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Appendix Figures Legends

Appendix Figure S1 (in support of Figure 1). Validation of nutrient starvation-induced autophagy and
biotinylation.

(A) Western Blots show protein level for both autophagic markers p62 and LC3 from cell lysates identical
to the ones used for mass spectrometry identification.

(B) Graphical representations show a significant decrease of both autophagic markers p62 and LC3 upon
EBSS incubation indicating a good autophagy induction (n = 3 independent experiment, Mann-Whitney
test). *p<0.05; **p<0.01; ***p<0.001; ns, not significant. Graphs represent mean * standard error of the
mean (SEM).

(C) Western blot revealing biotinylation pattern of whole cell lysates identical to the ones used in mass
spectrometry for the nutrient starvation-induced autophagy condition.

(D) Western blot revealing biotinylation pattern of whole cell lysates identical to the ones sent to mass
spectrometry for the suspension condition.

(E) Correlation matrix of the three replicates for both nutrient starvation-induced autophagy and ECM
detachment conditions based on the association fold of STK38 newly identified partners using Pearson
correlation indicating good reproducibility between each replicate. Circles size and colour represent the
correlation coefficient (blue for positive, red for negative).

Appendix Figure S2 (in support of Figure 2). Validation of XPO1 inhibition and autophagy monitoring cell
line.

(A) Validation of XPO1 activity inhibition as shown in Figure 2. Hela cells were incubated with DMEM or
EBSS in the presence of XPO1 inhibitors KPT-185 or KPT-330 as indicated (final concentration = 1 uM) or
DMSO for 4 hours. Cells were then fixed and stained for endogenous IkBa, a well known XPO1 cargo.
Representative images are shown and scale bars are 40 um.

(B) Graphical representation of IkBa nuclear staining/cytoplasmic staining (n > 30 cells from 3 independent
experiments, Mann-Whitney test). As anticipated, XPO1 activity inhibition by KPT-185 or KPT-330 induced
a nuclear retention of IkBa. *p<0.05; **p<0.01; ***p<0.001; ns, not significant. Graphs represent mean *
standard error of the mean (SEM).

(C-D) Validation of autophagy monitoring cell line.

(C) Hela cells stably expressing the GFP-LC3-RFP-LC3AG reporter autophagic probe [1] were incubated
with the indicated siRNA. 72h later, cells were incubated with DMEM or EBSS for 4 hours and the GFP and
RFP signals were recorded by FACS analysis and then shown as a GFP-LC3/RFP-LC3AG ratio (%) (n=4
independent experiments, Mann-Whitney test). As expected, nutrient starvation incubation induced a
significant decrease of the GFP-LC3/RFP-LC3AG ratio that is stopped when the pro autophagic proteins
ATG5 and Beclinl are silenced. As expected also, STK38 silencing inhibited the autophagic process.
*p<0.05; **p<0.01; ***p<0.001; ns, not significant. Graphs represent mean + standard error of the mean
(SEM).

(D) Validation of silencing of proteins indicated in (D). Western blot indicates good silencing of STK38,
ATG5 and Beclinl proteins when associated with their respective siRNA (numbers indicate the average
protein level normalized on GAPDH level for the 4 replicates).



Appendix Figure S3 (in support of Figure 3). Validation of STK38 replacement and p62 levels.

(A) Hela cells stably expressing the GFP-LC3-RFP-LC3AG reporter autophagic probe were transiently
transfected with siRNA targeting the 3'UTR region of endogenous STK38 (or with non-targeting siRNA
(siNT)). The next day, cells were transiently transfected with the indicated STK38 mutants expressing
plasmids. 24 hours after, cells were incubated with DMEM or EBSS for 4 hours and then subjected to lysis
and western blotting analysis (here, only one replicate is presented). This indicates a good replacement of
STK38 in all conditions.

(B) Western-Blot of quantifications shown in Figure 3D (here, only one replicate of the three is presented).
The figure indicates a good replacement of STK38 in all conditions.

Appendix Figure S4 (in support of Figure 4 and Figure EV2). Detection of XPO1_S1055 phosphorylation
by mass spectrometry.

Annotated fragmentation spectra for peptide 1053-1070. HekRasV12 cells were transiently transfected
with both Flag-XPO1(wt) and myc-STK38(wt) plasmids. 24 hours later, cells were treated with Okadaic Acid
for 1 hour (final concentration = 1 pM). Flag-XPO1 was then immunoprecipited following mass
spectrometry analysis. The MS/MS spectra were obtained on two different mass spectrometers, the TIMS
TOF PRO (above, mascot ion score 70, expect value = 3.6e-06 , and the Q exactive Plus (below, mascot ion
score = 39, expect value = 0.00022). Phosphorylation on S1055 is well confirmed by both spectra
(fragments containing the phosphorylation —or the neutral loss of 98 - are flagged with a red dot).

Appendix Figure S5 (in support of Figure 5 and Figure EV3). XPO1 mutants transfection validation &
STK38 silencing.

(A) Same cells used as in Figure 5B&C were subjected to whole cell lysis and western blotting analysis
(here, only one replicate of the three is presented). This figure indicates that cells used are well transfected
for myc-STK38(wt) and for Flag-XPO1 variants plasmids. Exogenous signal for XPO1 in C528S_ACter is
absent (compared to the others) because the targeted amino acid sequence of the anti-XPO1 antibody is
included in the Cter region deleted in this construct.

(B) Same cells used as in Figure 5E and Figure EV3B were subjected to whole cell lysis and western blotting
analysis (here, only one replicate of the two is presented where the numbers indicate the average STK38
protein level normalized on GAPDH level for the 2 replicates).

Appendix Figure S6 (in support of figure 6 and Figure EV4). Validation of STK38 silencing and Beclinl
antibody.

(A) STK38 silencing. Same cells as used in Figure 6A and Figure EV4A were subjected for whole cell lysis
and western blotting analysis in order to confirm STK38 silencing (numbers indicate the average STK38
protein level normalized on GAPDH level for the 3 replicates of the experiment). Results indicate here an
efficient silencing of endogenous STK38.

(B) Validation of anti Beclinl antibody used in Figure 6 and Figure EV4. Hela and HAP1 wt cells were
subjected to IF using anti Beclinl or IgG control antibodies. The IFs with 1gG control were black,
demonstrating the specificity of the anti Beclin1 antibody, scale bars are 40 um.

(C) STK38 silencing. Same cells used in Figure 6C and Figure EVAC were subjected for whole cell lysis and
western blotting analysis in order to confirm STK38 silencing (here, only one replicate of the two is
presented).



Appendix Figure S7 (in support of Figure 7 and Figure EV5). Validation of STK38 silencing and YAP1
protein level.

(A) Same cells as used in Figure 7A and Figure EV5A were subjected for whole cell lysis and western blotting
analysis in order to confirm STK38 silencing (numbers indicate STK38 protein level normalized on GAPDH
level for the 3 replicates of the experiment). Results indicate here an efficient silencing of endogenous
STK38.

(B) Same cells as used in Figure 7A and Figure EV5A were subjected for whole cell lysis and western blotting
analysis in order to check for YAP1 global protein level (numbers indicate the average YAP1 protein level
normalized on GAPDH level for the 3 replicates of the experiment). Blots indicate that YAP1 protein levels
remain approximatively identical between each conditions, indicating that YAP1 nuclear exclusion
observed in Figure 7A and Figure EV5A is due to nuclear/cytoplasmic shuttling and not to protein
degradation.

(C) Same cells as used in Figure 7B and Figure EV5B were subjected for whole cell lysis and western blotting
analysis in order to check for YAP1 global protein level (humbers indicate the average YAP1 protein level
normalized on GAPDH level for the 3 replicates of the experiment). Blots indicate that YAP1 protein levels
remain approximatively identical between each conditions, indicating that YAP1 nuclear exclusion
observed in Figure 7B and Figure EV5B is due to nuclear/cytoplasmic shuttling and not to protein
degradation.

(D) STK38 silencing. Same cells used in Figure 7C and Figure EV5C were subjected for whole cell lysis and
western blotting analysis in order confirm STK38 silencing (here, only one replicate of the two is
presented).

(E-F) STK38 is not required for YAP phosphorylation on $127 and LATS2 protein level.

(E) A548 cells were seeded at low vs high confluence with the indicated set of siRNA. 72 hours later, cells
were lysed and subjected to western blotting using the indicated antibodies. Silencing LATS1/2 results in
a loss of phosphorylated YAP on $S127 where knock down of STK38 does not impact YAP1 phosphorylation
on S127.

(F) The same cells samples used in (E) were analysed for LATS2 protein expression in parallel of a positive
control (H1299 cell line). The results indicate that the absence of signal in (E) when using the anti-LATS2
antibody is not due to experimental issue but rather on very low LATS2 protein expression in A549 cells.

Appendix Figure S8. XPO1 blockage phenocopies STK38 silencing for proper centrosome distribution.
(A-B) XPO1 is required for centrosome distribution.

(A) Hela cells stably expressing GFP-Centrin were cultured on glass-bottom 6 well plates for two days in
order to each 50% confluency the day of the experiment. GFP signal was then recorded on live microscopy
and centrosomes (centrin “spots”) were counted on Z-stacks images without differentiating unique
separated centrioles in G1 phase from separated centrosomes (harbouring 2 centrioles each) in S/G2
phase. Representative images are shown and scale bars are 40 um. White arrows indicate centrosomes.
(B) Graphical representation of cell population harbouring one, two, or no centrosomes. (n>300 cells from
13 different fields from 3 experiments, Mann-Whitney test). Here, XPO1 blockage significally impaired
proper centrosomal distribution. *p<0.05; **p<0.01; ***p<0.001; ns, not significant. Graphs represent
mean + standard error of the mean (SEM).

(C-E) STK38 is required for centrosome distribution.

(C) Hela cells stably expressing GFP-Centrin were transiently transfected with the indicated siRNA for two
days. GFP signal was then recorded on live microscopy and centrosomes (centrin “spots”) were counted
on Z-stacks images as described above. Representative images are shown and scale bars are 40 um. White
arrows indicate centrosomes.

(D) Graphical representation of cell population harbouring one, two, or no centrosomes. (n> 200 cells from
15 different fields from 3 experiments, Mann-Whitney test). Here, STK38 silencing significally impaired
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proper centrosome distribution. *p<0.05; **p<0.01; ***p<0.001; ns, not significant. Graphs represent
mean = standard error of the mean (SEM).

(E) STK38 protein level of cells shown in C, numbers indicate the average STK38 protein level normalized
on GAPDH level for the 3 replicates of the experiment. Results indicate here an efficient silencing of
endogenous STK38.

Appendix Figure S9. Diagram of the mechanism of activation of XPO1 by STK38.

Activated STK38 (triggered by T444 phosphorylation) phosphorylates inactivated XPO1 on S1055 within
the auto-inhibitory domain (Al) resulting in a change of conformation of XPO1 and exposing its cargo
binding region (NES, for Nuclear Export Signal recognition domain). Supposedly, the binding of Ran-GTP to
its association domain (RAN) finalizes this process leading to the nuclear export of the cargo.

Appendix Figure $10. STK38 phosphorylation motif in XPO1 is conserved in simians.

XPO1 protein sequences among different systematic groups were aligned (only the C-terminal domain is
shown). Amino acids highly conserved among all species are marked with blue color, less conserved are
marked with pink color where non conserved are marked without color. Simians are highlighted in red and
non-simian primates are highlighted in green. Red frame denotes location of the STK38 phosphorylation
motif HXRxxS/T.
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