝑆

𝑐𝑃𝑌𝑅

𝑐𝑃𝑌𝑅 + 𝐾𝑃𝑃𝑆,𝑃𝑌𝑅
 

Reaction 8 

pyruvate dehydrogenase (PDH) 

𝑣𝑃𝐷𝐻 =  𝑣𝑚𝑎𝑥,𝑃𝐷𝐻

𝑐𝑃𝑌𝑅

𝑐𝑃𝑌𝑅 + 𝐾𝑃𝐷𝐻,𝑃𝑌𝑅
 

Reaction 9 

phosphoenolpyruvate carboxylase (PPC) 

𝑣𝑃𝐷𝐻 =  𝑣𝑚𝑎𝑥,𝑃𝐷𝐻

𝑐𝑃𝐸𝑃

𝑐𝑃𝐸𝑃 + 𝐾𝑃𝐷𝐻,𝑃𝐸𝑃
 

 

Kinetic rate equations – reversible reactions: 

Reaction 10/11 

phosphoglucoseisomerase (PGI) 

𝑣𝑃𝐺𝐼
+ =  𝑘𝑃𝐺𝐼

+ 𝑐𝐺6𝑃 

𝑣𝑃𝐺𝐼
− =  𝑘𝑃𝐺𝐼

− 𝑐𝐹6𝑃 

Reaction 12/13 

fructose-1,6-bisphosphate aldolase (ALD).   

Instead  of  GAP  and  DHAP  this  reaction  produces  2  molecules DHAP,  since  we assume that 

GAP  and  DHAP are in equilibrium by triose phosphate isomerase. 

𝑣𝐴𝐿𝐷
+ =  𝑘𝐴𝐿𝐷

+ 𝑐𝐹𝐵𝑃 

𝑣𝐴𝐿𝐷
− =  𝑘𝐴𝐿𝐷

− 𝑐𝐷𝐻𝐴𝑃𝑐𝐷𝐻𝐴𝑃 

Reaction 14/15 



glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglucokinase (PGK), 

phosphoglucomutase  (PGM)  and enolase  (ENO)  are  in  equilibrium(Link, Kochanowski and 

Sauer, 2013)  and  lumped  into  one  reaction.  

𝑣𝐺𝐴𝑃𝐷𝐻
+ =  𝑘𝐺𝐴𝑃𝐷𝐻

+ 𝑐𝐷𝐻𝐴𝑃 

𝑣𝐺𝐴𝑃𝐷𝐻
− =  𝑘𝐺𝐴𝑃𝐷𝐻

− 𝑐𝑃𝐸𝑃 

Reaction 16/17 

transketolase A (TKTA) 

𝑣𝑇𝐾𝑇𝐴
+ =  𝑘𝑇𝐾𝑇𝐴

+ 𝑐𝑃5𝑃 

𝑣𝑇𝐾𝑇𝐴
− =  𝑘𝑇𝐾𝑇𝐴

− 𝑐𝐷𝐻𝐴𝑃𝑐𝑆7𝑃 

Reaction 18/19 

transketolase B (TKTB) 

𝑣𝑇𝐾𝑇𝐵
+ =  𝑘𝑇𝐾𝑇𝐵

+ 𝑐𝑃5𝑃𝑐𝐸4𝑃 

𝑣𝑇𝐾𝑇𝐵
− =  𝑘𝑇𝐾𝑇𝐵

− 𝑐𝐷𝐻𝐴𝑃𝑐𝐹6𝑃 

Reaction 20/21 

transaldolase (TALA) 

𝑣𝑇𝐴𝐿𝐴
+ =  𝑘𝑇𝐴𝐿𝐴

+ 𝑐𝐷𝐻𝐴𝑃𝑐𝑆7𝑃 

𝑣𝑇𝐴𝐿𝐴
− =  𝑘𝑇𝐴𝐿𝐴

− 𝑐𝐸4𝑃𝑐𝐹6𝑃 

Reaction 22 

biosynthetic E4P drain (E4PD) 

𝑣𝐸4𝑃𝐷
+ =  𝑘𝐸4𝑃𝐷

+ 𝑐𝐸4𝑃 

Reaction 23 

biosynthetic P5P drain (P5PD) 

𝑣𝑃5𝑃𝐷
+ =  𝑘𝑃5𝑃𝐷

+ 𝑐𝑃5𝑃 

Reaction 24 

anabolic proxy of NADPH drain (NADPHD) 

𝑣𝑁𝐴𝐷𝑃𝐻𝐷
+ =  𝑘𝑁𝐴𝐷𝑃𝐻𝐷

+ 𝑐𝑁𝐴𝐷𝑃𝐻 

Reaction 25 

generation of ROS from external source (ROSG) 

this reaction is implemented as a constant input (that we vary in the different simulations) 



𝑣𝑅𝑂𝑆𝐺
+ =  𝑘𝑅𝑂𝑆𝐺

+  

Reaction 26 

scavenging of ROS with NADPH  (ROSS) 

𝑣𝑅𝑂𝑆𝑆
+ =  𝑘𝑅𝑂𝑆𝑆

+ 𝑐𝑅𝑂𝑆 

 

Kinetic rate equations: Small molecule – enzyme interactions 

An interaction between an enzyme catalyzing reaction i and a small molecule j is included as a 

power law term affecting the reaction rate. 

𝑣𝑖
∗ =  𝑣𝑚𝑎𝑥,𝑖 ∏

𝑗

(
𝑐𝑗

𝑐𝑗,0
)

𝑎𝑖,𝑗

 

In the base model without interactions (except the one from ROS on GAPDH), all exponents 𝑎𝑖,𝑗  

are zero and therefore the power law terms equal to 1. With this model we managed to easily 

search the topological space by testing ensembles of structurally different models by setting the 

according exponent to real-valued numbers. With this approach we also managed to create a 

parallel algorithm that does so efficiently. 

 

Ordinary Differential Equations (ODEs) 

𝑑𝐺6𝑃

𝑑𝑡
= 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛1 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛4 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛10 + 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛11 = 

= 𝑣𝑚𝑎𝑥,𝑃𝑇𝑆

𝑐𝐺𝑙𝑢𝑐𝑜𝑠𝑒

𝑐𝐺𝑙𝑢𝑐𝑜𝑠𝑒 + 𝐾𝑃𝑇𝑆,𝐺𝑙𝑢𝑐𝑜𝑠𝑒
− 𝑣𝑚𝑎𝑥,𝐺6𝑃𝐷𝐻

𝑐𝐺6𝑃

𝑐𝐺6𝑃 + 𝐾𝐺6𝑃𝐷𝐻,𝐺6𝑃
− 𝑘𝑃𝐺𝐼

+ 𝑐𝐺6𝑃

+ 𝑘𝑃𝐺𝐼
− 𝑐𝐹6𝑃 

𝑑𝐹6𝑃

𝑑𝑡
= −𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛2 + 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛3 + 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛10 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛11 + 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛18 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛19

+ 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛20 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛21 

𝑑𝐹𝐵𝑃

𝑑𝑡
= 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛2 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛3 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛12 + 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛13 

𝑑𝐷𝐻𝐴𝑃

𝑑𝑡
= 2▪𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛12 − 2▪𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛13 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛14 + 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛15 + 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛16

− 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛17 + 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛18 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛19 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛20 + 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛21 

𝑑6𝑃𝐺

𝑑𝑡
= 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛4 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛5 

 



𝑑𝑃𝐸𝑃

𝑑𝑡
= −𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛1 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛6 + 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛7 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛9 + 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛14

− 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛15
𝑑𝑃𝑌𝑅

𝑑𝑡
= 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛1 + 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛6 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛7 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛8 

𝑑𝑃5𝑃

𝑑𝑡
= 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛5 − 2▪𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛16 + 2▪𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛17 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛18 + 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛19

− 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛23 

𝑑𝐸4𝑃

𝑑𝑡
= −𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛18 + 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛19 + 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛20 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛21 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛22 

 

𝑑𝑆7𝑃

𝑑𝑡
= 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛16 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛17 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛20 + 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛21 

𝑑𝑁𝐴𝐷𝑃𝐻

𝑑𝑡
= 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛4 + 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛5 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛24 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛26 

 

𝑑𝑅𝑂𝑆

𝑑𝑡
= 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛25 − 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛26 

Quantification And Statistical Analysis 

Parameterization of the kinetic model of glycolysis/gluconeogenesis and the 

pentose phosphate pathway 

Kinetic parameters followed from statistical sampling of unknown parameters and a steady 

analysis as described below.  

KM values 

The KM values were randomly sampled from an interval of 0.1-10 times the in vitro determined 

literature value. 

Steady state analysis and statistical sampling 

In order to determine Vmax values we performed a steady state analysis using measured glucose 

uptake rate (1.17 mM/sec). Metabolic fluxes were estimated by flux balance analysis during 

growth on glucose (Fong, Marciniak and Palsson, 2003) and we considered uncertainties about 

the fluxes by taking into account measured flux distributions (Gerosa et al., 2015) and by 

statistical sampling of 5 parameters:  

1. Futile cycling between PFK and FBPase: 
𝑣𝐹𝐵𝑃𝑎𝑠𝑒,0−𝑣𝑃𝐹𝐾,0

𝑣𝐹𝐵𝑃𝑎𝑠𝑒,0
= 0 − 1 

2. Futile cycling between PYK and PPS: 
𝑣𝑃𝑃𝑆,0−𝑣𝑃𝑌𝐾,0

𝑣𝑃𝑃𝑆,0
= 0 − 1 

3. PP pathway flux: 15-40% of the glucose uptake 

4. Biosynthetic drain of pentoses (P5P) and E4P: 50-70% of the PP pathway flux  

5. Immediate increase in ROS flux: 0.5 – 1  



The steady state reaction rates (v0) of all reactions follow from these unknown flux ratios and 

the measured glucose rate. Subsequently, the Vmax of reaction i follows from vi0, the sampled Ki,M 

and the measured steady state concentrations cj0 of the particular small molecule:  

𝑣𝑖,𝑚𝑎𝑥 = 𝑣𝑖
0(1 +

𝐾𝑖,𝑀

𝑐𝑗
0 ) 

Rate constants of reversible reactions 

In the case of reversible reactions, we statistically sample for every pair (e.g. reactions 10/11) 

the efficiency of this reaction: if we know that a glycolytic flux of 1 goes through this reaction 

pair in the glycolytic direction and the efficiency is 0.5, this means that reaction 10 will have a 

flux of 2 and reaction 11 a flux of 1. The rate constants k+ and k- are calculated following this 

approach. 

Selection of the best parameter set for each model topology  

As described in the main text, we randomly sampled P = 20000 for each of the models with 

single small-molecule enzyme interactions and P = 2000 for each of each model with pairs of 

small-molecule enzyme interactions. For each parameter set, the  simulation was performed 

with MATLAB. The residuals between the simulated species (indicated by ‘) and the measured 

species are calculated at t=5 time points for s = 8 species where we have absolute concentrations 

for. Due to differences in the absolute metabolite concentrations we estimated the sum of 

squared errors for s=8 relative metabolite concentrations (𝑐̃) that are normalized to the glucose 

steady state concentrations: 

𝑆𝑆𝑅𝑐 = ∑

8

𝑠=1

∑

5

𝑡=1

(𝑐𝑠,𝑡
′̃ − 𝑐𝑠,𝑡̃)

2
 

We used this objective to select the best parameter set for each model topology. 

Akaike Information Criterion (AIC) 

In order to compare in a systematic manner the simulation results of models with different 

topologies and different number of parameters K (due to different numbers of small-molecule – 

enzyme interactions), we utilized the Akaike Information Criterion (AIC) (Link, Kochanowski 

and Sauer, 2013)(Federico E. Turkheimer, Hinz and Cunningham, 2003).   

𝐴𝐼𝐶 = 𝑁𝑙𝑜𝑔 (
𝑆𝑆𝑅

𝑁
) + 2𝐾 

where N I the total number of residuals. A particular model X with small molecule – enzyme 

interactions is ranked relative to the base model by the difference of AICs: 

𝛥𝐴𝐼𝐶𝑀𝑜𝑑𝑒𝑙𝑋 = 𝐴𝐼𝐶𝐵𝑎𝑠𝑒𝑀𝑜𝑑𝑒𝑙 − 𝐴𝐼𝐶𝑀𝑜𝑑𝑒𝑙𝑋 

Product rank calculation 

The ranks of the pairwise interactions based on how often the interaction appears in models 

with ΔAIC>0 (frequency) and the best ΔAIC that was achieved with a model including this 

interaction, were taken into account in the calculation of the product rank of the interactions. 



The product rank of an interaction i is calculated as the geometric mean of the two individual 

ranks that a certain interaction has achieved. 

Analysis of data 

The analysis of the (experimental and simulated) data was performed using custom MATLAB 

(MathWorks) software. MATLAB was used for all simulations and the kinetic model was partly 

implemented using the SimBiology toolbox.  

 

Parallel ensemble modelling framework 

All the different model topologies are populated as different model objects in one master server 

and then are consequently sent to different CPU cores - workers for simulation, using the High 

Performance Computing service of ETH, containing over 29000 processor cores with a 

theoretical performance reaching over 1000 teraflops. Depending on how many CPU cores are 

available, the time of computation for all the simulations (which depend on the number of model 

topologies and the number of different parameter sets we test for every model, in our case 

12000 topologies for each organism and 2000 parameter sets yield ~ 120 million simulations) 

scales accordingly. Once the simulations from the different CPU cores – workers are finished, the 

saved simulated results return to the master, where they are processed and analyzed thus 

yielding the rank of every interaction, based on the criteria we have set (frequency and score). 

All code was written in MATLAB and various functions from the Parallel Computing toolbox and 

the SimBiology toolbox were used. 



Table S1: Overview of normalized non-targeted metabolomics data. (Additional File) 

Table S2: Kinetic parameters of reactions in the glycolysis – PP pathway models of the three different 
organisms. Vmax of irreversible reactions are estimable parameters and no value is given. Non-applicable 
values indicate that this particular enzyme is non-existent or does not carry flux in this particular 
organism. Related to Figure 5 

Reaction Parameter Value Range E. coli Value Range S. cerevisiae Value Range H. sapiens 

    

Irreversible Reactions     

PFK Vmax,PFK - - - 

 KPFK,F6P (0.1-10) ▪ 0.16mM (0.1-10) ▪ 0.058mM (0.1-10) ▪ 0.0425mM 

FBPase Vmax,FBPase - - - 

 K FBPase,FBP (0.1-10) ▪ 0.015mM (0.1-10) ▪ 0.2mM (0.1-10) ▪ 0.0022mM 

G6PDH Vmax, G6PDH - - - 

 K G6PDH,G6P (0.1-10) ▪ 0.2mM (0.1-10) ▪ 0.042mM (0.1-10) ▪ 0.045mM 

GND Vmax,GND - - - 

 K GND,6PG (0.1-10) ▪ 0.1mM (0.1-10) ▪ 0.062mM (0.1-10) ▪ 0.02mM 

PYK Vmax,PYK - - - 

 K PYK,PEP (0.1-10) ▪ 0.31mM (0.1-10) ▪ 0.281mM (0.1-10) ▪ 0.2mM 

PPS Vmax,PPS - - - 

 K PPS,PYR (0.1-10) ▪ 0.083mM Non-applicable Non-applicable 

PDH Vmax,PDH - - - 

 K PDH,PYR (0.1-10) ▪ 0.515mM (0.1-10) ▪ 0.65mM (0.1-10) ▪ 0.01mM 

PPC Vmax,PPC - - - 

 K PPC,PEP (0.1-10) ▪ 0.19mM (0.1-10) ▪ 0.08mM Non-applicable 

 



 

Table S3: In vivo activity of the enzyme G6P dehydrogenase under growth on glucose for the three 
different organisms. In vitro enzymatic activity of the same enzyme in all three organisms. 

 E.coli Yeast Mammalian cells 

 

 
in vivo 

(mmol/g/h) 
in vitro  

(mmol/g/h) 
in vivo 

(mM/min) 
in vitro 

(mM/min) 
in vivo 

(mM/min) 
in vitro  

(mM/min) 
 

G6PDH 2 3.2 2 4 0.05 2.316 
 

E. coli in vitro: (Fuhrer and Sauer, 2009), E. coli in vivo: (Fuhrer, Fischer and Sauer, 2005; Park 

et al., 2016), Yeast in vitro: (Ralser et al., 2007), Yeast in vivo: (Park et al., 2016), Mammalian 

cells in vitro: BioNumbers, Mammalian G6P dehydrogenase Kinetics, Privately collected by 

Professor Armindo Salvador, Mammalian cells in vivo: (Park et al., 2016) 

 

Table S4: Results of the model-based identification of mechanisms that regulate the metabolic 
response to oxidative stress in E. coli treated with 0.5 mM H2O2. Related to Figure 5 (Additional 
File) 

Table S5: Results of the model-based identification of mechanisms that regulate the metabolic 
response to oxidative stress in E. coli treated with 20 mM H2O2. Related to Figure 5 (Additional 
File) 

Table S6: Results of the model-based identification of mechanisms that regulate the metabolic 
response to oxidative stress in S. cerevisiae treated with 0.5 mM H2O2. Related to Figure 5 
(Additional File) 

Table S7: Results of the model-based identification of mechanisms that regulate the metabolic 
response to oxidative stress in S. cerevisiae treated with 20 mM H2O2. Related to Figure 5 
(Additional File) 

Table S8: Results of the model-based identification of mechanisms that regulate the metabolic 
response to oxidative stress in human dermal fibroblasts treated with 0.5 mM H2O2. Related to 
Figure 5 (Additional File) 

Table S9: Results of the model-based identification of mechanisms that regulate the metabolic 
response to oxidative stress in human dermal fibroblasts treated with 20 mM H2O2. Related to 
Figure 5 (Additional File) 

Table S10: Overview of aggregated targeted metabolomics data used for the model-based 
identification of mechanisms that regulate the metabolic response to oxidative stress. Related to 
Figure 5 (Additional File) 

 



Supplementary Figures 

 

 

Figure S1: Overview of the normalized non-targeted metabolomics data. Heatmap shows mean 

values of metabolite data of treatments normalized to their respective controls. Related to Figure 2, 3, 4 

 

Figure S2: (A) Ratio of oxidized to reduced glutathione over time, after exposure to oxidative stress. 
(Note: The first measured treatment of H2O2 is after 30 seconds for every other organism after 5 
seconds). (B) Ratio of oxidized to reduced glutathione in untreated samples. Related to section “The 
immediate metabolic response upon exposure to oxidative stress” 

 



 

Figure S3: Pathway enrichment analysis on the measured metabolites changing at each time point, 
compared to untreated controls. Related to section “The immediate metabolic response upon exposure 
to oxidative stress” 

 



 

Figure S4: Relative metabolite changes in relevant pathways.: a) Glycolysis, PPP and TCA Cycle, b) 

purine and pyrimidine metabolism and c) Valine, Leucine, Isoleucine degradation and biosynthesis. 



Heatmaps show mean values of  relative metabolite changes log2(treatment vs control). Related to section 

“The immediate metabolic response upon exposure to oxidative stress”  



 

Figure S5: Metabolite Profiles of glycolytic and PP pathway intermediates, upon H2O2 treatment. 
The changes of each metabolite relative to the untreated condition (time point 0) are shown. Solid lines 
represent exposure to high stress (20 mM) while dashed lines represent exposure to low stress (0.5 mM) 



 

Figure S6: Metabolite profiles of citric acid cycle intermediates, upon H2O2 treatment. The changes 
of each metabolite relative to the untreated condition (time point 0) are shown. Solid lines represent 
exposure to high stress (20 mM) while dashed lines represent exposure to low stress (0.5 mM). Related to 
section “The immediate metabolic response upon exposure to oxidative stress” 

 

 

  



 

Figure S7: Metabolite Profiles of glycolytic and citric acid cycle intermediates of E. coli, upon H2O2 

treatment. The changes of each metabolite relative to the untreated condition (time point 0) are shown.  

Plots show mean values +/- standard deviation of three biological replicates. Related to section “The 

immediate metabolic response upon exposure to oxidative stress” 

 

 

 

Figure S8: Metabolite Profiles of glycolytic and citric acid cycle intermediates of S. cerevisiae, upon 

H2O2 treatment. The changes of each metabolite relative to the untreated condition (time point 0) are 



shown.  Plots show mean values +/- standard deviation of three biological replicates. Related to section 

“The immediate metabolic response upon exposure to oxidative stress” 

 

 

Figure S9: Metabolite Profiles of glycolytic and citric acid cycle intermediates of human dermal 

fibroblasts, upon H2O2 treatment. The changes of each metabolite relative to the untreated condition 

(time point 0) are shown.  Plots show mean values +/- standard deviation of three biological replicates. 

Related to section “The immediate metabolic response upon exposure to oxidative stress” 

 

 

 



 

Figure S10 Fitting results of Multivariate Adaptive Regression Splines on metabolite traces of E. 
coli grown in minimal media and treated with a) 0.5 mM and b) 20 mM H2O2. Local maxima 
(including endpoints of treatment) were identified with a peak prominence of Δlog2(FC) > 0.2 were 
identified for fits with R2 < 0.2. Furthermore, following local maxima with less that 50% change of 
log2(FC) were removed. Related to Figure 3 and 4. 

 



 

Figure S11 Fitting results of Multivariate Adaptive Regression Splines on metabolite traces of E. 
coli grown in rich media and treated with a) 0.5 mM and b) 20 mM H2O2. Local maxima (including 
endpoints of treatment) were identified with a peak prominence of Δlog2(FC) > 0.2 were identified for fits 
with R2 < 0.2. Furthermore, following local maxima with less that 50% change of log2(FC) were removed. 
Related to Figure 3 and 4. 



 

Figure S12 Fitting results of Multivariate Adaptive Regression Splines on metabolite traces of S. 
cerevisiae grown in minimal media and treated with a) 0.5 mM and b) 20 mM H2O2. Local maxima 
(including endpoints of treatment) were identified with a peak prominence of Δlog2(FC) > 0.2 were 
identified for fits with R2 < 0.2. Furthermore, following local maxima with less that 50% change of 
log2(FC) were removed. Related to Figure 3 and 4. 



 

Figure S13 Fitting results of Multivariate Adaptive Regression Splines on metabolite traces of S. 
cerevisiae grown in rich media and treated with a) 0.5 mM and b) 20 mM H2O2. Local maxima 
(including endpoints of treatment) were identified with a peak prominence of Δlog2(FC) > 0.2 were 
identified for fits with R2 < 0.2. Furthermore, following local maxima with less that 50% change of 
log2(FC) were removed. Related to Figure 3 and 4. 



 

Figure S14 Fitting results of Multivariate Adaptive Regression Splines on metabolite traces of 
human dermal fibroblasts grown in rich media and treated with a) 0.5 mM and b) 20 mM H2O2. 
Local maxima (including endpoints of treatment) were identified with a peak prominence of Δlog2(FC) > 
0.2 were identified for fits with R2 < 0.2. Furthermore, following local maxima with less that 50% change 
of log2(FC) were removed. Related to Figure 3 and 4. 

  



 

Figure S15 Comparison of the response of upper glycolytic and pentose phosphate pathway 
metabolites upon exposure to oxidative stress. Plots show the fitting results of Multivariate Adaptive 
Regression Splines. Related to Figure 3 and 4. 

 

 

 



 

Figure S16: Base models (models amended with the ROS inhibition of GAP dehydrogenase) of E. coli, S. 
cerevisiae and human dermal fibroblasts (HDF) simulation results (black solid line) against the 
experimental data (green dots), in low (0.5 mM) and high (20 mM) concentrations of hydrogen peroxide 
stress. Y axis represents the relative change of a particular metabolite, compared to the untreated 
condition (time point 0). Related to Figure 5 



 
Figure S17: Simulation results (black solid lines) of the best performing models of E. coli, S. cerevisiae and 
human dermal fibroblasts (HDF) against the experimental data (green dots). Y-axis represents the relative 
change of a particular metabolite, compared to the untreated condition (time point 0). The best 
performing models include the following interactions (for the cases starting from upper left to bottom 
right): E. coli 0.5 mM: NADPH inhibition of G6P dehydrogenase and P5P activation of GND, E. coli 20 mM: 
NADPH inhibition of G6P dehydrogenase and PEP inhibition of PFK, S. cerevisiae 0.5 mM: NADPH 
inhibition of G6P dehydrogenase and PEP inhibition of G6P dehydrogenase, S. cerevisiae 20 mM: PYR 
inhibition of G6P dehydrogenase and NADPH activation of PFK, HDF 0.5 mM: NADPH inhibition of G6P 
dehydrogenase and NADPH inhibition of GND, HDF 20 mM: NADPH inhibition of G6P dehydrogenase and 
S7P activation of GND. Related to Figure 5. 

 



 

Figure S18: Percentage of relative G6P dehydrogenase activity in the presence of predicted inhibitor 
NADPH. Two concentrations were used: 0.1 mM and 0.3 mM of NADPH. Bars show the average activity 
and error bars denote the standard deviation, calculated from five individual replicates. Related to Figure 
5. 

 

 


