Supplementary materials

Association of Nicotine with Osteochondrogenesis and Osteoarthritis Development: The State of the Art of Preclinical Research

Xiaoyu Cai¹, Liang Gao¹, Magali Cucchiarini¹ and Henning Madry^{1,2,*}

- ¹ Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, 66421 Homburg/Saar, Germany; xiaoyucai0418@gmail.com (X.C.), liang.gao@uni-saarland.de (L.G.), mmcucchiarini@hotmail.com (M.C.)
- ² Department of Orthopaedic Surgery, Saarland University Medical Center and Saarland University, 66421 Homburg/Saar, Germany
- * Correspondence: henning.madry@uks.eu; Tel.: +49-06841-1624569

Nicotine dose	Cell type and source	Treatment groups	Follow-up	Measures	Outcomes	Conclusions	Refs.
0, 0.1, 1 and 10 μM	Human BMSCs from the iliac crest	 Nicotine group: 1, 1, and 10 μM nicotine Control group: DMEM with 10% (V/V) FBS with 50 lg/ml ascorbate-2- phosphate 	21 days	CKK-8 assay: cell proliferation Alcian blue staining: proteoglycan synthesis DMMB assay: release of sGAG PCR: expression of aggrecan, , type-I, - II, and -X collagen, and aggrecan mRNAs ELISA: expression of type-II collagen protein	 Cell proliferation: significantly increased with 1 μM nicotine at day 4, 7, and 14; significantly inhibited with 10 μM nicotine at day 7 and 14 GAG content: significantly reduced with 10 μM nicotine at day 14 Expression of type-II collagen mRNA: significantly up-regulated with 0.1 and 1 μM nicotine at day 7, 14, and 21 Expression of mRNA aggrecan: significantly reduced with 10 μM nicotine at day 14 Expression of fibroblastic marker genes (type-I collagen)-related mRNA: significantly down- regulated with 1 and 10 μM nicotine at day 7; significantly down-regulated with 0.1, 1, and 10 μM nicotine at day 14 and 21 Expression of hypertrophic marker genes (type-X collagen)-related mRNA: significantly down- regulated with 0.1, 1, and 10 μM nicotine at day 14 and 21 Expression of type-II collagen protein: increased singnificantly with 0.1 and 1 μM nicotine at day 7 (103.3 ± 14.6, 118.7 ± 12.5, P < 0.050), day 14 (123.8 ± 15.5, 118.7 ± 12.5, P < 0.050), and day 21 (147.5 ± 16.3, 171.2 ± 18.4, P < 0.050) 	1. Nicotine has a dose-dependent effect on expression of aggrecan, type-I, -II, and -X collagen in humam BMSCs.	16

Table S1. In vitro studies of effects of nicotine on chondrogenesis and osteogenesis of medicinal signaling cells.

25, 50, and 100 μM	Rat BM-MSCs from femur	 Nicotine group: 25, 50, and 100 μM Control group: DMEM with 10% (V/V) FBS 	28 days	MTT assay: cell viability Alcian blue and Safranin O staining: GAG quantification PCR: expression of aggrecan, Col2a1 and IGF-I mNRAs	 GAG extent: Alcian blue-stained area significantly reduced to 85%, 49%, and 5% with 25, 50, and 100 μM after day 28, respectively; Safranin O-stained area significantly reduced to 91%, 72%, and 31% with 25, 50, and 100 μM after day 28, respectively Expression of aggrecan, Col2a1, and IGF-I mRNAs: significantly decreased after continuous nicotine exposure after day 28 	1. Nicotine suppressed chondrogenic differentiation potential of BM- MSCs with possible mechanism of decreasing the expression of aggrecan, Col2a1, and IGF-I mRNAs.	1
0.1, 1, 10 and 100 μM	Rat BM-MSCs from the tibias and femurs	 Nicotine group: 0.1, 1, 10 and 100 μM MLA group: 10 μM MLA and Si-NFATc2 for 0.5 h and then 100 μM nicotine Control group: DMEM/F12 with 10% FBS 	24 h	Calcineurin phosphatase activity assay: CaN activity PCR and western blotting: expression of α 7-nAChR, SOX9, and NFATc2 mRNAs and protein ChIP assay: binding of NFATc2, HDAC1, H3K9ac, and H3K14ac on the SOX9 promoter; binding of SOX9 on Col2a1 Immunoprecipitatio n: interaction of NFATc2 and HDAC	 CaN activity: significantly incressed with 0.1, 1, 10 and 100 μM nicotine at 0.5 h Expression of SOX9 mRNA and protein: significantly decreased with 1, 10, and 100 μM nicotine at 24 h Expression of NFATc2 mRNA and protein: nulceic NFATc2 protein significantly increased with 0.1, 1, 10 and 100 μM nicotine at 24 h; cytoplasm phosphorylated NFATc2 significantly reduced with 0.1, 1, 10 and 100 μM nicotine at 24 h Binding of NFATc2 and HDAC1 on SOX9 promoter: significantly increased with 1, 10, and 100 μM nicotine at 24 h H3K9ac and H3K14ac levels on SOX9 promoter: significantly reduced with 0.1, 1, 10 and 100 μM nicotine at 24-h treatment of 10 μM MLA or si- NFATc2, H3K9ac and H3K14ac levels significantly rescued Binding of SOX9 and Col2a1 enhancer: significantly decreased with 0.1, 1, 10 and 100 μM nicotine at 24 h; treatment of 10 μM MLA or si- NFATc2, the binding of SOX9 and Col2a1 significantly decreased with 0.1, 1, 10 and 100 μM 	 Nicotine induced intracellular calcium in a concentration- dependent manner through α7-nAChR. Nicotine suppressed SOX9 by activating the Ca2+/calcineurin/NF ATc2 signaling pathway through α7- nAChR. Nicotine decreased the histone acetylation on the promoter of SOX9. NFATc2 could bind to SOX9 promoter and recruit HDAC1, then reduce H3K9ac and H3K14ac levels in the SOX9 promoter and decrease the expression of SOX9. 	10

0, 0.5, 1, 5, and 10% (V/V%) of CSE; (3 Marlboro red cigarettes smoked for 15 mins)	Human AD- MSCs from lipoaspirates	 Nicotine group: 0.5, 1, 5 and 10% CSE Control group: DMEM with 10% (V/V) FBS 	21 days	MTT assay: cell viability and metabolic activity Scratch wound assay: cell migration Antibody arrays: secretion profile Alizarin Red S staining: calcium deposition PCR: BGLAP, RUNX2, SPP1, ACAN, Col2a1, and SOX9 expression	 Cell viability and metabolic activity: significantly impaired with 5% and 10% CSE at 48h Cell migration: continual migration with 0.5% and 1% CSE; limited migration with 5% CSE; cells scarcely survived with 10% CSE at 48h Expression of BGLAP mRNA: no expression in nicotine group at day 3; similar expression with control group after day 7; doubled expression with 0.5% CSE after day 14 Secretion of IL-6 and IL-8: significantly decreased with 0.5% CSE at 48h Expression of RUNX2 mRNAs: significantly higher with 0.5% CSE at day 3, 7, and 14 Expression of ACAN and SOX9 mRNAs: significantly higher with 0.5% CSE at day 7 compared with day 14 and 21 	 CSE exposure with concentrations higher than 5% drastically impaired the cell viability and migration. While some recovery is possible with low dose CSE exposure, lasting effects exist within the AD-MSCs for cellular signaling with impaired osteogenic-and chondrogenic lineages. 	12
E-cigarette smoke extract containing 18 mg/ml nicotine	Human BM- MSCs	 E-cigarette smoking group Control group 	10 days	Oosteogenic markers Reactive oxygen species Intercellular communication by fluorescence recovery after photo-bleaching (FRAP)	 Significantly decreased collagen I and Runx2 expression Significantly altered cellular morhoplogy with less mineralization More reactive oxygen species generated by smoke extract 	E-cigarette smoke extracts attenuate MSC differentiation, enhances reactive oxygen species production and inhibits cell-cell communication .	7
5 μΜ	Human WJ- MSCs from umbilical cord	 Nicotine group: 5 μM Control group: αMEM with 10% (V/V) FBS 	28 days	MTT assay: cell proliferation and viability Haematoxylin- Erythrosine-Safran staining: cell morphology Sirius red and Alcian blue staining: collagen	 Cell proliferation: significantly decreased after 3- day with 5 μM nicotine Proteoglycan synthesis: significantly decreased with 5 μM after day 28 Expression of SOX9, Col2a1, and aggrecan mRNAs: significantly down-regulated with 5 μM nicotine after day 28 Expression of α7-nAChR mRNA: expressed and activated with 5 μM nicotine after day 28 	 Nicotine impaired the cellular proliferation and chondrogenic differentiation. Nicotine had no significant effects on the cell viability of WJ-MSCs. 	14

				and proteoglycan synthesis PCR : expression of SOX9, Col2a1, aggrecan, and α7- nAChR mRNAs Calcium assay: function of nAChR			
0, 0.5, and 1.0 μM	Human BM- MSCs (Cat #7500) and PDLSCs	 Nicotine group: 5 and 1 μM nicotine Control group: DMEM with 10% (V/V) FBS 	10 days	MTT assay: cell proliferation Scratch wound assay: cell migration Alizarin Red S staining: calcium depositon Burstone's staining: alkaline phosphatase PCR: expression of PTK2, RUNX2	1. Cell proliferation: significantly lower with 1 μ M nicotine at day 5 2. Cell number: over 2-fold decrease with 1 μ M nicotine at day 5 3. Cell migration: movement distance significantly shorter in nicotine group (BM-MSCs: 22.61 ± 3.98 μ m, P = 0.020; PDLSCs: 3.50 ± 0.86 μ m, P = 0.008) with 1 μ M nicotine at day 5; Migration speed: significantly slower in nicotine group (BM-MSCs, 3.14 ± 0.55 nm/s, P = 0.024; PDLSCs, 0.49 ± 0.12 nm/s, P = 0.008) with 1 μ M nicotine at day 5 4. Osteogenesis related miRNAs of PDLSCs: significantly up-regulated (hsa-miR-29b: 0.5 M nicotine, + 1.194-fold; 1 M nicotine, + 1.217-fold; hsa-miR-30d: 0.5 M nicotine, + 3.823-fold; 1 M nicotine, + 46.225-fold; hsa-miR-137: 0.5 M nicotine, + 1.217-fold; nh nicotine, + 1.217-fold; 1 M nicotine, + 1.217-fold; 1 M nicotine, + 1.207-fold) 5. Expression of PTK2 and RUNX2 mRNAs: significantly down-regulated (BM-MSCs: - 3.0- and - 9.1-fold, P < 0.010; PDLSCs: - 2.1- and - 2.1-fold, P < 0.010) with 1.0 μ M nicotine at day 3 6. Expression of ALP, BGLAP, Col1a1, and Col1a2 mRNAs: significantly down-regulated (-2- to -5.3-fold) with 1 μ M nicotine at day 3	 Proliferation, migration, and osteogenic differentiation of human MSC and PDLSCs were inhibited with nicotine. miRNAs were significantly up- regulated with 1 μM with the nicotine dose-dependent changes from 0.5 to 1 μM nicotine. miRNAs are a key regulator in the nicotine-associated functional changes. 	6

No	PDLSCs from	1. Smokers group: 3	14 days	MTT assay: cell	1. Cell proliferation: significantly lower in smokers	1. Cigarette smoke	5
concentration	cigarette	cigarette smokers		proliferation	group by 2.53-fold at day 5 and 2.88-fold at day 7	extract inhibits	
of nicotine	smokers	$(33 \pm 7.21 \text{ years})$				osteogenic	
		old) with smoking		Scratch wound	2. Cell migration: significantly decreased in	differentiation of	
		hisotory during the		assay: cell	smokers group at 12 and 24 h	human	
		past 30 days		migration		osteoprogenitor cells,	
					3. miRNAs expression	and nicotine also	
		2. Non-smokers		Burstone's staining:	: two significantly up-regulated (hsa-miR-1305: +	reduces osteogenic	
		group: 3 age		alkaline	22.08-fold, hsa-miR-18b: + 15.56-fold); one	differentiation of	
		matched non-		phosphatase	significantly down-regulated (hsa-miR-3198: -	PDLSCs.	
		smokers			42.98-fold)		
				Alizarin Red S		2. The proliferation,	
				staining: calcium		migration, and	
				depositon		differentiation	
						potential of PDLSCs	
				Alcian blue 8GX		into osteoblasts and	
				staining: acidic		chondrocytes from	
				polysaccharide		smokers were	
						inhibited.	
				PCR: microRNA			
				expression		3. miRNAs might	
						play an important role	
						in the deteriorative	
						effects on stem cells	
						by cigarette smoke.	

Abbreviations: ACAN, aggrecan; AD-MSCs, adipose-derived mesenchymal stem cells; ALP, alkaline phosphatase; αMEM, alpha modified Eagle's medium; BGLAP, bone gamma-carboxyglutamic acid-containing protein; BM-MSCs, bone marrow-derived mesenchymal stem cells; BMSCs, bone marrow stromal cells; CCK-8 assay, cell counting kit-8 assay; ChIP assay, chromatin immunoprecipitation assay; CSE, Cigarette smoke extract; Col1a1, α1 chain of type-I collagen; Col1a2, α2 chain of type-I collagen; Col2a1, α1 chain of type-II collagen; DMEM, Dulbecco's modified Eagle's medium; DMMB assay: Dimethylmethylene Blue assay; FBS, fetal bovine serum; GAG, glycosaminoglycan; HDAC, histone deacetylase; WJ-MSCs, Wharton's jelly-derived mesenchymal stem cells; IGF-I: insulin-like growth factor-I; IL-1, interleukin-1; IL-6, interleukin-6; IL-8, interleukin-8; miRNA, microRNA; MLA, methyllycaconitine; MTT assay, Methyl thiazolyl tetrazolium assay; α7-nAChR, α7-nicotinic acetylcholine receptor; NFATc2, nuclear factor of activated T cells 2; PCR, polymerase chain reaction; PDLSCs, periodontal ligament-derived stem cells; PTK2, protein tyrosine kinase 2; RUNX2, Runt-related transcription factor 2; sGAG, sulfated glycosaminoglycan; Si-NFATc2, NFATc2 siRNA; SOX9, SRY-type high mobility group box 9; SPP1, secreted phosphoprotein 1.

Nicotine dose	Cell type and source	Treatment groups	Follow-up	Measures	Outcomes	Conclusions	Refs.
STE from 75 g smokless tobacco	Osteoblasts from chick embryo clavarias	Osteoblasts treated with different cenentrations of smokeless tobacco extract	25 days	Alkaline phosphatase activity Collagen protein content	 Alkaline phosphatase activity of osteoblasts treated with smokeless tobacco extract was significantly decreased. [³H]hydroxyproline and [³H]proline content in the cell layer of osteoblasts were decreased 50% and 29%, respectively. 	Extract of smokeless tobacco irreversibly inhibts osteoblastic differentation with decreased bone collagen synstehsis.	3
STE from 300 g smokeless tobacco; dilated to 10 ² , 10 ³ , 10 ⁴ , 10 ⁵ , and 10 ⁶	Osteoblasts from chick embryo clavarias	Osteobalsts without or with treatment of diluated STE and IGF-I	7 days	Cell proliferation Protein content and alkaline phosphatase activity Bone deposition and bone nodule mineralization	 Cell proliferation was significantly stimulated by 102–104 diluted smokeless tobacco extract. Alkaline phosphatase activity was significantly increased by 102–104 diluted smokeless tobacco extract but decreased by 106 diluted smokeless tobacco extract. Low dilution (103 and 104) significantly increased bone nodule formation and inhibited their mineralization. High dilution (105 and 106) significantly decreased bone nodule formation, but increased their mineralization. Heat and acid treatment of STE significantly reduced its beneficial effect on cell proliferation. 	STE may contain a therapeutic peptide to stimulate osteoblast proliferation, differentiation and metabolism, comparable to the effects of IGF-1.	2

Table S2. In vitro studies of effects of smokeless tobacco extract (STE) on osteoblast differentiation.

Abbreviations: IGF-I, insulin-like growth factor 1; STE, smokeless tobacco extract.

Nicotine	Cell type and	Treatment	Follow-	Measures	Outcomes	Conclusions	Refs.
dose	source	groups	up				
0, 0.15, 0.3 and 0.6 μM	Human normal and OA articular chondrocytes from knee joints	1. Normal chondrocytes 2. OA chondrocytes Both group were treated without or with nicotine (0, 0.15, 0.3, and 0.6 μM)	7 days	MTT assay: cell proliferation PCR: expression of type-II collagen and aggrecan mRNAs ELISA: expression of type-II collagen and aggrecan protein	 Cell proliferation: significantly increased with nicotine in both groups at day 1, 4, and 7 in a concentration- and time-dependent manner Expression of type-II collagen mRNA: significantly increased (1.7- and 2.5-fold in normal chondrocytes, 1.3- and 1.5-fold in the OA chondrocytes with 0.15 and 0.3 µM nicotine at day 4; 3.6- and 4.4-fold in normal chondrocytes, 1.6- and 2.2-fold in the OA chondrocytes with 0.15 and 0.3 µM nicotine at day 7) compared ith control in both groups Expression of type-II collagen and aggrecan mRNAs: significantly less in OA chondrocytes compared with in the normal chondrocytes Expression of type-II collagen and aggrecan protein: significantly increased with 0.15, 0.3, and 0.6 µM both at day 4 and 7 	Nicotine promotes the proliferation of human normal and OA articular chondrocytes and enhances the expression of type- II collagen.	15
0, 0.4, 2 and 10 μM	Fetal rat articular chondrocytes from distal femoral and proximal tibial cartilage	 Nicotine group: 0.4, 2, 10 μM DHβE group: 1 μM DHβE for 0.5 h and then 10 μM nicotine Control group: DMEM/F12 with 10% FBS 	10 days	PCR: expression of nAchR, Col2a1, aggrecan, MMP-3, MMP- 13, ADAMTS- 4/5, IGF-I, IRS1, AKT1, and SOX9 mRNAs Western blotting: expression of Col2a1, aggrecan, MMP-3, MMP- 13, ADAMTS- 4/5, IGF-I, IRS1, AKT1/2, and SOX9 protein DMMB assay: release of GAG	 Expression of α4β2-nAchR mRNA: expressed in the fetal articular chondrocytes Expression of Col2a1 mRNA: significantly decreased with 0.4 , 2, and 10 µM nicotine Expression of Col2a1 protein: significantly decreased with 0.4, 2, and 10 µM nicotine Expression of aggrecan and SOX9 mRNAs: significantly decreased with 0.4, 2, and 10 µM nicotine Expression of aggrecan and SOX9 mRNAs: significantly decreased with 0.4, 2, and 10 µM nicotine Release of GAG: significantly decreased with 0.4, 2, and 10 µM nicotine Expression of catabolic genes (MMP-3, MMP-13, and ADAMTS-4/5) related mRNAs: significantly increased with 0.4, 2, and 10 µM nicotine Expression of molecules in IGF-I signaling pathway (IGF-I, IRS1, AKT1) related mRNAs: significantly 	 Nicotine dose- dependently suppressed the Col2a1, aggrecan, IGF-I signaling pathway and SOX9 expression. α4β2-nAchR mediated the effects of nicotine on fetal rat articular chondrocytes. 	11

Table S3. In vitro studies of effects of nicotine on articular chondrocytes.

					decreased with 0.4.2 and 10 uM nighting		
					decreased with 0.4, 2, and 10 µM nicoune		
					8. Expression of molecules in IGF-1 signaling pathway		
					(IGF-I, IRSI, and AKII) related protein: significantly		
					decreased with 0.4, 2, and 10 μ M nicotine		
					9. Expression of SOX9 protein: significantly decreased		
					with 2 and 10 µM nicotine		
					10. DHBE: rescued the expression of Col2a1. IGF-I.		
					IRS1, AKT1, and SOX9 related mRNAs and protein:		
					expression of aggrecan mRNA; and release of GAG		
0.1.1.10	Fetal rat	1. Nicotine group:	48 h	MTS assay: cell	1. Expression of SOX9 mRNA: significantly inhibited	1. Nicotine could	13
and 100 uM	articular	0.1. 1. 10 and 100		viability	with 1, 10, and 100 µM nicotine at 48 h	not inhibit the TGF-	
•	chondrocvtes	μM		,		β signaling pathway	
	from knee joint	•		ChIP assav:	2 Expression of Col2a1 mRNA: significantly inhibited	directly in rat fetal	
	5	2. Corticosterone		histone	with 0.1, 1, and 100 µM nicotine at 48 h	chondrocyte.	
		group: 125, 250,		acetylation		Suppression of	
		500 and 1,250 nM		2	3. Expression of ACAN mRNA:	TGF-β axis induced	
		,		PCR: SOX9,	significantly inhibited with 0.1, 1, 10, and 100 µM	by PNE might be	
		3. TGF-βR1		Col2a1, ACAN,	nicotine at 48 h	mediated by	
		inhibitor group:		TGF-β, TGF-βR1,		corticosterone .	
		LY2157299		Smad2, and	4. Expression of TGF-β and Smad2 mRNAs:		
				Smad3 expression	significantly inhibited with 250 nM, 500, and 1250 nM	2. Corticosterone	
		4. TGF-βR1		_	corticosterone at 48 h	induced the	
		inhibitor and				hypoacetylation at	
		corticosterone			5. Expression of SOX9 and ACAN mRNAs:	H3K9 of TGF-βR1	
		group:			significantly inhibited with 125 nM, 250, 500 and 1,250	and Col2a1 gene,	
		LY2157299 30			nM corticosterone at 48h	but nicotine did not	
		min then				alter the acetylation	
		corticosterone for			6. Expression of TGF-βR1 mRNAs: significantly	at H3K9.	
		48 h			inhibited with 250, 500nM, and 1250 nM		
		5 a7-nAchD					
		J. u/-IIACIIK			7 Expression of Smad2 mDNA + significantly inhibited		
		10 µM MI A for			with 125, 250 nM, 500, and 1250 nM, continentical et		
		0.5 h followed by			Ash		
		100 uM nicotine			4811		
					8 Expression of Col2a1 mRNA - significantly inhibited		
		6 Corticosterone			with 250 nM 500 and 1250 nM corticosterone at 48h		
		receptor inhibitor			when 200 mill, 500, and 1250 mill controlosicione at 401		
		group: 5 µM MIF for			9. Expression of Col2A1 and ACAN mRNAs		
		0.5 h followed by			significantly reduced in LY2157299 group and		
		1250 nM			LY2157299 + corticosterone group		
		corticosterone			5 5		

					10. Acetylation modifications of H3K9ac in TGF- β R1 and Col2a1 promoter: significantly reduced with 1250 nM corticosterone ; 5 μ M of MIF reversed the effect of 1250 nM corticosterone		
10 μΜ	SD rat articular chondrocytes from femoral head caps	 MIA group: 10 μM for 4 h MIA + nicotine group: 10 μM MIA 0.5 h + 10 μM nicotine for 0.5 h MIA + nicotine + MLA group: 10 μM MIA for 0.5 h + 10 μM nicotine for 0.5 h + MLA 10 nM for 0.5 h Control group: DMEM/F12 with 10% (V/V) FCS 	4 h	Western blotting: expression of α7- nAchR, p38, ERK1/2, JNK protein	 Expression of α7-nAchR protein: α7-nAchR subunit protein expressed Phosphorylation of p38, ERK1/2 and JNK induced by MIA: significantly induced by 10 µM MIA after 1 h; peak levels occurred after 2 h; significantly ligher in MIA group, MIA + nicotine group, and MIA + nicotine + MLA group than control group (significantly lower in MIA + nicotine group compared with MIA group; significantly lower in MIA + nicotine + MLA group Phosphorylation of p38, ERK1/2 and JNK induced by IL-1β: significantly induced by 10 ng/ml IL-1β after 0.5 h; peak levels occurred after 0.5 h; significantly higher in IL-1β group, IL-1β + nicotine group compared with IL-1β group; significantly lower in IL-1β + nicotine group, and IL-1β + nicotine group compared with IL-1β group; significantly lower in IL-1β + nicotine group compared with IL-1β group; significantly lower in IL-1β + nicotine + MLA group Phosphorylation of NF-κB p65 induced by MIA: significantly higher in MIA group, MIA + nicotine group compared with MIA group, and MIA + nicotine group compared with MIA group, significantly lower in MIA + nicotine group compared with MIA group, and MIA + nicotine HLA group than control group; significantly lower in MIA + nicotine group compared with MIA group, significantly lower in MIA + nicotine group compared with MIA group; significantly lower in MIA + nicotine group compared with MIA group; significantly lower in MIA + nicotine group compared with MIA group; significantly lower in MIA + nicotine group compared with MIA group; significantly lower in MIA + nicotine HMLA group than control group; significantly higher in IL-1β group, IL-1β + nicotine group compared with MIA + nicotine HMLA group 	 The α7-nAchR subunit was expressed in chondrocytes. Nicotine inhibited MIA- or IL1β-induced chondrocyte activation via α7- nAChRs in vitro and decreased the resulting phosphorylation of p38, ERK1/2 and JNK MAPKs and NF-κB p65. 	

Abbreviations: ACAN, aggrecan; ADAMTS-4/5, a disintegrin and metalloproteinase with thrombospondin motifs 4/5; AKT1/2, serine–threonine protein kinase 1/2; $\alpha4\beta2$ -nAchR, $\alpha4\beta2$ -nicotine acetylcholine receptor; Col2a1, $\alpha1$ chain of type-II collagen; ChIP assay, chromatin immunoprecipitation assay; DH β E, dihydro- β -erythroidine; DMEM, Dulbecco's modified Eagle's medium; DMMB assay: Dimethylmethylene Blue assay; ELISA, enzyme-linked immunosorbent assay; ERK1/2, extracellular signal-regulated kinase 1/2; FBS, fetal bovine serum; FCS, fetal calf serum; F12, Ham's F 12 nutrient medium; GAG, glycosaminoglycan; IL-1 β , Interleukin-1 β ; IRS-1, Insulin receptor substrate 1; JNK, c-JUN N-terminal kinase; LY2157299, TGF- β R1 inhibitor; MIA, monosodium iodoacetate; MIF, mifepristone; MLA, methyllycaconitine; MMP-3, matrix metalloproteinase 3; MMP-13, matrix metalloproteinase 13; MTS assay: 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay; MTT assay, Methyl thiazolyl tetrazolium assay; NF- κ B, nuclear factor-kappa B; PCR, polymerase chain reaction; SD rat, Sprague-Dawley rat; Smad2/3, SMAD Family Member 2/3; SOX9, SRY-type high mobility group box 9; TGF- β , transforming growth factor- β ; TGF- β R1, transforming growth factor- β receptor 1.

Nicotine	Animal model;	Administration	Treatment	Follow-up	Measures	Outcomes	Conclusions	Refs.
uose	defect details		groups					
2 mg/kg/d	Rat osteochondral defect in the trochlear groove (2-mm diameter, 3-mm depth). All defects received BM-MSCs (2 × 10 ⁶ cells/ml) suspended in 1.25 % alginate intraoperatively	Subcutaneous injection: 1 mg/kg twice per day for 10 days in nicotine group, same volume of saline in control group	 Nicotine group: 2 mg/kg/d Control group: same valume of saline 	12 weeks	ICRS macroscopic and Wakitani score (Safranin O/Fast green staining): cartilage repair Immunohistological staining: Col2a1 and SOX9 expression PCR: Col2a1, aggrecan, and SOX9 expression	 ICRS macroscopic scores: significantly lower in nicotine group at week 12 Wakitani histological scores: significantly higher in nicotine group at week 12 Expression of Col2a1, aggrecan and SOX9 mRNAs and protein: significantly decreased in nicotine group at week 12 	 Nicotine impaired cell morphology of the regenerated tissue and synthesis of cartilage matrix. Nicotine decreased the expression of Col2a1 by suppressing SOX9 and negatively influenced the cartilage defect repair. 	10
1 mg/kg/d	Male rats treated with nicotine, MLA, MIA	Intra-articular injection: 1 mg of MIA in 50 µl of sterile physiologic saline solution once a week for 4 weeks in MIA group; same volume of saline in control group intraperitoneal	 MIA group: mg/week for 4 weeks Nicotine +MIA group: 1 mg/week MIA for 4 weeks and 1 mg/kg/d nicotine for 5 weeks MIA + 	6 weeks	Macroscopic scores: joint destruction Mankin score (H&E and toluidine blue staining): joint destruction	Macroscopic scores and Mankin score: significantly higher in MIA group, MIA + nicotine group, and MIA + nicotine +MLA group than control group at week 6; significantly lower in MIA + nicotine group compared with MIA group at week 6; significantly lower in MIA + nicotine group compared with MIA + nicotine +MLA group at week 6	Nicotine acting via α7- nAChRs prevents MIA- induced OA in rats.	4

Table S4. Animal study of effect of nicotine on cartilage defect repair and OA.

		injection: 1 mg/kg/d of nicotine once for 5 weeks; 1 mg/kg/d of MLA 30 min before nicotine administration	nicotine + MLA group: 1 mg/week MIA for 4 weeks, 1 mg/kg/d nicotine, and 1 mg/kg/d MLA for 5 weeks 4. Control group: same volume of saline for 5 weeks					
0.5 or 1 mg/kg/d	Wild-type male mice treated with nicotine, MLA, MIA	Intraperitoneal injection: 0.5 or 1 mg/kg of nicotine 30 min before each MIA injection once per day for 4 week in nicotine treatment group; 1 mg/kg of MLA 30 min before nicotine injection for the nicotine antagonism treatment; equal volume of saline in the control group; intra-articular injection: 0.1 mg of MIA in 10 μ l of sterile saline at day 7 in MIA group, MIA + nicotine + MLA group	1. MIA group: 0.1 mg 2. MIA + nicotine group: 0.1 mg MIA and 0.5 or 1 mg/kg/d nicotine for 4 weeks 3. MIA + nicotine + MLA group: 0.1 mg MIA, 1 mg/kg/d nicotine, and 1 mg/kg/d MLA for 4 weeks 4. Control group: same volume of saline for 4 weeks	4 weeks	Behavioral test (von Frey hair): mechanical sensitivity Aggrecan loss scores and cartilage degeneration scores: cartilage degradation	 Mechanical sensitivity: significantly lower in MIA group, MIA + nicotine 0.5 mg/kg group, and MIA + nicotine 1 mg/kg + MLA group compared with control group during day 10-28; significantly lower in MIA + nicotine 1 mg/kg group compared with control group during day 10-28; significantly higher in MIA + nicotine 0.5 mg/kg group and MIA + nicotine 1 mg/kg group compared with MIA group during day 10-28; significantly higher in MIA + nicotine 1 mg/kg group compared with MIA + nicotine 1 mg/kg + MLA group during day 10-28 Aggrecan loss scores, cartilage degeneration scores, and protein expression of MMP-9 : significantly increased in MIA group and MIA + nicotine 1 mg/kg + MLA group versus the control group; significantly lower in MIA + nicotine 0.5 mg/kg group versus MIA group; significantly higher in MIA + nicotine 1 mg/kg + MLA group versus MIA + nicotine 1 mg/kg group versus MIA + nicotine 1 mg/kg + MLA group versus MIA + nicotine 1 mg/kg group versus MIA + nicotine 1 mg/kg + MLA group versus MIA + nicotine 1 mg/kg group versus MIA + nicotine 1 mg/kg + MLA group versus MIA + nicotine 1 mg/kg group versus M	 Nicotine inhibited OA- induced mechanical allodynia in mice. Nicotine suppressed MIA-induced OA by activating α7-nAChRs in mice. 	8

Abbreviations: Col2a1, α1 chain of type-II collagen; ICRS, International Cartilage Repair Society; MIA, monosodium iodoacetate; MIF, mifepristone; MLA, methyllycaconitine; OA, osteoarthritis; PCR, polymerase chain reaction; SOX9, SRY-type high mobility group box 9.

Nicotine dose	Animal model; defect details	Administration	Treatment groups	Follow-up	Measures	Outcomes	Conclusions	Refs.
2 mg/kg/d	Prenatal rat treated with nicotine; offspring without treatment	Subcutaneous injection: 1 mg/kg twice per day for 12 days for nicotine group, same volume of saline for control group	1. PNE group: 2 mg/kg/d 2. Control group: saline	30 weeks	H&E and Safranin-O/Fast green staining: cartilage quality Immunohistochemical assay: expression of Col2a1, TGF-β, TGF-βR1, smad2, smad3 and SOX9 protein PCR: expression of Col2a1, ACAN, TGF-β, TGF-βR1, smad2, smad3 and SOX9 mRNAs ChIP assay: histone acetylation	 Cartilage repair: significantly reduced in PNE-F1 group at both GD 20 and PW 12, and PNE-F2 group at PW 12 Expression of Col2a1 protein: significantly decreased in the PNE-F1 at both GD 20 and PW 12, and PNE-F2 group at PW 12 Expression of Col2a1 and ACAN mRNAs: significantly decreased in the PNE-F1 at both GD 20 and PW 12, and PNE-F2 group at PW 12 Expression of TGF-β, TGF- βR1, smad2, and SOX9 protein: significantly decreased in PNE- F1 at both GD 20 and PW 12, and PNE-F2 group at PW 12 Expression of TGF-β, TGF- βR1, smad2, smad3 and SOX9 mRNAs: significantly decreased in PNE-F1 at both GD 20 and PW 12, and PNE-F2 group at PW 12 Acetylation modification at H3K9 of TGF-β, TGF-βR1, SOX9, Col2a1, and ACAN gene promoters in PNE-F1 and PNE- F2: decreased significantly in PNE-F1 at both GD 20 and PW 12, and PNE-F2 group at PW 12 	 Effect of PNE on the articular cartilage of the female F1 generation lasted from fetus to adult. PNE induced an imperfect cartilage quality for the first even second adult rat offspring by inhibiting histone acetylation of TGF- β and cartilage ECM promoters and down-regulating their expression. Histone deacetylation at the site H3K9 of TGF- βR1 and Col2a1 promoters reserved in PNE-F2 may be mediated by the effect of CORT but not nicotine directly. 	13

Table S5. Effects of prenatal nicotine exposure of animals knee cartilage development and OA susceptibility in offspring.

2 mg/kg/d	Prenatal rat treated with	Subcutaneous injection: 1	1. PNE group: 2 mg/kg/d 2. Control group: same valume of	27 weeks	Tissue total cholesterol biochemical assay: cholesterol content of cartilage	1. Expression of Col2a1 protein: significantly reduced in PNE group at PW 24	1. Cholesterol deposited in the articular cartilage of female adult offspring with PNE	9
	offspring fed	per day for 10	saline 3. High-fat diet		ELISA: serum corticosterone and IGF-I concentrations	higher in PNE group at PW 24 3. Cholesterol content of	might attribute to the reduced cartilage quality.	
	diet	nicotine group, same volume of	experiments: 88.0% corn flour, 11.5% lard, and 0.5% cholesterol		Biochemical assay: serum total cholesterol HDL-C, and LDL-C concentrations	cartilage: significantly increased in PNE group at PW 244. Serum corticosterone levels:	2. PNE suppressed IGF-I expression and down-regulated	
		saline for control group			biochemical assay: cartilage total cholesterol	nicotine group at PW 24	cholesterol efflux pathway proteins.	
					OARSI scores (Safranin- O/Fast green staining): cartilage quality	5. Serum IGF-I, total cholesterol and LDL-C level: significantly increased in nicotine group at PW 24	3. PNE induced low articular cartilage quality in female adult offspring fed	
					Immunohistochemical assay: protein	6. Expression of IGF-I, LXR β, and ABCA1 protein: significantly decreased in nicotine group at both GD 20 and PW 24	with a high-fat diet.	
					Expression of Col2a1, IGF-I, PPARγ, LXR β , and ABCA1	7. Expression of IGF-I, LXR β, ABCA1, and Col2a1 mRNAs: significantly decreased in nicotine group at GD 20		
					PCR: mRNA expression of IGF-I, LXR β, ABCA1, and Col2a1			
2 mg/kg/d	Prenatal rat treated with	Subcutaneous	1. Running PNE group:	27 weeks	India ink staining: cartilage destruction	1. Cartilage quality: HC thickness significantly	1. PNE induces	11
	nicotine; offspring treated	injection: 1	nicotine 2 mg/kg/d during GD 10-20;		Mankin score: cartilage	decreased in running PNE group compared with running control	epigenetic	
	with strenuous running as	mg/kg twice per day for 10	running for 30 km within 6 weeks		quality	group at PW 24; clacified cartilage thickness significantly increased in both running	modification in genes of IGF-I	
	induction (total of 30 km in 6	days for PNE	2. Running control		PCR: expression of Col2a1, IGF-I, AKT1/2,	and non-running PNE group at PW 24	signaling or ECM	
	weeks induced	group; same	group: saline 2		and SOX9 mRNAs		genes, thereby	
	Weaning PW 3	volume of	GD 10-20;			2. Mankin scores: significantly higher in running group than	inducing	

weeks in group	1: 0	running for 30 km	· · · · · · ·	non-running group at PW 24;		
both PNE and	saline for	within within 6	Immunohistochemistry:	significantly increased in	susceptibility to OA	
control group)	control group	weeks inducing	expression of Col2a1,	running PNE group compared	in adult offspring.	
		0A	IGF-I. AKT1/2, IRS1	PW 24		
		3. Non-running	1001/0	1	2 4 1 1	
		PNE group: only	and SOX9 protein	3. Expression of Col2a1 protein:	2. Adult rat	
		nicotine 2 mg/kg/d		significantly decreased in both	offspring with PNE	
		during GD 10-20	ELISA: serum	running and non-running PNE group at PW 24: significantly	are more susceptible	
		4. Non-running		decreased in both control and		
		control group:	corticosterone and IGF-I	PNE group after running	to OA by the	
		saline 2 mg/kg/d	concentrations	compared with non-running	low-functional	
		during GD 10-20		group at P w 24	programming of	
				5. Expression of IGF-I, AKT1/2,	IGE-L in fetal	
				and SOX9 protein: significantly		
				reduced in both non-running and	articular cartilage	
				running i WE group at i W 24	caused by the direct	
				6. Serum corticosterone	effect of nicotine via	
				concentrations: significantly	402 A CLD 1	
				increased in PNE group ($603 \pm 72 \text{ ng/ml}$) at GD 20	α4p2-nAChK and	
				, 2 iig iii) at 3D 20	possibly by the	
				7. Expression of Col2a1 and	indirect effects of	
				SOX9 protein: significantly	maternal GC	
				reduced in Five group at GD 20		
				8. Expression of Col2a1 mRNA:		
				significantly reduced in PNE		
				group at GD 20		
				9. Expression of IGF-I, AKT1/2		
				protein: significantly reduced		
				with nicotine at GD 20		

Abbreviations: ABCA1, ATP-binding cassette transporter A1; ACAN, aggrecan; AKT1/2, serine–threonine protein kinase 1/2; ChIP assay, chromatin immunoprecipitation assay; Col2a1, α 1 chain of type-II collagen; ECM, extracellular matrix; ELISA, enzyme-linked immunosorbent assay; GC, glucocorticoid; GD, gestational day; HC, hyaline cartilage; HDL-C, high-density lipoprotein cholesterol; H&E staining, hematoxylin and eosin staining; H3K9, lysine 9 of histone H3; IGF-I, insulin-like growth factor I; IRS1, insulin receptor substrate1; LDL-C, low-density lipoprotein cholesterol; LXR β : liver X receptor β ; OARSI scores, Osteoarthritis Research Society International scores; PNE, prenatal nicotine exposure; PPAR γ , peroxisome proliferator-activated receptor γ ; PW, postnatal week; Smad2/3, SMAD Family Member 2/3; SOX9, SRY-type high mobility group box 9; TGF- β , transforming growth factor- β ; TGF- β R1, transforming growth factor- β

References

- 1. Deng Y, Li TQ, Yan YE, Magdalou J, Wang H, Chen LB. Effect of nicotine on chondrogenic differentiation of rat bone marrow mesenchymal stem cells in alginate bead culture. Biomed Mater Eng. 2012;22(1-3):81-87.
- 2. Henderson JS, Johnson RB. The effects of smokeless tobacco extract on bone nodule formation and mineralization by chick osteoblasts in vitro. Arch Oral Biol. 1995;40(7):615-621.
- **3.** Lenz LG, Ramp WK, Galvin RJ, Pierce WM, Jr. Inhibition of cell metabolism by a smokeless tobacco extract: tissue and species specificity. Proc Soc Exp Biol Med. 1992;199(2):211-217.
- 4. Liu Y, Wu D, Song F, et al. Activation of alpha7 nicotinic acetylcholine receptors prevents monosodium iodoacetate-induced osteoarthritis in rats. Cell Physiol Biochem. 2015;35(2):627-638.
- 5. Ng TK, Huang L, Cao D, et al. Cigarette smoking hinders human periodontal ligament-derived stem cell proliferation, migration and differentiation potentials. Scientific reports. 2015;5:7828-7828.
- 6. Niemeyer P, Salzmann GM, Hirschmuller A, Sudkamp NP. [Factors that influence clinical outcome following autologous chondrocyte implantation for cartilage defects of the knee]. Z Orthop Unfall. 2012;150(1):83-88.
- 7. Shaito A, Saliba J, Husari A, et al. Electronic Cigarette Smoke Impairs Normal Mesenchymal Stem Cell Differentiation. Sci Rep. 2017;7(1):14281.
- 8. Teng P, Liu Y, Dai Y, Zhang H, Liu WT, Hu J. Nicotine Attenuates Osteoarthritis Pain and Matrix Metalloproteinase-9 Expression via the alpha7 Nicotinic Acetylcholine Receptor. J Immunol. 2019;203(2):485-492.
- 9. Tie K, Tan Y, Deng Y, et al. Prenatal nicotine exposure induces poor articular cartilage quality in female adult offspring fed a high-fat diet and the intrauterine programming mechanisms. Reprod Toxicol. 2016;60:11-20.
- **10.** Tie K, Wu M, Deng Y, et al. Histone hypo-acetylation of Sox9 mediates nicotine-induced weak cartilage repair by suppressing BMSC chondrogenic differentiation. Stem Cell Res Ther. 2018;9(1):98.
- **11.** Tie K, Zhang X, Tan Y, et al. Intrauterine low-functional programming of IGF1 by prenatal nicotine exposure mediates the susceptibility to osteoarthritis in female adult rat offspring. Faseb j. 2016;30(2):785-797.
- 12. Wahl EA, Schenck TL, Machens H-G, Egaña JT. Acute stimulation of mesenchymal stem cells with cigarette smoke extract affects their migration, differentiation, and paracrine potential. Scientific reports. 2016;6:22957-22957.
- **13.** Xie Z, Zhao Z, Yang X, et al. Prenatal nicotine exposure intergenerationally programs imperfect articular cartilage via histone deacetylation through maternal lineage. Toxicol Appl Pharmacol. 2018;352:107-118.
- 14. Yang X, Qi Y, Avercenc-Leger L, et al. Effect of nicotine on the proliferation and chondrogenic differentiation of the human Wharton's jelly mesenchymal stem cells. Biomed Mater Eng. 2017;28(s1):S217-s228.
- **15.** Ying X, Cheng S, Shen Y, et al. Nicotine promotes proliferation and collagen synthesis of chondrocytes isolated from normal human and osteoarthritis patients. Mol Cell Biochem. 2012;359(1-2):263-269.

16. Ying X, Zhang W, Cheng S, et al. Nicotine-induced chondrogenic differentiation of human bone marrow stromal cells in vitro. Knee Surg Sports Traumatol Arthrosc. 2012;20(11):2329-2336.