
S5 Algorithm

Looking at the broad picture of the N pathways case, to make the procedure coherent some
important practical issues have to be addressed.

S5.1 (Note 1 ) List of pathways

The interest of our work is not in the detection of the structure of a pathway because we consider
it fixed a priori. Various research groups have tried di↵erent strategies to address this challenge
that have led to the development of many knowledge databases. To incorporate pathways into
graphical models, the diagram needs to be translated into a directed or undirected graph. Due
to the descriptive nature of the pathways and their inherent complexity, there is no simple recipe
for conversion that can be applied in every situation. For this reason, close collaboration with
biologists is preferred at this step Djordjilović et al. (2017).

In general, we give full freedom to the user in providing the underlying graph, requiring only
a specific input format (i.e., a graphNEL object). So, the user can provide a list of manually
curated pathways or use developed softwares to translate the bases of knowledge. To date,
the most complete software available for this task is graphite R package Sales et al. (2017).
graphite provides easy access to six di↵erent databases for a total of 14 di↵erent species. The
resulting networks represent a standardized resource for the pathway analysis.

Regardless of the type of graph, obtained at the end of the translation (i.e., undirected or
directed), our method works only with decomposable undirected structures. However, it should
be stressed that we can always obtain a decomposable graph in few steps (i.e., moralization and
triangulation).

S5.2 (Note 2 ) Setting the parameters

The input pathways normally have heterogeneous sizes and degrees of connectivity. To make the
results obtained from di↵erent graphs comparable, and to conduct a meta-analysis, particular
attention is needed with respect to the main options regarding:

• estimation of the covariance matrices, i.e., the maximum likelihood estimation or the reg-
ularized estimation;

• the number of permutations for the minP or maxT procedure.

The estimation method must be the same for all pathways. If the user wants to use the
maximum likelihood estimation, all cliques in all pathways must satisfy the n > p

i

condition,
where n is the number of samples for the smaller class and p

i

the cardinality of the largest clique
in the i-th pathway. If even one clique does not satisfy this requirement, the regularized estimate
will be used. To obtain reliable results for the maximum likelihood case, it is recommended to
use as criterion n � p

i

. Indeed, the distribution used to calculate the p-values of the performed
tests is only asymptotically valid.

The number of permutations T
i

, whether it is the maxT or minP correction, is naturally
suggested from the ↵ threshold and the number m

i

of unique tests in the i-th pathway (see
Section S4). Using di↵erent thresholds allows to control the FWER for each pathway, and
achieve comparable power among pathways.

It is worth nothing that the FWER can also be controlled simultaneously across all pathways;
it would be su�cient to use a single (T

M

+ 1)⇥M matrix P, where M is the number of unique

tests performed in all pathways, that is M =
P

N

i=1 mi

. The main problem is that the number
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T
M

is generally very large, making the algorithm computationally onerous. Besides, the results
may lose reproducibility as the results for a given pathway would depend on the number and the
degree of connectivity of the other input graphs. For these reasons, this option is not considered
in the implemented algorithm.

S5.3 (Step 1-2 ) Decomposition and orderings

For each pathway and corresponding graph G, the first step requires identifying the maximal
cliques and all possible decompositions of the global distribution induced by G. Generally speak-
ing, the clique problem is NP-complete, indeed it is fixed-parameter intractable and hard to
approximate. Listing maximal cliques can take an exponential time. Therefore, much of the
theory about the clique problem is devoted to identifying appropriate types of graphs that admit
more e�cient algorithms. In our model, a considerable computational relief is possible because
decomposable graphs – also called chordal graphs – fall into this category. Also, the detection of
permissible decompositions is closely related to the identification of perfect orderings, and such
a problem may be solved in polynomial time when the input is a chordal graph.

Our algorithm uses the rip function implemented in the gRbase package Dethlefsen and
Hojsgaard (2005). This function identifies a sequence of cliques that satisfies the running in-
tersection property by first ordering nodes by the maximum cardinality search algorithm. The
root argument is used to control which clique will first enter the rip ordering.

In the ripAllRootsClique function (implemented in the SourceSet) we extended the search
space to get all possible orderings leading to distinct decompositions, that is, using as root all
maximal cliques induced by the graph G. Given a graph, the function will provide:

• a list of k maximal cliques, the associated k separators, and m unique components;

• a list of k orderings; each of them will contain a proper subset of size k of the m unique
components.
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