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Expanded View Figures

Figure EV1. Bioinformatics analysis reveals that GC3-content is a determinant of stability.

A Principal component analysis of the CDS codon frequencies of protein-coding genes in S. cerevisiae. PC1 and PC2 indicate the first and second principal
components.

B PC1 factor loadings of codons from the yeast dataset ranked from the highest to the lowest. The optimal and non-optimal designation at the bottom of the figure
refers to the designation according to Presnyak and colleagues [14].

C Pearson’s correlation between PC1 factor loading scores and CSC for individual codons (excluding stop codons).
Pearson’s correlation between GC-content and GC3-content for 9,666 protein-coding genes.

E, F Violin plots (E) and cumulative relative frequency distributions (F) visualizing the distribution of mRNA half-lives across their respective GC3-content brackets.

G Comparison of average transcript mRNA half-lives across their respective cAl. Number of transcripts within each range is indicated above their respective points.

H  Gene ontology analysis (biological processes) of the top 5% ranked genes in terms of gene GC3-content.

| Gene ontology analysis (biological processes) of the bottom 5% ranked genes in terms of gene GC3-content.

Data information: In (E), the box plots within each figure are indicative of the median and interquartile ranges. In (F), Wilcoxon signed rank tests were performed on the
various distributions against the control (all transcripts) group. P-values are denoted. In (G), error bars represent the 95% confidence intervals.
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Figure EV2. GC3-content can explain ribosome occupancy and translation efficiency to a certain extent.

A PC1 factor loadings of codons from the human dataset ranked from the highest to the lowest (bottom) and their corresponding normalized factor loadings after
linear normalization onto a percentage scale (top).
B Pearson’s correlation between the correlations derived from comparison of ribosome occupancy and codon bias-derived scores for two ribosome profiling sample

replicates.

C Pearson’s correlation between codon bias-derived occupancy scores and ribosome occupancy for individual codons (excluding stop codons).

D Three example transcripts (EIF2B2, DYNC1LI2, and IDH3G) that demonstrate high correlation between ribosome occupancy and codon bias-derived scores (left) as
well as their corresponding Pearson’s correlations over 25 bins (right).

E Comparison of average transcript translation efficiencies (TEs) across their respective GC3-content ranges after grouping by mRNA abundances. Error bars represent
the 95% confidence intervals.
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Figure EV3. GC3-content of transcripts affects translation efficiency and stability.

A

E
F

Example of how transcript GC3 optimization and GC3 deoptimization were performed to generate GC3-optimized and GC3-deoptimized versions of REL and IL6
transcripts.

GC3- and GC-content of REL-OPT/WT, REL-OPT (+1 Frameshift), and /L6-OPT/WT/DE and IL6-OPT (+1 Frameshift) transcripts.

Protein abundance of immunoblot of FLAG-tagged REL-OPT and REL-WT in HEK293T cells (normalized by respective mRNA levels) transfected with either empty
plasmids, or plasmids bearing REL-OPT or REL-WT (corresponding to Fig 3B). The data are representative of threew independent experiments. The respective steady-
state mRNA levels (transcript copy numbers) are shown on the right.

IL6 protein abundance as determined by ELISA of IL6-OPT, IL6-WT, and IL6-DE in HEK293T cells (normalized by respective mRNA levels) transfected with either empty
plasmids, or plasmids bearing IL6-OPT, IL6-WT, or IL6-DE (corresponding to Fig 3C). The ELISA quantification is representative of three independent experiments. The
respective steady-state mRNA levels (transcript copy numbers) are shown on the right.

Representative immunoblot of FLAG-tagged REL-OPT and REL-WT expressed in Hela cells (left). The immunoblot is representative of three independent experiments.
mRNA stability experiments showing the degradation of REL-OPT and REL-WT transcripts in Hela cells, post-actinomycin-D addition.

Data information: In (C), the densitometry data are representative of three independent experiments. Unpaired t-tests were performed within the REL-OPT and REL-WT
samples, P < 0.05 (*). In (D), a one-way ANOVA with Tukey’s multiple comparisons was performed between samples where P < 0.01 (**) and P < 0.001 (***). In (F), data
are representative of three independent experiments each with three replicates. The data represent the mean =+ SD for three replicates. A two-way ANOVA with the
Holm-Sidak multiple comparisons was performed. P-values are denoted as follows: P < 0.001 (***).
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A IL6-OPT > IL6-WT IL6-WT > IL6-DE

Figure EV4. RNA-binding proteins can be identified from ISRIM
experiments.

A Venn diagram indicating the number of RBPs identified from the IL6 ISRIM
experiments.

B Venn diagram indicating the number of RBPs identified from the REL and
IL6 ISRIM experiments.
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Figure EV5. ILF2 is an RNA-binding protein that can bind differentially to transcripts with different levels of GC3-content.

A Cumulative distribution plots showing the GC3-content distribution of transcripts bound to by ILF2 in H929 (top) and JJN3 cells (bottom). Wilcoxon signed rank
tests were performed on the ILF2 RIP group against the control group. P-values are denoted in the figure.

B Scatterplot of the RPKM values of mRNA transcripts in K562 cells subject to ILF2 CRISPR interference and its corresponding WT control. mRNA transcripts are
colored according to their respective GC3-content.

C Fold changes of example mRNA representing low, average, and high GC3-content transcripts from the RPKM values of mRNA transcripts in K562 cells subject to
ILF2 CRISPR interference.

D Densitometric analysis of immunoblot of FLAG-tagged REL-OPT and REL-WT expressed in HEK293T cells under ILF2 and ILF3 siRNA treatment (corresponding to
Fig 6D).

E Densitometric analysis of immunoblot of FLAG-tagged REL-OPT and REL-WT expressed in HEK293T cells co-expressed with two different isoforms of ILF2
(corresponding to Fig 6E).

F, G Top three RNA motifs enriched in upregulated transcripts (> 5 fold) in ILF2 RIP-seq data (A) derived from both H929 and JJN3 datasets (left) and their corresponding
annotations in transcripts (right) (F), followed by the ILF3 motif and its distribution identified by Dotu et al [47] from ILF3 RNA Bind-n-seq experiments (G).

Data information: In (D, E), densitometry data are representative of three independent experiments. A one-way ANOVA with Tukey’s multiple comparisons was performed
within the REL-OPT and REL-WT samples. P-values are denoted as follows: P < 0.05 (*), P < 0.01 (**), and P < 0.001 (***).
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