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S1 Determining the threshold of the correlation function

In Section 3.1, we note that the choice of ε in the threshold compartment distance, s∗k(T ), determines

how close the correlation function, F (s, T ), needs to be to unity before pairwise correlations of agents

are considered negligible. In other words, the choice of ε determines how far apart agent pairs have

to be before they are considered uncorrelated. To determine a suitable choice of ε, we focus on two

parameter regimes: one where good agreement is seen between the average agent density, 〈C1(T )〉,
and its continuum limit, C(T ), and one where there is poor agreement. In doing so, we can provide a

suitable range for ε to use in the de�nition of s∗k(T ).

As shown in [1], we have that 〈F (s, T )〉 is monotone in s and tends to unity as s→∞; therefore,

in order to compute an upper bound for 〈F (s, T )〉, we focus on 〈F (1, T )〉. With reference to Figure

S1(a), in the parameter regime rm = 1, rp = 0.01, rd = 0.001, C(0) = 0.05, there is excellent agreement

between 〈C1(T )〉 and C(T ), while max〈F (1, T )〉 < 1.2 (Figure S1(b)). This indicates that the tolerance

parameter ε should not be smaller than about 0.2, as there is no signi�cant gain in accuracy while

increasing the computational demands of the CBM.

Conversely, in the parameter regime rm = 1, rp = 0.05, rd = 0.005, C(0) = 0.05, there is a relatively

poor agreement between 〈C1(T )〉 and C(T ) (Figure S1(a)), while max〈F (1, T )〉 > 1.5 (Figure S1(b)).

Therefore, a tolerance of ε > 0.5 for uncorrelated agent pairs is too relaxed. Nevertheless, in the

parameter regime rm = 1, rp = 1, rd = 0.1, C(0) = 0.05 (Figure S1(c)), the choice of ε ∈ [0.1, 0.5]

does not greatly a�ect 〈s∗k(T )〉 and, consequently, m∗ which determines the threshold compartment

size used in the CBM. Hence, we choose ε = 0.3 in our computations of 〈s∗k(T )〉.
We can also determine how the death rate rd a�ects 〈s∗k(T )〉. With reference to Figure S1(d),

employing a small to moderately-sized value of rd does not a�ect 〈s∗k(T )〉 signi�cantly. Furthermore,

large values of rd are not generally biologically relevant, as proliferation assays and scratch assays focus

on growing, rather than dying, populations of cells.
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Figure S1: Density data, correlation function, and maximum correlation distance from the

CBM with m = 1. The CBM uses a 120 × 120 square lattice with 100 realisations, C(0) = 0.05,
rm = 1, and rd = 0.1rp. (a) The CBM average agent density, 〈C1(T )〉, and the continuum limit, C(T ),
for rp = 0.01 and rp = 0.05. The maximum standard error is less than 0.0015. (b) The correlation
function, 〈F (1, T )〉, for rp = 0.01 and rp = 0.05. (c) Comparisons of 〈s∗k(T )〉 for various choices of ε
with rp = 1. (d) Comparisons of 〈s∗k(T )〉 for various choices of rd, with ε = 0.3 and rp = 1.
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Figure S2: Simulations of a gel proliferation assay using the CBM. The CBM uses a 24×24×24
lattice with 100 realisations, along with C(0) = 0.05, rm = 1, and rd = 0.1rp. The average density of
agents, as determined by the CBM with m = 1, 4, and 6, and the solution of the continuum limit, are
shown when (a) rp = 0.01 (b) rp = 1. The maximum standard error is less than 0.0015.

S2 Three-dimensional simulations

Another type of assay employed in relevant cell experiments is the three-dimensional gel proliferation

assay [2�4]. Gel proliferation assays are similar to two-dimensional proliferation assays, as both exper-

iments employ cells that are initially well-mixed in growth media. However, gel proliferation assays

do not produce monolayers of cells; rather, these uniformly-distributed cells proliferate throughout the

three-dimensional gel in which they are seeded.

By modifying Algorithm 1 to describe a three-dimensional lattice, we can employ the CBM to

describe these gel proliferation assays. To compare with the two-dimensional CBM in Section 3, which

uses a 120× 120 lattice, we consider a 24× 24× 24 lattice here, as these two lattices contain roughly

the same number of lattice sites. Furthermore, we use m×m×m cubic compartments in this three-

dimensional version of the CBM. With reference to Figure S2, the CBM faithfully agrees with the

continuum limit in parameter regimes relevant to cell proliferation assays.
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S3 Computing the standard error of the mean

In Sections 3.1 and 3.2, error bars are included with the average CBM data describing proliferation

and scratch assays. These error bars correspond to the standard error of the mean, which is calculated

in one of two ways. For proliferation assays, we take the standard deviation of Cm(T ), denoted ςm(T ),

using P identically-prepared realisations. This allows us to calculate the standard error of the mean

as a function of time:

SEM1(T ) =
ςm(T )√

P
. (S1)

For average CBM data describing scratch assays, shown in Figure 7, we record the standard error of

the mean at a �xed time, Tf , as a function of x. This value of Tf corresponds to di�erent times displayed

in the sub�gures of Figure 7. To calculate this standard error, we note that for a single realisation

of the CBM, we will have Y observations of Cm(x, Tf ), which provide the vertically-averaged agent

density of a single realisation of the CBM. Therefore, for P identically-prepared realisations of the

CBM, we have Y P observations of Cm(x, Tf ), for which we can calculate its total standard deviation,

ς̂m(x, Tf ). This allows us to calculate the standard error of the mean as a function of x for a given Tf :

SEM2(x, Tf ) =
ς̂m(x, Tf )√

PY
. (S2)
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S4 Varying the initial condition of the scratch assay

In Section 3.2, we examine simulations of scratch assays whose initial conditions involve some parts of

the lattice being completely occupied and other parts of the lattice being completely vacant (see Figures

6 and 7 for further details concerning these initial conditions). These initial conditions represent, from

a biological perspective, a region of cells at complete con�uence, i.e. C = 1 in the initially occupied

region of the lattice. Previous examination of scratch assays [5, 6] show that the initial cell density of

a scratch assay plays a crucial role in the dynamics of the resulting moving fronts. For completeness,

we also simulate scratch assays where the initial density of the initially occupied region is less than

con�uence, C < 1. To do this, each site in the non-zero region of the scratch assay simulation (for

Figures 6 , 7, and S3, this region is 110 < x ≤ 130) is initially populated at random with some user-

speci�ed probability. Results in Figure S3 show that the CBM continues to capture the salient features

of the scratch assay for a suitable choice of compartment size m. Therefore, all of the conclusions

we drew in the main document for simulations of scratch assays, where the agents are initially at

con�uence, also apply when we consider other initial densities in scratch assays.
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Figure S3: Simulations of a scratch assay with the CBM with varying initial conditions. Averaged density data from the CBM
(solid colour curves) from 100 identically prepared simulations is compared with the solution of the continuum limit, Equation (11) (dashed
black curves), for two di�erent scratch assay scenarios. Results are shown for the CBM with compartment size m = 1 (red curves) and m = 4
(blue curves). In all simulations, we use a 24 × 240 lattice, with initial conditions shown in (a,f,k,p). The initial conditions correspond to
the region 110 < x ≤ 130 being populated uniformly at random with probability (a,f) 0.5 and (k,p) 0.25. Additionally, we have rd = 0.1rp,
and rm = 1/m to keep D̂ invariant for varying m. For (a)�(e) and (k)�(o), rp = 0.01, with data given at (b,d,l,n) T = 2 (c,e,m,o) T = 10.
For (f)�(j) and (p)�(t), rp = 0.1, with data given at (g,i,q,s) T = 15 (h,j,r,t) T = 25. The maximum standard error is less than 0.011.
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S5 Biased movement

For biological experiments with chemotactic movement, cells are inclined to move in a biased direction

[7�10]. One way of incorporating this phenomenon into the CBM is to bias the movement of agents by

modifying Line 11 in Algorithm 1. As an example, we can bias the two-dimensional lattice examined in

Section 3.2 with bias (1+ρ)/4 in the positive x-direction and bias (1−ρ)/4 in the negative x-direction,

where ρ ∈ [−1, 1]. As a result, employing a positive bias ρ creates a sharper front where the gradient

of the agent density is positive (left front in Figure S4). Similarly, the converse is true for negative bias

and we retrieve unbiased moving fronts when ρ = 0 (Section 3.2). As shown in [10], the continuum

limit of this biased movement becomes the Fisher-Kolmogorov equation with a nonlinear advection

term:
∂C(x, T )

∂T
= C(x, T )

(
1− C(x, T )

K

)
+ D̂

∂2C(x, T )

∂x2
− α ∂

∂x
[C(x, T ) (1− C(x, T ))], (S3)

where α = rmρ∆/(2λ). It is important to note that the advection magnitude, α, is invariant under

compartment modi�cation. Therefore, rescaling the motility rate rm by rm/m, like in Section 3.2, does

not produce a compartment-invariant continuum limit when ρ 6= 0. Nevertheless, we can still compare

the CBM with biased movement with the continuum limit (Figure S4). Like in the unbiased moving

fronts case (ρ = 0; Section 3.2), the CBM matches this continuum limit well when rp/rm � 1, but

only agrees well for an intermediate compartment size (m = m∗) when rp/rm is no longer small.
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Figure S4: Simulations of a scratch assay with biased movement using the CBM. Averaged density data from the CBM (solid
colour curves) from 100 identically prepared simulations is compared with the solution of the continuum limit, Equation (S3) (black dashed
curves) with movement bias ρ = 0.5 in the positive x-direction. Results are shown for the CBM with compartment size (b,c,g,h) m = 1 and
(d,e,i,j) m = 4. In all simulations, we use a 24×240 lattice, where the lattice is initially �lled with agents for 50 < x ≤ 70 (a,f). Additionally,
rd = 0.1rp, and rm = 1/m. Top row: rp = 0.01, with data given at (b,d) T = 2 (c,e) T = 4. Bottom row: rp = 0.1, with data given at (g,i)
T = 5 (h,j) T = 15. The maximum standard error is less than 0.011.
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S6 Numerical solution of continuum limit

In Sections 3.2 and S5, we compare the CBM averaged data with the corresponding continuum limit

(Equations (11) and (S3), respectively). To solve these PDEs numerically, we use the methods of lines

in time and a second-order accurate �nite di�erence scheme in x. For example, Equation (11) becomes

dC(xk, t)

dT
= C(xk, T )

(
1− C(xk, T )

K

)
+
D̂

δ2
[C(xk+1, T )− 2C(xk, T ) + C(xk−1, T )] , (S4)

where xk+1 = xk + δ, xk−1 = xk − δ, and δ is the distance between x co-ordinates. The continuum

limit has the domain 1 ≤ x ≤ I, where I is the total number of lattice sites in the x-direction and is

de�ned in Section 2.1. Additionally, second-order accurate Neumann boundary conditions are used to

represent the re�ecting boundary conditions of the CBM:

C(1, T ) =
4

3
C(1 + δ, T )− 1

3
C(1 + 2δ, T ), (S5)

C(I, T ) =
4

3
C(I − δ, T )− 1

3
C(I − 2δ, T ). (S6)

Finally, we use a sti� ODE solver in time, namely, the MATLAB function ode15s, to achieve conver-

gence.
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