
Supplementary Methods

Evaluating the performance of CNV detection tools using simulated data

Data generation

To evaluate CNV detection algorithms in a controlled setting, we simulated a large number
of next-generation sequencing datasets based on rearranged versions of the S. lycopersicum
Heinz 1706 reference genome (assembly version SL3.0) of tomato [1]. Although simulations
do not contain all of the variation found in real sequencing data, they provide a way to obtain
a lower bound of the performance of CNV detection callers in real scenarios. In order to
perform many simulations in a reasonable amount of time, we generated datasets from the
two largest chromosomes (1 and 9) only. Gap regions were excluded from simulations.

The following parameters were varied during simulations:

• Ploidy Both a diploid and a tetraploid version of chromosome 1 and 9 were simulated
with a SNP rate of 0.02 using the haplogenerator.py script of Haplosim (git commit id
7bbc639f) [2], reflecting the varying levels of ploidy found among plant genomes. The
distances between SNPs were modeled using a Poisson distribution with λ chosen
according to the chosen SNP rate. For simplicity, all SNPs were biallelic. In the
diploid genome, 50% of SNPs were homozygous relative to the reference sequence
and 50% were heterozygous. In the tetraploid genome, monoplex, duplex, triplex and
quadruplex SNPs were simulated in equal proportions, assigning 25% of SNPs to each
category.

• Variant size and type Deletions, insertions, single-copy tandem duplications, in-
trachromosomal dispersed duplications, and interchromosomal dispersed duplications
were drawn from different size intervals (Additional file 2: Table S4). Events were
randomly distributed to different genomic locations using bedtools [3] (version 2.27.1)
shuffle. After being assigned a genomic location, events were simulated using the R-
package RSVsim [4] (version 1.14.0). The novel sequences inserted during insertion
events were sampled from a randomly generated genomic sequence of 100 Mb. To
capture the effect of variant dosage, a fraction of events were simulated in only a
subset of the haplotype sequences. In diploid genomes, one half of the variants were
simulated in one of the haplotypes (heterozygous variants) and the other half in both
(homozygous variants). In tetraploid genomes, events were equally distributed over
the following dosages: monoplex, duplex, triplex, and quadraplex. To prevent biasing
the results towards one particular choice of genomic locations, 10 sets of variants were
generated for each ploidy level.

• Coverage Next-generation sequencing datasets were simulated from each of the re-
arranged genomes using ART [5] (version 2.5.8). This tool mimics the sequencing
protocol of Illumina sequencing platforms to generate a set of reads with realistic
technical biases. To cover both low and high coverages, genomes were “sequenced”
in silico at 5x, 10x, 20x and 50x coverage, using the paired-end HiSeq 2500 protocol
with the read length set at 150 bp, the mean insert size at 400 bp and the standard
deviation of the insert size at 40 bp.

Eighty different datasets were simulated in total, all having a different combination of
ploidy level, variant sizes, genomic locations, and coverage. Each dataset was aligned to the
reference sequence of S. lycopersicum Heinz 1706 chromosomes 1 and 9 using the Speedseq
pipeline [6] (version 0.1.2) with default parameters, similar to the alignment step in the
calling stage of Hecaton.
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Benchmarking tools

We applied Delly, LUMPY, Manta, and GRIDSS to simulated data and converted their
output to a common representation using the post-processing step of Hecaton. To assess
whether the post-processing step improved the detection of dispersed duplications, it was
run with and without correction of erroneously represented CNVs. Delly, LUMPY, Manta,
and GRIDSS were all applied to the simulated datasets using minimum filtering parameters,
in order to minimize variation caused by the choice of parameters for each different tool.

We assessed the performance of tools using two different metrics: recall and precision.
Recall is defined as the number of true positives found by a tool divided by the number of
simulated events. A detected variant was labeled as a true positive if it had more than 50%
reciprocal overlap with a simulated variant of the same type. Otherwise, it was labeled as a
false positive. Precision is defined as the number of detected true positives divided by the
total number of detected variants.

Evaluating the performance of CNV detection tools using real data

Validation tools

To determine whether CNV events called in real data were true or false positives, we em-
ployed two tools that validate calls detected from short Illumina paired-end read data by
using long PacBio reads. We evaluated deletions, tandem duplications and dispersed du-
plications using VaPoR [7], which uses alignments of PacBio reads to validate deletion,
duplication, and insertion events called from Illumina data. However, VaPoR is unable to
validate insertions of which the size of the inserted sequence could not be exactly deter-
mined by the CNV detection algorithm. As this is the case for a large fraction of insertions
detected from Illumina reads, we evaluated insertions using a different tool, Sniffles [8],
that directly calls structural variants from alignments of PacBio reads. We kept CNVs
discovered by Sniffles if they were supported by at least 5 PacBio reads.

Both VaPoR and Sniffles require alignments of PacBio data to the same reference genome
that was used to produce the calls based on Illumina data. We used NGMLR [8], a mapper
optimized for detecting structural variation, to generate such alignments. In the case of A.
thaliana Ler, the Illumina and PacBio data were generated from two different Ler genotypes,
respectively Ler -1 and Ler -0, as there was no publicly available PacBio data for the Illumina
sample used in this study. We do not expect that using these two different genotypes led
to any problems regarding validation, as only a marginal amount of structural variation
was found between them [9]. Deletions, tandem duplications, and dispersed duplications
that were assigned a score of at least 0.15 by VaPoR were labeled as true positives, as
recommended by the developers of VaPoR [7]. It should be noted that VaPoR only validates
the insertion site of a dispersed duplication and not whether the location of the template
sequence of the duplication was called correctly. Insertions were labeled as true positives if
they were located within 50 bp of an insertion detected by Sniffles.

To determine the rate at which VaPoR and Sniffles correctly label false and true posi-
tives, we used them to validate events called by Manta from simulated 10x coverage Illumina
datasets of S. lycopersicum, using PacBio reads simulated from the same genome with PB-
SIM [10] (40x coverage, Data type: CLR). VaPoR tends to falsely validate calls larger than
1 Mb (Additional file 1: Figure S6). To prevent such calls from influencing our results,
we excluded them from our evaluation. VaPoR was able to correctly validate the large
majority of true positive events (Additional file 1: Figure S9), as only a small percentage
of true dispersed duplications were incorrectly labeled as false positives. Sniffles mislabeled
only a small percentage (10 %) of true positive insertions as false positives, most of which
consisted of calls with unknown size (Additional file 1: Figure S10). It did not label any
false positive insertions as true positive (Additional file 1: Figure S11). Based on these
findings, we concluded that both VaPoR and Sniffles accurately validate events called from
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Illumina data and are appropriate tools for generating a ground truth callset that can be
used to optimize and evaluate Hecaton.

Benchmarking tools

Two metrics were used to evaluate the performance of tools: the number of true positives
(calls that were validated by VaPoR or Sniffles) and the precision. The number of true
positives serves to approximate the recall of a particular tool when applied to real datasets,
as we do not know the true number of CNVs in real data. Precision is defined as the
number of true positives divided by the total number of calls that could be validated by
VaPoR or Sniffles. VaPoR is unable to validate calls located in regions too rich in repeats.
We excluded such unvalidated calls from our evaluation.

We evaluated the performance of random forest models and individual tools on the held-
out test sets of Col-0–Cvi-0 and Suijing18 and on data of A. thaliana Ler and maize B73.
To evaluate performance on low coverage data, which is often encountered in plant studies,
all datasets were subsampled to 10x coverage using seqtk [11]. The output of individual
tools can contain calls that are highly similar to each other, in some cases differing only
by a single base pair. We consider such calls to be duplicates in practice. To prevent
such duplicates from influencing results, we merged calls using the same criteria as those
used in the merging step of Hecaton before evaluating each tool. Precision-recall curves
of individual tools were constructed by varying the minimum number of discordantly read
pairs and split reads supporting each call in the output. Curves for random forest models
were produced by varying the threshold of the probabilistic score used to filter calls from
the final output.

For the Col-0–Cvi-0 and Suijing18 data, we applied the random forest models to the fea-
tures of the held-out calls and compared the results to the labels that were assigned to these
calls by VaPoR and Sniffles. In order to determine whether the sequencing coverage used
during model training has a significant effect on performance, we evaluated two different
random forest models: one trained on 10x coverage data and one trained on 50x coverage
data. The precision and number of true positives of individual tools were computed by
only taking into account calls located on chromosomes present in the held-out set. In the
case of the A. thaliana Ler and maize B73 samples, we evaluated both the models and
the individual callers using all chromosomes, as these samples are independent from the
ones used to train the random forest models. For the maize B73 sample, a large fraction
of calls could not be validated by VaPoR due to the highly repetitive nature of the used
reference assembly (Additional File 2: Table S3). Therefore, we only included calls of B73
that overlapped for at least 50% of their length with genes or the 5000 bp interval upstream
or downstream of genes, using bedtools (version 2.27.1) slop and bedtools intersect. We
believe that this benchmark is still a representative measure of performance, as downstream
analysis of CNVs detected by short reads generally focuses on genic, non-repetitive regions.

To compare the performance of Hecaton to that of other ensemble methods used to
detect CNVs, we used the same datasets to benchmark three methods that aggregate the
results of different tools: MetaSV [12], SURVIVOR [13] and Parliament2 [14]. We would
have liked to compare the performance of Hecaton to that of FusorSV [15] as well, but this
particular ensemble method is unfortunately not applicable to plant data.

MetaSV (version 0.5.4) was evaluated by first running BreakDancer (version 1.4.5-
unstable-66-4e44b43 (commit 4e44b43)), Pindel (0.2.5b9, 20160729), and CNVnator (v0.3.2)
on alignments generated by the calling stage of Hecaton. The resulting callsets were inte-
grated by running MetaSV with its soft-clip detection and local assembly features turned
on. CNVnator was run using a window size of 200. Pindel and MetaSV require the mean
and standard deviation of the insert size of the used datasets as parameters; these were
computed with Picard CollectInsertSizeMetrics (version 2.9.2) using a sample of 1 million
reads for each dataset. All other parameters of the tools were set to their default values.
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SURVIVOR (version 1.0.5) was used to generate a consensus callset out of the output
of Delly, LUMPY, and Manta. All three callers were run using default parameters. We ran
SURVIVOR with the same parameters used by its developers in previous work [13, 8]. With
these parameters, calls between the tools are collapsed into a single call if they are of the
same type and if their start and end coordinates are within 1 kb of each other. Consensus
calls were kept if they were supported by least two out of three tools.

We ran Parliament2 (version 0.1.9-13-g37d63065) with the versions of BreakDancer,
Delly, LUMPY, and Manta that were included with its Docker image, merging calls using
the –genotype parameter. The resulting calls were merged using the same criteria as those
used in the merging step of Hecaton to prevent double counting calls that likely correspond
to the same CNV event.

Applying Hecaton to tomato data

To demonstrate the utility of Hecaton, we applied it to short read data of both domesticated
and wild tomato accessions (Additional file 2: Table S2). We chose to apply Hecaton to
these samples for two reasons. As the size of the reference genome of tomato (828 Mb) is
significantly larger than that of A. thaliana (119 Mb) and rice (374 Mb), applying Hecaton
to tomato samples should indicate whether its run time and memory requirements scale
well to crop data. Moreover, as copy number variation is thought to be involved in many
of the phenotypic adaptations underlying the domestication of crops [16], these datasets
should provide an accurate expectation of the number of CNVs we should expect to find in
crop samples.

Detecting and characterizing CNVs

To obtain a lower bound on the number of calls that we can expect to find in tomato
samples, we aimed to find a conservative, high confidence set of CNVs. We detected CNVs
in each sample relative to the S. lycopersicum Heinz 1706 reference genome (assembly
version SL3.0) using Hecaton. We only kept CNVs which had a score of 0.75 in the output
of each sample, as filtering calls using this threshold resulted in a precision of at least 80%
for all four types of CNVs in the datasets of Col-0–Cvi-0, Suijing18, and Ler. To get an
indication of the biological relevance of detected CNVs, we computed the overlap of CNV
events with annotated repeat and gene models (version ITAG3.2) using bedtools (version
2.27.1) intersect.

Benchmarking running time and memory

The running time and memory usage of Hecaton was determined by using the Nextflow
command line options ”-with-report” and ”-with-trace”. These options report CPU time,
wall clock time and the resident set size of each executed process. The three metrics are
internally computed by the Nextflow framework using the unix commands “ps” and “date”.

Filtering CNVs based on read depth

To filter CNVs based on read depth, we computed the read depth of regions involved in
CNV using duphold [17] (v0.1.1). This tool computes the median read depth of a CNV
event and normalizes it by dividing it by three different values: the median read depth of
the rest of the chromosome that the event is located on, the median read depth of regions
in the genome with similar GC-content, and the median read depth of the 1000 bp regions
flanking it. We expected that a true positive CNV event has normalized read depths that
differ significantly from 1. Therefore, we filtered calls if any of the three normalized read
depths had a value between 0.7 and 1.3. These thresholds were chosen based on distribution
plots of the three normalized read depths of CNVs detected in domesticated and wild tomato
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accessions (Additional file 1: Figure S12). The plots showed a small peak between these
values, which we assumed to be false positive CNV events. We additionally filtered calls
of which any of the normalized read depths had a value higher than 4, indicating spurious
coverage.

Filtering CNVs based on the presence of gaps in their flanking regions

To filter CNVs based on the presence of gaps in their flanking regions, we extracted the 200
bp regions flanking the 5’ and 3’ side of each breakpoint using bedtools (version 2.27.1) flank
and bedtools getfasta. Next, we computed the fraction of Ns in these flanking regions using
a custom Python script. Finally, we filtered calls if at least 10% of their flanking regions
consisted of Ns. This threshold was chosen based on a distribution plot of the fraction
of Ns in flanking regions of CNVs detected in domesticated and wild tomato accessions
(Additional file 1: Figure S13). We expected that the presence of gaps correlates with the
location of false positives, but that there is no relationship between the presence of gaps
and the location of true positives. Therefore, we assumed that any peaks that appear in
the distribution plot should be mainly caused by the presence of false positive CNVs. As
such peaks were found to the right of the value 0.1 in the plot (Additional file 1: Figure
S13), we chose to set the filtering threshold to 10%.
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