
S2 Theoretical foundation

We assume to model the data of the same pathway in two di↵erent experimental conditions as
realizations of two Gaussian graphical models sharing the same decomposable graph G. Here,
G = (V,E) is obtained from the pathway topology conversion, where V and E represent genes
and biochemical reactions, respectively. Formally:

X(i) ⇠ N
p

(µ(i),⌃(i)), (⌃(i))�1 2 S+(G), i = 1, 2,

where p is the number of genes and S+(G) is the set of symmetric positive definite matrices with
null elements corresponding to the missing edges of G.

A major advantage of decomposable graphs is that they allow for a clique-grained description.
Let C

i

, i = 1, . . . , k be the cliques of the graph G. These can be arranged so as to satisfy the
running intersection property Lauritzen (1996). As there are at least k such orderings of the
cliques, one for each choice of the root clique, let C

i,1, ..., Ci,k

denote the ith ordering, i = 1, . . . , k,
having C

i,1 = C
i

as root clique, and S
i,1, ..., Si,k

be a corresponding sequence of separators, where
S
i,1 = ?. These k orderings provide k alternative descriptions of the same graphical structure.
As graphical models are characterizations of conditional independence structures within dis-

tributions, the multiple representations previously introduced translate into alternative factor-
izations of the joint probability distribution associated to G, and into alternative decompositions
of the corresponding inferential problems. Consider the general hypothesis of equality of dis-
tribution in the two conditions H : ⌃(1) = ⌃(2) and µ(1) = µ(2). Given an ordering i of the
cliques, i = 1, . . . , k, such global hypothesis decomposes into a set of k independent hypotheses
H

i,j

, j = 1, . . . , k of equality of the conditional distributions of X
Ci,j\Si,j

|X
Si,j , j = 1, . . . , k.

These can be tested on exploiting an appropriate i-specific decomposition of the log likelihood
ratio criterion (LLR):

�(V ) =
kX

j=1

[�(C
i,j

)� �(S
i,j

)] (1)

where the �(C
i,j

)� �(S
i,j

) terms correspond to the LLR for testing the corresponding H
i,j

.
Since each ordering of the cliques corresponds to an alternative factorization of the same

distribution, we exploit this multiplicity to search for the the smallest set, D
G

say, respecting
the graphical granularity of G, which contains the source set D. To this aim, consider the whole
collection of hypothesis H

i,j

(i, j = 1, ..., k) of equality of distributions of X
Ci,j\Si,j

|X
Si,j in two

conditions, implied by G.

Proposition 1. Let d⇤
i

= (d⇤
i,1, ..., d

⇤
i,k

) be the vector of correct decisions (the truth) for the
hypothesis H

i,j

, with d
i,j

= 0 when the hypothesis H
i,j

is true, and d
i,j

= 1 otherwise. Then
D

G

, defined as:

D
G

=
k\

i=1

D
G,i

where D
G,i

=
S

{j:d⇤
i,j=1} Ci,j

, is a source set.

Proof. By construction, D ✓ D
G,i

8i, so that D ✓ D
G

. The case D = D
G

is trivial. Consider
the case D ⇢ D

G

. We need to prove that the following two conditions hold for D
G

:

1. the distribution of X(1)
DG

di↵ers from that of X(2)
DG

;

2. the conditional distributions X(1)
D̄G

|X(1)
DG

and X
(2)
D̄G

|X(2)
DG

coincide, where D̄
G

= V \D
G

.
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The definition ofD implies that the conditional distributionsX(1)
A\D|X(1)

D

andX
(2)
A\D|X(2)

D

coincide

for every A ✓ V. Being the distribution of X(j)
DG

the product of the distribution of X(j)
D

and

of X
(j)
DG\D|X(j)

D

, j = 1, 2, it follows that the distribution of X
(1)
DG

di↵ers from that of X
(2)
DG

due to the di↵erence in distribution of X(1)
D

and X
(2)
D

. Moreover, the conditional distributions

X
(j)
D̄G

|X(j)
DG

, j = 1, 2 can be computed as the ratio of the conditional distributions of X(j)
D̄

|X(j)
D

and of X(j)
DG\D|X(j)

D

. This give rise, in the two conditions, to ratios having same numerators and
denominators, showing that condition 2 is also satisfied. ⇤

Since D
G

can be seen as the smallest source set identifiable by means of cliques and separators
of the underlying graph, we call it the graphical source set. In our setting, the set G =

S
k

i=1 DG,i

contains all genes a↵ected by the perturbation. The set D
G

✓ G represents the graphical hull
of genes which can be deemed to be responsible for the dysregulation. From now on, when no
ambiguity can arise, we will refer to D

G

simply as the source set (or primary set), and G \D
G

as the secondary set.
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