Table of Content

Nuclear Receptor Corepressor 1 Represses Cardiac Hypertrophy Running Title: NCoR1 represses cardiac hypertrophy

Chao Li[†] ^{1, 2, 3}, Xue-Nan Sun[†] ^{1, 2, 4}, Bo-Yan Chen^{†1, 2}, Meng-Ru Zeng^{†1, 2, 4}, Lin-Juan Du^{1, 2, 4}, Ting Liu^{1, 2}, Hui-Hui Gu⁵, Yuan Liu^{1, 2, 4}, Yu-Lin Li^{1, 2}, Lu-Jun Zhou^{1, 2}, Xiao-Jun Zheng^{1, 2, 4}, Yu-Yao Zhang^{1, 2, 4}, Wu-Chang Zhang^{1, 2}, Yan Liu^{1, 2}, Chaoji Shi^{1, 2}, Shuai Shao⁶, Xue-Rui Shi⁷, Yi Yi⁷, Xu Liu⁷, Jun Wang⁵, Johan Auwerx⁸, Zhao V. Wang³, Feng Jia^{*6}, Ruo-Gu Li^{*7}, Sheng-Zhong Duan^{*1, 2}

Appendix	Page
Appendix Figure S1	2
Appendix Figure S2	3
Appendix Figure S3	4
Appendix Table S1	5
Appendix Table S2	6
Appendix Table S3	7
Appendix Table S4	8
Appendix Table S5	9

1

Appendix Figure S1

Appendix Figure S1. Generation of cardiomyocyte-specific NCoR1 knockout mice. (A) Schematic illustration of the strategy to generate cardiomyocyte-specific NCoR1 knockout (CMNKO) mice. (B) Western blotting analysis of NCoR1 in ventricular samples of littermate control (LC) or CMNKO mice. (C) QRT-PCR analysis of NCoR1 in different tissues from LC or CMNKO mice. n=8:7 for Heart, n=3:3 for other tissues. Student's t test was used for statistical analysis.

Appendix Figure S2

LC

CMNKO

Α

В

Casq1 Acta1 Lrat Cilp Tnc Acta2 Chac1 Scd2 Hr Ucp2 lgfbp5 Nfam1 Lmod1 Tgfb3 Mfap4 Tusc5 Nfil3 lp6k3 Meox1 Fscn1 Prss57 Sod3 Cmklr1 Mapk8ip1 Col15a1 Mt2 Smad6 Gm13414 P2ry6 Plvap Tmem119 Dbn1 3425401B19Ril Svep1 Fibin Col1a1 Rrp12 Gprc5c Col18a1 Fn1 Col4a1 Slc4a8 Col4a2 C1qtnf1 Ptgis Cotl1 Tmem88 Plekho2 Hmcn2 Calhm2 Uck2 Ssc5d Mybpc2 Cebpa Myh9 Klf2 Osgin1

AccID	KeggID	Description	Reference
Acta1	mmu:11459	Actin, alpha skeletal muscle	Biochim Biophys Acta. 2013 Dec;1832(12):2414-24.
Tnc	mmu:21923	Tnc protein	Dev Biol. 2009 Apr 15;328(2):392-402.
Acta2	mmu:11475	Actin, aortic smooth muscle	Gastroenterology. 2004 Oct;127(4):1174-88.
Sod3	mmu:20657	Extracellular superoxide dismutase [Cu-Zn]	Free Radic Res. 2018 Jul;52(7):799-807.
Col15a1	mmu:12819	Collagen alpha-1(XV) chain	Sci Rep. 2017; 7: 4476.
Col1a1	mmu:12842	Collagen alpha-1(l) chain	Gastroenterology. 2004 Oct;127(4):1174-88.; J Biol Chem. 2006 Apr 7;281(14):9152-62
Col18a1	mmu:12822	Collagen alpha-1(XVIII) chain	Sci Rep. 2017; 7: 4476.; J Biol Chem. 2006 Apr 7; 281(14): 9152-62
Fn1	mmu:14268	Fibronectin	J Biol Chem. 2006 Apr 7;281(14):9152-62
Col4a1	mmu:12826	Collagen alpha-1(IV) chain	J Biol Chem. 2006 Apr 7;281(14):9152-62
Myh9	mmu:17886	Myh9 protein	BMC Bioinformatics. 2009 Sep 17;10 Suppl 9:S5.
Klf2	mmu:16598	Putative uncharacterized protein	Blood. 2010 Apr 8;115(14):2971-9.

Color Key

2 Fold change

0

С

3

2

0

p = 0.0033

cJun expression (fold)

p=0.0218

2 months 10 months

Appendix Figure S2. RNA-sequencing analysis of ventricular samples from LC and CMNKO mice. (A) Heat-map illustration of 57 genes upregulated by cardiomyocyte NCoR1 deficiency. Fold change>2, FDR<0.05, n=3. (B) List of MEF2-regulated genes selected from (A). (C) qRT-PCR analysis of cJun, monocyte chemoattractant protein 1 (MCP1), and glucose transporter type 4 (Glut4) in left ventricles. n=9:9:11:8. Student's t test was used for statistical analysis.

Apendix Figure S3

Appendix Figure S3. NCoR1 does not affect the accumulation of triglycerides under fed or fasted condition. (A) Myocardial triglyceride contents of 2-month-old LC or CMNKO mice that were either fed or fasted for 24h. n=6:4:5:8. (B) Oil red O staining of heart sections from LC or CMNKO mice that were either fed or fasted for 24h. n=6:4:5:8. Scale bar: 50µm. Two-way ANOVA followed by Bonferoni post-tests was used for statistical analysis.

4

Appendix Table S1. Cardiac function measured by echocardiography in 2-month and 10-month old mice.

	2 months		10 months		
	LC (n=9)	CMNKO (n=7)	LC (n=14)	CMNKO (n=10)	
Heart Rate	481.32±17.39	499.76±11.68	434.29±6.02	462.62±24.28	
Diameter;s	1.69±0.07	1.68±0.08	1.93±0.05	1.96±0.05	
Diameter;d	3.24±0.09	3.15±0.09	3.67±0.08	3.48±0.08	
Volume;s	8.61±0.90	8.35±0.95	11.90±0.84	12.25±0.79	
Volume;d	42.49±2.79	39.99±2.87	57.59±2.85	50.80±2.69	
Stroke Volume	33.88±1.98	31.63±2.04	45.69±2.35	38.55±2.29 ^a	
Ejection Fraction	80.04±1.00	79.42±1.23	79.35±1.02	75.69±1.33 ^b	
Fractional Shortening	47.73±0.95	46.89±1.17	47.4±1.06	43.77±1.27 ^c	
Cardiac Output	20.99±4.00	18.41±3.23	18.41±1.18	17.40±1.74	
IVS;d	0.94±0.05	0.93±0.06	1.01±0.04	1.09±0.05	
IVS;s	1.55±0.04	1.41±0.08	1.64±0.04	1.64±0.06	
LVID;d	3.19±0.06	3.21±0.11	3.65±0.1	3.48±0.11	
LVID;s	1.74±0.10	1.74±0.10	1.97±0.08	2.06±0.07	
LVPW;d	0.78±0.03	1.13±0.16	0.74±0.06	0.74±0.12	
LVPW;s	1.19±0.05	0.41±0.16	1.28±0.06	1.37±0.07	

a indicates p=0.0469; b, p=0.037; c, p=0.0392 vs 10 month LC group. Student's t test was used for statistical analysis.

Appendix Table S2. Cardiac function measured by echocardiography in LC, CMNKO and α MHC-Cre mice.

	LC (n=9)	CMNKO (n=11)	aMHC-Cre (n=7)	
Heart Rate	521.20±5.45	506.89±11.12	540.25±4.78	
Diameter;s	2.08±0.09	1.96±0.05	2.09±0.04	
Diameter;d	4.02±0.11	3.43±0.07 ^a	4.12±0.07 ⁱ	
Volume;s	14.58±1.52	12.25±0.77	14.36±0.74	
Volume;d	71.75±4.56	48.90±2.50 ^b	75.29±3.14 ^j	
Stroke Volume	57.17±3.55	36.65±1.79 ^c	60.92±2.49	
Ejection Fraction	79.90±1.40	75.06±0.51 ^d	80.95±0.43 ^k	
Fractional Shortening	48.28±1.40	42.92±0.44 ^e	49.19±0.44 ¹	
Cardiac Output	29.82±1.93	18.64±1.08 ^f	32.91±1.35 ^m	
IVS;d	0.86±0.07	1.12±0.05 ^g	1.04±0.14	
IVS;s	1.34±0.06	1.34±0.07	1.43±0.05	
LVID;d	3.73±0.12	3.25±0.10 ^h	3.65±0.1 ⁿ	
LVID;s	2.15±0.09	1.98±0.06	2.17±0.05	
LVPW;d	1.21±0.07	1.35±0.09	1.40±0.12	
LVPW;s	1.32±0.09	1.54±0.09	1.38±0.13	

a indicates p=0.0002; b, p=0.0002; c, p<0.0001; d, p=0.0025; e, p=0.0009; f, p<0.0001; g, p=0.0065; h, p=0.0066 vs LC group. i indicated p=0.5125; j, p=0.5582; k, p=0.5305; m, p=0.2367; n, p=0.6402 vs LC. Student's t test was used for statistical analysis.

6

Appendix Table S3. Cardiac function measured by echocardiography in LC and CMNKO mice with or without AAC.

	Sh	am	AAC		
	LC (n=9) CMNKO (n=7)		LC (n=14)	CMNKO (n=12)	
Heart Rate	469.80±16.98	503.87±11.36	457.67±7.79	473.82±15.13	
Diameter;s	1.55±0.07 1.72	1.72±0.15	2.36±0.11 ^a	3.34±0.20 ^b	
Diameter;d	3.07±0.07	3.18±0.17	:0.17 3.65±0.10 ^c 4.12±		
Volume;s	6.86±0.81	9.39±2.44	20.45±2.64 ^e	48.26±5.87 ^f	
Volume;d	37.31±2.13	41.41±5.95	57.20±3.79 ^g	77.08±6.39 ^h	
Stroke Volume	30.45±1.50	32.02±3.35	36.75±1.65	28.83±2.03 ⁱ	
Ejection Fraction	81.96±1.39	78.84±1.96	65.52±2.10 ^j	40.36±4.11 ^k	
Fractional Shortening	49.73±1.55	46.43±1.72	35.58±1.51 ¹	19.93±2.45 ^m	
Cardiac Output	14.42±1.06	16.19±1.98	16.21±0.74	13.062±0.98	
IVS;d	0.97±0.06	1.01±0.06	1.19±0.04	1.26±0.06	
IVS;s	1.58±0.03	1.53±0.07	1.73±0.05	1.57±0.07	
LVID;d	3.08±0.07	3.26±0.16	3.69±0.10	4.23±0.17	
LVID;s	1.58±0.04	1.78±0.16	2.40±0.11 ⁿ	3.41±0.21°	
LVPW;d	0.75±0.03	1.00±0.20	1.06±0.06	1.09±0.07	
LVPW;s	1.25±0.07	1.57±0.16	1.56±0.06	1.34±0.10	

2-3 month old mice were subjected to Sham operation or AAC. Heart function was measured 2 weeks after surgery. a indicates p=0.0007; b, p<0.0001; c, p=0.0041; d, p=0.012; e, p=0.0331; f, p<0.0001; g, p=0.0125; h, p=0.0065; I, p=0.0098; j, p=0.0005; k, p<0.0001; l, p<0.0001; m, p<0.0001; n, p=0.001; o, p<0.0001. a, c, e, g, j, 1 and n vs Sham LC Group. b, d, f, h, I, k, m and o vs AAC LC group. Two-way ANOVA followed by Bonferoni post-tests was used for statistical analysis.

Appendix Table S4. Cardiac function measured by echocardiography in mice infected with AAV9 GFP or AAV9 NCoR1-RIDs.

	NO surgery		AAC 2 weeks		AAC 4 weeks	
	AAV9 GFP (n=6)	AAV9 NCoR1-RIDs (n=6)	AAV9 GFP (n=6)	AAV9 NCoR1-RIDs (n=6)	AAV9 GFP (n=6)	AAV9 NCoR1-RIDs (n=6)
Heart Rate	464.89±6.45	464.60±6.88	473.55±7.62	475.14±8.13	478.21±7.11	476.09±6.34
Diameter;s	2.07±0.33	2.16±0.09	2.67±0.15	2.71±0.18	3.04±0.09	2.37±0.16 ^a
Diameter;d	3.34±0.19	3.38±0.16	3.72±0.17	4.10±0.16	3.75±0.08	3.19±0.16
Volume;s	14.44±2.23	15.79±1.65	27.08±3.82	28.42±5.31	36.53±2.54	20.24±3.23
Volume;d	46.67±6.00	47.55±5.35	60.00±6.84	74.96±7.49	60.36±3.15	41.39±4.82
Stroke Volume	32.23±3.98	31.77±3.83	32.93±3.63	46.54±2.73	23.83±1.50	21.15±1.75
Ejection Fraction	69.39±1.42	66.50±1.14	55.37±2.72	63.23±2.81 ^b	39.62±1.91	52.31±2.38 ^c
Fractional Shortening	38.03±1.08	35.83±0.95	28.32±1.73	34.04±1.90 ^d	18.89±1.03	26.01±1.38 ^e
Cardiac Output	14.97±1.81	14.78±1.85	15.66±1.90	22.15±1.47	11.37±0.66	10.03±0.74
IVS;d	1.06±0.12	0.97±0.11	1.16±0.07	1.18±0.07	1.04±0.08	1.20±0.10
IVS;s	1.34±0.06	1.36±0.08	1.44±0.15	1.30±0.07	0.90±0.04	0.99±0.06
LVID;d	3.20±0.20	3.46±0.15	3.70±0.21	3.77±0.12	3.81±0.08	3.22±0.13
LVID;s	2.15±0.19	2.46±0.11	2.71±0.19	2.67±0.16	3.13±0.10	2.36±0.13 ^f
LVPW;d	0.92±0.12	1.00±0.13	1.47±0.07	1.04±0.07	1.06±0.08	1.10±0.09
LVPW;s	1.24±0.07	1.19±0.13	1.74±0.07	1.36±0.08	1.21±0.07	1.28±0.08

2 month old mice were subjected to Sham operation or AAC. Heart function was measured before, 2 weeks and 4 weeks after surgery. a indicates p=0.0049; b, p=0.0453; c, p=0.0007; d, p=0.0206; e, p=0.0032; f, p=0.0036. b and d vs AAV9 GFP AAC 2 weeks. a, c, e and f vs AAV9 GFP AAC 4 weeks. Two-way ANOVA followed by Bonferoni post-tests was used for statistical analysis.

Appendix Table S5. List of primer sequences for qRT-PCR

Name	Sequence	Species
GAPDH F	ATGTTCCAGTATGACTCCACTCACG	mouse
GAPDH R	GAAGACACCAGTAGACTCCACGACA	mouse
18s F	TTGATTAAGTCCCTGCCCTTTGT	mouse
18s R	CGATCCGAGGGCCTCACTA	mouse
Acta1 F	CCCAAAGCTAACCGGGAGAAG	mouse
Acta1 R	CCAGAATCCAACACGATGCC	mouse
Nppa F	GCTTCCAGGCCATATTGGAG	mouse
Nppa R	GGGGGCATGACCTCATCTT	mouse
Nppb F	ATGGATCTCCTGAAGGTGCTG	mouse
Nppb R	GTGCTGCCTTGAGACCGAA	mouse
Col1a1 F	GCTCCTCTTAGGGGCCACT	mouse
Col1a1 R	CCACGTCTCACCATTGGGG	mouse
Col1a2 F	GTAACTTCGTGCCTAGCAACA	mouse
Col1a2 R	CCTTTGTCAGAATACTGAGCAGC	mouse
Fn1 F	ATGTGGACCCCTCCTGATAGT	mouse
Fn1 R	GCCCAGTGATTTCAGCAAAGG	mouse
CTGF F	GGGCCTCTTCTGCGATTTC	mouse
CTGF R	ATCCAGGCAAGTGCATTGGTA	mouse
Tgfb3 F	CAGGCCAGGGTAGTCAGAG	mouse
Tgfb3 R	ATTTCCAGCCTAGATCCTGCC	mouse
NCoR1 F	CTGGTCTTTCAGCCACCATT	mouse
NCoR1 R	CCTTCATTGGATCCTCCATC	mouse
cJun-F	GCATTTGGAGAGTCCCTTCTC	mouse
cJun-R	TTAAGGCGCAGAAGAGATTTG	mouse
MCP-1 F	TTAAAAACCTGGATCGGAACCAA	mouse
MCP-1 R	GCATTAGCTTCAGATTTACGGGT	mouse
Glut4 F	GTGACTGGAACACTGGTCCTA	mouse
Glut4 R	CCAGCCACGTTGCATTGTAG	mouse
ACTA1 F	AGCAGCAGAAACTAGACACCA	Rat
ACTA1 R	CCACGATGGATGGGAACACA	Rat
Nppa F	CTTCTTCCTCTTCCTGGCCT	Rat
Nppb R	TTCATCGGTCTGCTCGCTCA	Rat
GAPDH F	GCGAGATCCCGCTAACATCA	Rat
GAPDH R	CTCGTGGTTCACACCCATCA	Rat
MEF2a F	AGAGGAACCGACAGGTGACT	Rat
MEF2a R	AGTGCTGGCGTACTGAAACA	Rat
MEF2c F	ACAAGCCAAATCTCCTCCCC	Rat
MEF2c R	ACATCCTCAGACACTGATGGC	Rat
MEF2d F	GCATCATTTGAACAATGCCCA	Rat
MEF2d R	GGCCCTGGCTGAGTAAACTT	Rat
18s F	CTTAGAGGGACAAGTGGCG	Human
18s R	ACGCTGAGCCAGTCAGTGTA	Human
Nppa F	GCAGGATGGACAGGATTGGAG	Human
Nppa R	GTCCTCCCTGGCTGTTATCT	Human
Myh7 F	GTCTTTCCCTGCTGCTCTCAG	Human
Myh7 R	GGGCTACTCAAGTGTGTCTAC	Human
Nppb F	CTTTCCTGGGAGGTCGTTCC	Human
Nppb R	GTTGCGCTGCTCCTGTAAC	Human