

Figure S1. Culture pH in LB with 1% ethanol begins to deviate from LB alone near the transition from exponential to stationary phase around an OD_{600} of 3.0. Cultures were grown in LB alone or LB amended with 1% ethanol at 37°C, with an initial inoculation of 0.05 OD_{600} . Optical density (A) and pH measurements (B) were taken beginning at 6 hours post-inoculation. Each point is the mean of 4 independent cultures and data are representative of at least 2 independent experiments. Panels C and D represent the mean and standard deviation of the 4 individual cultures in A and B at 12 hours and 26 hours post-inoculation. Letters above each bar represent statistical groupings for OD_{600} (C) and pH (D).

Table S1. Strains used in this study.

Strain	Lab Strain	Strain description	Source
P aeruginosa			
		Laboratory reference strain	(1)
	DHIZS	Transposon insertion mutant in	
PA14 exaA··TnM	DH2130	exaA	(2)
	DITIZ TOO		This
PA14 ∆ <i>exaA</i>	DH3470	In-frame deletion of <i>exaA</i>	study
		Complementation of <i>exaA</i> at the	This
PA14 ∆ <i>exaA+exaA</i>	DH2677	native locus	study
			This
PA14 ∆ <i>adhA</i>	DH2255	In-frame deletion of adhA	study
		In-frame deletion of <i>adhA</i> and	This
PA14 ∆adhA∆exaA	DH2257	exaA	study
		Complementation of <i>adhA</i> at the	This
PA14 ∆adhA+adhA	DH3463	native locus	study
	DUDADA	I ransposon insertion mutant in	
PA14 pqqB::InM	DH2131	pqqB	(2)
		I ransposon insertion mutant in	(2)
PAT4 acsa:: ThM	DH2100	acsa	(Z)
DA14 Appr		In frame deletion of ann	This ctudy
FA14 Dani	DH2055	PA14 Appr complemented with apr	This
PA14 Λanr +anr	DH3478	at the native locus	study
PA14 MasR	DH164	in-frame deletion of <i>lasR</i>	(3)
	Billol	PA14 <i>MasR</i> complemented with	
PA14 $\Delta lasR + lasR$	DH3398	lasR at the native locus	(4)
PA14 MasR Aanr	DH2401	anr deleted in DH164	(5)
PA14 $\Delta lasR \Delta adhA$	DH3464	In-frame deletion of <i>lasR</i> and adhA	This
		in DH164	study
∆adhA + EV	DH3475		This
		DH2255 carrying DH1682	study
∆adhA + adhA OE	DH3476	DH2255 carrying DH3483 adhA	This
		expression vector	study
<i>∆anr</i> + EV	DH3477		This
		DH2855 carrying DH1682	study
$\Delta anr + adhA OE$	DH3474	DH2855 carrying DH3483 adhA	This
		expression vector	study
∆anr+anrD149A	DH3480	PA14 with wild-type anr replaced	This
		with anrD149A allele	study
PAO1 WT	DH1856	Laboratory reference strain	(6)
		In-frame deletion of <i>adhA</i> in	This
∣ PAO1 ∆ <i>adhA</i>	DH2252	DH1856	study

E. coli			
S17 λ pir	DH71		
Plasmids			
pMQ30	DH962	allelic replacement vector, GmR	(7)
pMQ70 EV	DH1682	pMQ70 expression vector	(7)
			This
padhA OE	DH3483	padhA expression vector in pMQ70	study
		adhA in-frame deletion construct in	This
padhA KO	DH2159	pMQ30	study
		adhA complementation construct in	This
padhA complement	DH2162	pMQ30	study
		anrD149A allele replacement	This
anrD149A allele	DH3482	vector in pMQ30	study
		Anr complementation construct in	This
anr complement	DH3481	pMQ30	study

References

- 1. Rahme LG, Stevens EJ, Wolfort SF, Shao J, Tompkins RG, Ausubel FM. 1995. Common virulence factors for bacterial pathogenicity in plants and animals. Science 268:1899-902.
- Feinbaum RL, Urbach JM, Liberati NT, Djonovic S, Adonizio A, Carvunis AR, Ausubel FM.
 2012. Genome-wide identification of *Pseudomonas aeruginosa* virulence-related genes using a *Caenorhabditis elegans* infection model. PLoS Pathog 8:e1002813.
- 3. Hogan DA, Vik A, Kolter R. 2004. A *Pseudomonas aeruginosa* quorum-sensing molecule influences *Candida albicans* morphology. Mol Microbiol 54:1212-23.
- 4. Harty CE, Martins D, Doing G, Mould DL, Clay ME, Occhipinti P, Nguyen D, Hogan DA. 2019. Ethanol stimulates trehalose production through a SpoT-DksA-AlgU-dependent pathway in *Pseudomonas aeruginosa*. J Bacteriol 201.
- 5. Hammond JH, Dolben EF, Smith TJ, Bhuju S, Hogan DA. 2015. Links between Anr and quorum sensing in *Pseudomonas aeruginosa* biofilms. J Bacteriol 197:2810-20.
- 6. Vallet-Gely I, Sharp JS, Dove SL. 2007. Local and global regulators linking anaerobiosis to *cupA* fimbrial gene expression in *Pseudomonas aeruginosa*. J Bacteriol 189:8667-76.
- 7. Shanks RM, Caiazza NC, Hinsa SM, Toutain CM, O'Toole GA. 2006. *Saccharomyces cerevisiae*-based molecular tool kit for manipulation of genes from gram-negative bacteria. Appl Environ Microbiol 72:5027-36.

Tn mutant		
primers		
Gene	Primer	Sequence
exaA	exaA Tn conf_FWD	ACAACGTGTTCAAGCTGAC
	exaA Tn conf_REV	ACACCTTGTCGCCATAGA
Strain construction and sequencing		
<u>Gene/</u> Feature	Primer	Sequence
adhA	DH_SDW1	ATCTGCACGATGGAGAGCAGCGA
	DH SDW2	TTGCAGATGGACCCGGAGAT
	DH SDW3	AGCGGCCAGACTGGTTGT
	DH SDW4	TACAAGGGGCTCAAGCAGAC
	Out_1	TGAACATCGACTTCTCGAACCAGC
	Out_2	ATGACGGGATTTGTCTCAGAGGGA
	Rec_FW	ACACTAGTCATGGTTCGAGCCTTACC
	Rec_RV	TTAAGCTTAAGTGGCTGGAGGATTTC
exaA		
	DH_SDW5	GCTTCTGCGTTCTGATTTAATCTGTATC AGGCTGATAGATCATGGCGAAGCTCTC CTGT
	DH_SDW6	GGCAGCTTGAATACCCAGAAGGAACGT TTGGAGTGAGGGTCGAGAAA
	DH_SDW7	TTTCTCGACCCTCACTCCAAACGTTCCT TCTGGGTATTCAAGCTGCC
	DH_SDW8	GAGCGGATAACAATTTCACACAGGAAA CAGCTATGTGCTCAAGCAGAAGTTGCA GGTGA
	exaA_sequencing_1	CGCGCGCAGTTCTGGTTGTA
	exaA_sequencing_2	TTTCCAGGTTGGCCAGGTCGAG
	exaA_KO_Chk_UP_FW	GAACGGGGGAACTCGGCGATC
	exaA_KO_Chk_Dwn_RV	CGTGGGAAGAGCAGGGCGG

Table S2. Primers used in this study.

anr	^Anr_pmQ30_1	TGCGTTCTGATTTAATCTGTATCAGGCT GATGTTCATGAACTGGGTCATGAAGGG TTGGC
	^Anr_pmQ30_2	GTGCCTTTAACCTAGCAAGGACCCCTC AAGCGCCTGCGAACCGCCAAC
	^Anr_pmQ30_3	GTTGGCGGTTCGCAGGCGCTTGAGGG GTCCTTGCTAGGTTAAAGGCAC
	^Anr_pmQ30_4	TGAGCGGATAACAATTTCACACAGGAA ACAGCTATGTCTGCCACTTCGAACTGG CCTTCG
	Anr_Chk_FW1	CGCGCGGTGATCCAGCAACTG
	Anr_Chk_RV1	GTAGGGGAAGAGCGAGGACAGG
pMQ30	pMQ30_seq_mcs_FW	CCTCTTCGCTATTACGCCAGCTGG
	pMQ30_seq_mcs_RV	GCTCACTCATTAGGCACCCCAGG