Expanded View Figures

Figure EV1. Gating strategy for the identification of $\gamma\delta$ T17 cells by flow cytometry in lymph nodes and ear skin and assessment of the ROR γ t^{CRE} efficiency. Flow cytometric analysis of $\gamma\delta$ T cells to indicate the gating strategy used to identify $\gamma\delta$ T17 cells in lymph node and skin and to assess the efficiency of the ROR γ t^{CRE}. In graph, each symbol represents a mouse and line the median.

A, B Gating strategy in the lymph node (A) and skin (B).

C RORyt^{CRE} mice were crossed with ROSA26-STOPFIox-RFP mice (RORyt^{CRE}-RFP^{STP-F/F}), whereby the floxed STOP cassette in front of the red fluorescent protein (RFP) gene prevents its constitutive driven expression by the ROSA26 locus until Cre recombinase-mediated excision. The graph summarizes data from 4 mice. Each color represents a cell population.

Data information: In all FACS plots, numbers in gates indicate % of positive cells.

Figure EV2. STAT3 and STAT4 do not regulate $\gamma\delta$ T and $\gamma\delta$ T17 cell numbers in the lymph nodes.

Flow cytometric analysis of $\gamma\delta$ T cells in ROR γt^{CRE} -STAT3^{F/F} (Cre⁺) and littermate control mice (Cre⁻) (A–B) or in STAT4^{-/-} (-/-) and littermate control mice (+/-) (C–D). In graphs, each symbol represents a mouse and line the median.

- A Numbers of total $\gamma\delta$ T cells in the LN of ROR γt^{CRE} -STAT3^{F/F} mice.
- B Frequency of $\gamma\delta T17$ cells (% of total $\gamma\delta$ T) in the LN of ROR γt^{CRE} -STAT3F/F mice.
- C $\,$ Numbers of total $\gamma\delta$ T cells in the LN of STAT4 $^{-\!/-}$ mice.

experiments.

D Frequency of $\gamma\delta$ T17 cells (% of total $\gamma\delta$ T) in the LN of STAT4^{-/-} mice. Data information: In (A–B), n = 8; 4 experiments. In (C, D), n = 6; 3

Figure EV3. Impact of STAT3 and STAT4 on V γ 4⁺ and V γ 4⁻ γ δ T17 subsets in the lymph node and skin at steady state and during inflammation.

Flow cytometric analysis of $\gamma\delta$ T cells in ROR γ t^{CRE}-STAT3^{F/E} (Cre⁺) and littermate control mice (Cre⁻) (A-D) or in STAT4^{-/-} (-/-) and littermate control mice (+/-) (E-H). In graphs, each symbol represents a mouse and line the median. *P < 0.05, **P < 0.01, ***P < 0.001 using Mann–Whitney test.

A-H (A, B and E, F) Numbers of V γ 4⁺ (A and E) and V γ 4⁻ (B and F) $\gamma\delta$ T17 cells in the LN before (steady state) and after IMQ-induced psoriasis in ROR γ t^{CRE}-STAT3^{F/F} (A, B) or STAT4^{-/-} (E, F) mice. Steady state: n = 7-8; 4 experiments, IMQ: n = 11-12; 4 experiments. (C, D and G, H) Numbers of V γ 4⁺ (C and G) and V γ 4⁻ (D and H) $\gamma\delta$ T17 cells in the skin before (steady state) and after IMQ-induced psoriasis in ROR γ t^{CRE}-STAT3^{F/F} (C, D) or STAT4^{-/-} (G, H) mice. Steady state: n = 7-8; 4 experiments, IMQ: n = 11-12; 4 experiments.

Figure EV3.

Figure EV4. Impact of STAT3 on non- $\gamma\delta$ T17 cell populations.

Flow cytometric analysis of lymph node or skin lymphocytes in ROR γt^{CRE} -STAT3^{F/F} (Cre⁺) and littermate control mice (Cre⁻). In graphs, each symbol represents a mouse and line the median. *P < 0.05, **P < 0.01, ***P < 0.001, ***P < 0.001 using Mann–Whitney test.

A, B Numbers of LN CD4⁺ and CD8⁺ T cells before (steady state) and after IMQ treatment.

- C, D Numbers of skin CD4⁺ and CD4⁻ T cells before (steady state) and after IMQ treatment.
- E ~ Numbers of LN CD27+ $\gamma\delta$ T cells before (steady state) and after IMQ treatment.

Data information: Steady state: n = 8; 4 experiments, IMQ: n = 11-12; 4 experiments.

Figure EV5. Contribution of $\gamma\delta$ and $\alpha\beta$ T cells toward production of IL-17A, IL-17F, and IL-22 during IMQ-induced inflammation.

Flow cytometric analysis of IL-17A-, IL-17F-, and IL-22-producing T cells in the lymph node during IMQ-induced inflammation. In graphs, each symbol represents a mouse and line the median. ***P < 0.001, ****P < 0.0001 using Mann–Whitney test.

- A, B Frequency of IL-17A⁺ (A) or IL-17F⁺ (B) cells that are either TCR $\gamma\delta^+$ or TCR β^+ within the total IL-17A- or IL-17F-producing population.
- С
- Frequency of CD4^+ and CD4^- IL-22⁺ T cells in $\text{ROR}_{\gamma} \text{t}^{\text{CRE}}$ -STAT3^{F/F} (Cre⁺) and littermate control mice (Cre⁻) at steady state or after IMQ treatment. D

Data information: (A–D) n = 8-11; 3–4 experiments. In FACS plots, numbers in gate indicate % positive cells.

Figure EV5.