Fragment-based development of a benzofuran hit as a new class of *Escherichia coli* DsbA inhibitors

Luke F. Duncan^{1†}, Geqing Wang^{2†}, Olga V. Ilyichova³, Martin J. Scanlon^{3,4}, Begoña Heras² and Belinda M. Abbott^{1*}

¹Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia ²Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia ³Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia ⁴ARC Training Centre for Fragment Based Design, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia

⁺ Both authors contributed equally to this work

* Corresponding author

Table of contents

Figure S1 Electron density maps for compounds	S3
Figure S2. Co-crystal structure of 50	S2
Table S1. Data collection and refinement statistics	S4-5
¹ H NMR and ¹³ C NMR spectra for novel compounds	S6-66

	Compound 15	Compound 16	Compound 21	Compound 23
2mF _o -DF _c			* <u>()</u>	
Omit map mF _o -DF _c				
	Compound 25	Compound 28	Compound 26	
2mF _o -DF _c	E	2005	VOJ	
Omit map mF _o -DF _c		200	500	

Figure S1. σ_A -weighted 2mFo–DFc electron density maps for compounds are contoured at 1 σ and simulated annealing omit σ A-weighted mFo-DFc electron density maps for compounds are contoured at 2.5 σ .

Figure S2. Co-crystal structure of 50 ((S)-enantiomer). Left panel: *Ec*DsbA (light yellow) is presented as a cartoon. The residues within 4 Å of **50** (yellow) are shown as sticks and labelled individually. The active site residues C30-P31-H32-C33 are also shown as sticks. Right panel: Surface presentation of *Ec*DsbA in the same orientation. The active site residues (C30, P31, H32, C33, V150 and P151) are shown in cyan colour. $2mF_0$ -DF_c electron density map for **50** is contoured at 1 σ and shown as blue mesh.

Table S1. Data collection and refinement statistics

	Compound 15	Compound 16	Compound 21	Compound 23	Compound 26	Compound 25	Compound 28	
PDB ID	6PMF	6POQ	6POH	6PML	6PVY	6POI	6PVZ	
Wavelength	0.9537	0.9537	0.9537	0.9537	0.95366	0.9537	0.95370	
Resolution range (Å)	37.28 - 1.95 (2.02 - 1.95)	34.97 - 1.8 (1.864 - 1.8)	31.87 - 1.67 (1.73 - 1.67)	34.84 - 2.0 (2.072 - 2.0)	34.63-1.736 (1.799- 1.736)	33.37 - 1.77 (1.833 - 1.77)	28.64-1.986 (2.057- 1.986)	
Space group	C 1 2 1	C 1 2 1	C 1 2 1	C 1 2 1	C 1 2 1	C 1 2 1	C 1 2 1	
Cell dimensions (Å) (a, b, c)	117.72 64.07 74.73	118.16 63.71 74.79	118.05 63.74 74.54	117.54 63.74 96.19	117.32, 63.90, 74.46	117.75 63.67 96.60	117.59, 63.43, 74.23	
Angles (°)(α, β, γ)	90 125.53 90	90 125.25 90	90 124.95 90	58149 (5330)	90.0, 125.8, 90.0	90 140.96 90	90.0, 125.0, 90.0	
Total reflections	65749 (6503)	178012 (17713)	105145 (10495)	58149 (5330)	161666 (14562)	87194 (8620)	60764 (5911)	
Unique reflections	33084 (3296)	42174 (4225)	52679 (5263)	29758 (2848)	45579 (4393)	43840 (4330)	30859 (3051)	
Multiplicity	2.0 (2.0)	4.2 (4.2)	2.0 (2.0)	2.0 (1.9)	3.5 (3.3)	2.0 (2.0)	2.0 (1.9)	
Completeness (%)	99.73 (99.52)	99.98 (100.00)	99.92 (99.96)	97.62 (94.12)	98.66 (95.54)	99.72 (99.79)	99.39 (98.67)	
<i <sub="">01></i>	12.80 (2.06)	21.67 (2.24)	14.27 (2.25)	9.27 (1.72)	9.69 (1.18)	14.08 (2.17)	16.13 (4.34)	
Wilson B-factor	29.54	29.18	19.21	25.68	33.26	20.85	20.76	
R _{merge}	0.03437 (0.3369)	0.08923 (0.6813)	0.03339 (0.3625)	0.05591 (0.4229)	0.0632 (0.5206)	0.03635 (0.3825)	0.0281 (0.1683)	
R _{meas}	0.04861 (0.4764)	0.1023 (0.7823)	0.04723 (0.5127)	0.07907 (0.598)	0.07375 (0.6214)	0.05141 (0.5409)	0.03974 (0.238)	
R _{pim}	0.03437 (0.3369)	0.04974 (0.381)	0.03339 (0.3625)	0.05591 (0.4229)	0.03747 (0.3344)	0.03635 (0.3825)	0.0281 (0.1683)	
CC1/2	0.998 (0.88)	0.994 (0.79)	0.999 (0.742)	0.996 (0.662)	0.995 (0.825)	0.999 (0.725)	0.999 (0.92)	
CC*	1 (0.968)	0.999 (0.94)	1 (0.923)	0.999 (0.893)	0.999 (0.951)	1 (0.917)	1 (0.979)	
Reflections used in refinement	33049 (3285)	42173 (4225)	52674 (5263)	29757 (2849)	45559 (4391)	43839 (4330)	30858 (3051)	
Reflections used for R _{free}	1652 (177)	2187 (198)	2588 (240)	1618 (142)	2418 (209)	2198 (209)	1570 (190)	
R _{work}	0.1909 (0.3027)	0.1638 (0.2665)	0.1652 (0.2625)	0.1824 (0.2583)	0.1925 (0.2954)	0.1695 (0.2474)	0.1663 (0.1972)	
R _{free}	0.2258 (0.3505)	0.2011 (0.3178)	0.1909 (0.3026)	0.2197 (0.3028)	0.2256 (0.3448)	0.2064 (0.2871)	0.2004 (0.2671)	
CC(work)	0.965 (0.886)	0.949 (0.730)	0.969 (0.885)	0.963 (0.824)	0.957 (0.874)	0.964 (0.873)	0.963 (0.919)	
CC(free)	0.956 (0.853)	0.946 (0.507)	0.959 (0.787)	0.934 (0.764)	0.940 (0.788)	0.961 (0.799)	0.952 (0.869)	
Number of non-hydrogen atoms	3187	3388	3510	3301	3177	3377	3269	
macromolecules	2899	2931	2970	2922	2873	2940	2896	
ligands	21	23	19	29	36	21	21	
solvent	267	434	521	350	268	416	352	
Protein residues	376	376	376	376	376	376	376	
RMS(bonds)	0.004	0.01	0.006	0.003	0.004	0.012	0.004	
RMS(angles)	0.58	0.82	0.75	0.53	0.58	0.95	0.58	
Ramachandran favored (%)	97.85	98.39	98.12	97.85	97.31	97.85	98.66	
Ramachandran allowed (%)	2.15	1.61	1.88	1.88	2.69	2.15	1.34	
Ramachandran outliers (%)	0.00	0	0	0.27	0.00	0	0.00	
Rotamer outliers (%)	0.00	0	0	1	0.34	0.66	1.00	

Clashscore	1.77	1.74	1.37	2.09	3.71	2.08	3.52
Average B-factor	42.81	36.19	27.52	34.29	46.87	27.53	26.72
macromolecules	42.44	34.78	25.44	33.2	46.15	26.28	25.81
ligands	62.56	60.46	51.51	63.86	84.36	36.74	30.74
solvent	45.26	44.42	38.53	40.88	49.64	35.92	33.97

¹H-NMR (400 MHz, CDCl₃) of **4-(Chloromethyl)-7-iodo-2***H***-chromen-2-one, 3**

¹³C-NMR (100 MHz, CDCl₃) of **4-(Chloromethyl)-7-iodo-2***H*-chromen-2-one, **3**

$^1\text{H-NMR}$ (400 MHz, CDCl₃) of **2-(6-lodobenzofuran-3-yl)acetic acid, 8**

¹³C-NMR (100 MHz, DMSO- d_6) of **2-(6-lodobenzofuran-3-yl)acetic acid, 8**

¹H-NMR (400 MHz, CDCl₃) Methyl 2-(6-bromobenzofuran-3-yl)acetate, 11

¹³C-NMR (100 MHz, CDCl₃) of Methyl 2-(6-bromobenzofuran-3-yl)acetate, 11

¹H-NMR (400 MHz, CDCl₃) of **Methyl 2-(6-Iodobenzofuran-3-yl)acetate, 12**

¹³C-NMR (100 MHz, CDCl₃) of Methyl 2-(6-Iodobenzofuran-3-yl)acetate, 12

¹³C-NMR (125 MHz, CDCl₃) of **2-(6-(Phenylamino)benzofuran-3-yl)acetic acid, 15**

¹H-NMR (400 MHz, CDCl₃) of **2-(6-((4-Methoxyphenyl)amino)benzofuran-3-yl)acetic acid, 16**

A 3.81 3.70 3.70 48 38 .36 .26 .03 .04 .04 .04 .04 .03 .08 .03 .03 .03 .03 .03 .03 6 0 0000 111 L

H MeO СООН

¹³C-NMR (100 MHz, CDCl₃) of **2-(6-((4-Methoxyphenyl)amino)benzofuran-3-yl)acetic acid, 16**

¹H-NMR (400 MHz, CDCl₃) of Isobutyl 2-(6-iso butoxybenzofuran-3-yl)acetate, 18

¹³C-NMR (100 MHz, CDCl₃) of Isobutyl 2-(6-iso butoxybenzofuran-3-yl)acetate, 18

¹¹H-NMR (400 MHz, CDCl₃) of Benzyl 2-(6-(benzyloxyl)benzofuran-3-yl)acetate, 19

¹³C-NMR (100 MHz, CDCl₃) of Benzyl 2-(6-(benzyloxyl)benzofuran-3-yl)acetate, 19

 $^1\text{H-NMR}$ (400 MHz, CDCl₃) of Benzyl 2-(5-benzyloxy)benzofuran-3-yl)acetate, 20

 	180	170	 150	140	130	120	110	100	 	 	 40	 20	 10	·····	

¹³C-NMR (100 MHz, CDCl₃) of Benzyl 2-(5-benzyloxy)benzofuran-3-yl)acetate, 20

.155.09

-170.43

,0~

Ö

`**0**´

143.74 137.13 137.13 135.58 128.55 128.53 128.53 128.53 128.53 128.53 128.53 128.53 128.53 128.53 128.53 128.55 12

-103.49

77.32 77.00 76.68 70.77 66.89

-29.89

¹H-NMR (500 MHz, CDCl₃) of **2-(6-Butoxybenzofuran-3-yl)acetic acid, 21**

¹³C-NMR (100 MHz, CDCl₃) of **2-(6-Butoxybenzofuran-3-yl)acetic acid, 21**

¹³C-NMR (100 MHz, CDCl₃) of **2-(6-Isobutoxybenzofuran-3-yl)acetic acid, 22**

¹H-NMR (500 MHz, CDCl₃) of **2-(6-(Benzylfuran-3-yl)acetic acid, 23**

¹³C-NMR (100 MHz, CDCl₃) of **2-(6-(Benzylfuran-3-yl)acetic acid, 23**

¹H-NMR (400 MHz, CDCl₃) of **2-(5-(Benzyloxy)benzofuran-3-yl)acetic acid, 24**

соон

H-NMR (400 MHz, CDCl₃) of **2-(6-Phenoxybenzofuran-3-yl)acetic acid, 25**

¹³C-NMR (100 MHz, CDCl₃) of **2-(6-Phenoxybenzofuran-3-yl)acetic acid, 25**

¹H-NMR (400 MHz, CDCl₃) of **2-(6-(3-Methoxyphenoxy)benzofuran-3-yl)acetic acid, 26**

¹H-NMR (400 MHz, CDCl₃) of **Methyl 2-(6-benzylbenzofuran-3-yl)acetate, 27**

-1.58

¹³C-NMR (100 MHz, CDCl₃) of Methyl 2-(6-benzylbenzofuran-3-yl)acetate, 27

¹H-NMR (400 MHz, CDCl₃) of **2-(6-Benzylbenzofuran-3-yl)acetic acid, 28**

¹H-NMR (400 MHz, CDCl₃) of **2-(6-Bromobenzofuran-3-yl)acetamide, 29**

¹³C-NMR (100 MHz, DMSO- d_6) of **2-(6-Bromobenzofuran-3-yl)acetamide, 29**

¹H-NMR (400 MHz, CDCl₃) of **2-(6-Bromobenzofuran-3-yl)acetonitrile, 30**

¹³C-NMR (100 MHz, CDCl₃) of **2-(6-Bromobenzofuran-3-yl)acetonitrile, 30**

¹H-NMR (400 MHz, DMSO-*d*₆) of **5-((6-Bromobenzofuran-3-yl)methyl)-1***H*-tetrazole, **31**

¹³C-NMR (100 MHz, DMSO-*d*₆) of **5-((6-Bromobenzofuran-3-yl)methyl)-1***H*-tetrazole, **31**

¹H-NMR (400 MHz, CDCl₃) of **Dimethyl 2-(1-(methoxycarbonyl)-6-phenyl-1***H*-indol-3-yl)malonate, 35

¹³C-NMR (100 MHz, CDCl₃) of Dimethyl 2-(1-(methoxycarbonyl)-6-phenyl-1*H*-indol-3-yl)malonate, 35

¹H-NMR (500 MHz, acetone-*d*₆) of **2-(6-Phenyl-1***H***-3-yl)acetic acid, 36**

¹³C-NMR (100 MHz, acetone- d_6) of **2-(6-Phenyl-1H-3-yl)acetic acid, 36**

¹H-NMR (400 MHz, CDCl₃) of **Methyl 2-bromo-2-(6-bromobenzofuran-3-yl)acetate, 37**

S50

¹³C-NMR (100 MHz, CDCl₃) of Methyl 2-bromo-2-(6-bromobenzofuran-3-yl)acetate, 37

¹H-NMR (400 MHz, CDCl₃) of **Methyl-2-azido-2-(6-bromobenzofuran-3-yl)acetate, 38**

¹H-NMR (500 MHz, CDCl₃) of **Methyl-2-amino-2-(6-bromobenzofuran-3-yl)acetate, 39**

¹³C-NMR (100 MHz, CDCl₃) of Methyl-2-amino-2-(6-bromobenzofuran-3-yl)acetate, 39

¹H-NMR (500 MHz, acetone-*d*₆) of **2-Acetamido-2-(6-bromobenzofuran-3-yl)acetic acid, 46**

¹³C-NMR (100 MHz, acetone-*d*₆) of **2-Acetamido-2-(6-bromobenzofuran-3-yl)acetic acid, 46**

¹H-NMR (500 MHz, CDCl₃) of **2-Benzamido-2-(6-bromobenzofuran-3-yl)-2-acetic acid, 47**

¹³C-NMR (100 MHz, DMSO-*d*₆) of **2-Benzamido-2-(6-bromobenzofuran-3-yl)-2-acetic acid, 47**

¹H-NMR (500 MHz, DMSO-*d*₆) of **2-(6-Bromobenzofuran-3-yl)-2-(2-(2-fluorophenyl)acetamido)acetic acid, 49**

¹H-NMR (400 MHz, DMSO-*d*₆) of **2-(6-Bromobenzofuran-3-yl)-2-(methylsulfonamido)acetic acid, 50**

¹³C-NMR (100 MHz, DMSO-*d*₆) of **2-(6-Bromobenzofuran-3-yl)-2-(methylsulfonamido)acetic acid, 50**

¹H-NMR (500 MHz, acetone-*d*₆) of **2-(6-Bromobenzofuran-3-yl)-2-(phenylsulfonamido)acetic acid, 51**

¹³C-NMR (125 MHz, acetone-*d*₆) of **2-(6-Bromobenzofuran-3-yl)-2-(phenylsulfonamido)acetic acid, 51**

