
S3 Estimation: impact of shrinkage on p-values of LLR

tests

The LLR test is well defined whenever the number of samples for the smallest group n =
min(n1, n2) is greater than the cardinality of the largest clique p⇤ = max(|C1|, ..., |Ck

|), where
|A| denotes cardinality of a set A. Indeed, the estimates of the covariance matrices in (2) in the
main paper, must be positive definite. In practice, high-throughput experiments are usually
done with very few replicates due to budgetary constraints, which makes the proposed method
applicable to a limited number of cases (see Table 1 in the main paper). Moreover, even when
the number of samples is su�cient (i.e., n ⇡ p⇤) and the maximum likelihood estimate exists, the
sample covariance matrix can no longer be considered a good estimate of the covariance matrix.

Great e↵orts have been undertaken to gain e�ciency in large-scale covariance estimation
with small-sample data. Among the available strategies, shrinkage methods appear to be a
valuable option. See, for example, Schäfer and Strimmer (2005), which is shown to enjoy certain
optimality properties within the “large p, large n” asymptotics.

In the source set setting, i.e., two-sample comparison, di↵erent shrinking strategies could be
employed. Consider, for example, the problem of selecting the tuning parameter that controls
the amount of shrinkage during estimation, a parameter whose asymptotically optimal value for a
given matrix is derived in Schäfer and Strimmer (2005) . The simplest approach would be to take
the same tuning parameter for estimating the three covariance matrices needed in the procedure,
i.e., the covariance matrices in the first and second condition and the pooled covariance. In this
case, the question comes naturally as to which of the three possible optimal tuning parameters
should be preferred. Alternatively, the optimal tuning parameter could be employed for each
matrix. To the best of our knowledge, a discussion of the best shrinking strategy and of its
impact on the validity of p-values in the context of two-sample testing procedure is not available
in the literature.

To fill in this gap, we performed a simulation study aimed at verifying if, under the null
hypothesis of no dysregulation between two conditions, three alternative shrinking strategies
based on Schäfer and Strimmer (2005), named min, max, optimal, (see Section S3.1 for details)
a↵ect the theoretical distribution of the p-values of LLR tests used in source set, which is known
to be uniform. This is important to avoid systematic bias in the statistical testing procedures
on which the source set procedure is based.

We derived Monte Carlo estimates of the distribution of p-values from LLR tests for two
simulation scenarios built around a complete graph on a set C of p = 10 variables and n1 =
n2 = 10 statistical units. In Scenario a, absence of dysregulation was simulated; in Scenario b,
a subset S ⇢ C of variables was perturbed so as to give rise to distributions for X

C

and X
S

di↵erent in the two conditions, while preserving the same distribution for X
C\S | X

S

. Three null
hypotheses were tested in both scenarios, namely, equality of the distributions of X

C

, of X
S

and
of X

C\S | X
S

, using LLR tests introduced in Section Estimation of the main paper. In the
second scenario, therefore, only the third hypothesis is true.

In Figure S3, we show example violin plots of the distribution of p-values in the two scenarios
for the three hypotheses and the three shrinking strategies. Inspection of the plots reveals that,
in Scenario a, the distributions of p-values fit the theoretical distribution very well, whereas,
in Scenario b the distribution of p-values for the hypothesis of equality of the distribution of
X

C\S | X
S

does not fit to the theoretical one for all shrinking strategies, implying that shrinkage
is likely to bias the source set procedure.
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Figure S3: Distributions (500 Monte Carlo runs) of the p-values under Scenario a (left panel) and Scenario b
(right panel) for testing equality of distribution of X

C

(clique C = {1, · · · , 10}), X
S

(separator S = {6, ..., 10}),
and X

C\S | X
S

(conditional) in two conditions (n1 = n2 = 10).

For this reason, we introduce a new estimation strategy, named TEGSmin, based on an
ad-hoc ridge estimator Huang and Lin (2013), that adds a small quantity to the diagonals of
the three covariance matrices.To determine this quantity, we: i) find the distribution of the
sample variances of the p variables in the two groups and in the pooled sample; ii) compute
the fifth percentile of each of these distributions iii) use the minimum as the tuning parameter.
This procedure allows to stabilize the estimates of the covariance matrices, while maintaining the
validity of the testing procedures. This is evidenced by the distribution of the above-mentioned p-
value in Figure S3 (bottom right panel), which is stochastically larger than the uniform, meaning
that we obtained a valid, although conservative, testing procedure. Such findings have also
been confirmed with di↵erent configurations of sample sizes (n1 and n2), number p of variables
considered and of dysregulation regimes (results not shown here).

S3.1 Details of simulations

Given a fully connected graph on a set C of 10 genes, we have simulated n1 = 10 observations
for a fixed mean and a fixed covariance matrix representing the control condition. We then
considered two possibilities for the second condition:

(Scenario a ) n2 = 10 additional observations were simulated from the distribution of the control
condition;

(Scenario b ) n2 = 10 observations were simulated from a distribution in which a subset S of
6 genes was perturbed, while the conditional distribution of the remaining genes
given S was held fixed. In this way, we ensured that the distributions of X

C

and
X

S

are di↵erent in two conditions, while the conditional distribution of X
C\S | X

S

remains the same.

The above procedure was repeated B = 500 times, so that for each Monte Carlo run, we
obtained two datasets of 10 observations of 10 genes. Let S(1), S(2), and Spooled represent
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sample covariance matrices, computed in each run, for condition 1, condition 2, and for the
pooled sample, respectively.

We then considered three di↵erent shrinking strategies. In particular, Schäfer and Strimmer
(2005) shrink the sample correlation matrix towards an identity matrix and the vector of sample
variances towards its median, where the amount of shrinkage is determined by two shrinkage
parameters � and �

var

. Schäfer and Strimmer (2005) derive an asymptotically optimal amount
of shrinkage for a given sample covariance matrix. In what follows, we discuss choices for �, but
the analogous considerations apply to �

var

.

Let us denote by �1, �2, �pooled

the optimal shrinkage parameters for the correlation matrices
associated to S(1), S(2) and Spooled. We considered the following choices:

• max: �
max

= max {�1,�2,�pooled

};
• min: �

min

= min {�1,�2,�pooled

};
• optimal: each sample covariance matrix is shrank with its own optimal �.

With each of the three above given choices of �, we have computed regularized estimates
of the covariance matrices of the two conditions, as well as of the common covariance matrix
under the null hypothesis. This allowed us to compute LLR for C and S, as shown in (4) (main
text). Given the small sample size, to obtain p-values for the tests of equality of X

C

, X
S

and
X

C\S | X
S

in two conditions, we relied on permutations. We performed this procedure for each
Monte Carlo run which gave us a sample from the distribution of p-values for each of the three
tests, and for each of the three shrinkage choices.

All the functions used to derive the optimal parameters and the shrank covariance ma-
trices can be found in the corpcor package, through the cov.shrink, estimate.lambda,

estimate.lambda.var functions.
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