
Supplemental Material−Extended Methods 

 

Cell Culture 

mESCs were a provided by A. Smith (Ying et al. 2003). Cell were cultured at 37 °C and 

with  5% CO2 on gelatin coated plates in mESC growth medium composed of knockout 

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 15% ES cell-

qualified Fetal bovine serum, 0.1 mM non-essential amino acids, 100 μM β-

mercaptoethanol, 50 µg ml−1 penicillin, 50 µg ml−1 streptomycin, 100 units ml−1 

Leukemia inhibitory factor, 2 mM L-glutamine, 3uM CHIR99021 and 1 uM PD0325901. 

 

Virus production 

Virus were packed in 293T cells. Transfection was performed using Polyethylenimine, 

and the plasmids pCMV-VSVG (a gift from Bob Weinberg; Addgene plasmid # 8454; 

http://n2t.net/addgene:8454; RRID:Addgene_8454) (Stewart et al. 2003) and psPAX2 

(a gift from Didier Trono; Addgene plasmid # 12260; http://n2t.net/addgene:12260; 

RRID:Addgene_12260). The viruses were harvested at 48 and 72h post transfection. 

For the CAS9 virus, the lentiCas9-Blast was used (a gift from Feng Zhang; Addgene 

plasmid # 52962; http://n2t.net/addgene:52962; RRID:Addgene_52962) (Sanjana et 

al. 2014), and for the knockdown library the Brie pooled library was used (a gift from 

David Root and John Doench; Addgene #73633) (Doench et al. 2016). 

 

Generation of CAS9 expressing cells 

mESCs were transfected with a lentivirus containing the CAS9 expression vector at 

increasing multiplicity of infection (MOI) from 0.5 to 4 in four different wells. The cells 



were then treated with Blasticidin for 7 days, and the well with the highest number of 

surviving cells was maintained (MOI 4). 

 

 Screen for essential genes using pooled CRISPR library 

The Brie knockout library was used in the screen. The library targets 19,674 genes, 

with 4 gRNAs targeting each gene. In addition, the library contains 1000 control gRNAs 

which allows for an estimation of random drift effects on gRNA abundance. CAS9 

expressing mESC were transfected with lentiviruses containing the Brie pooled library 

at MOI ~ 0.4. The cells were treated with puromycin for 7 days. Following the antibiotic 

selection, the cells were allowed to proliferate for additional 10 days. Cells were 

passaged at days 8, 11, 15 and 18 post transfection. For each passage a minimum 

number of 31 million cells was retained for sequencing and additional 31 million cells 

were re-plated, this allowed for a maintenance of adequate library representation (an 

average of ~400 cells per gRNA). 

 

DNA extraction, amplification and sequencing 

 Genomic DNA was extracted from the cells using Zeymo quick-DNA miniprep kit. The 

extracted DNA was amplified using Q5® High-Fidelity 2X Master Mix, during the 

amplification adaptors and barcodes were attached. In addition to DNA samples from 

the transfected cells, a sample of the plasmid library used for the lentivirus production 

was also sequenced. To minimize variance originating from amplification biases, each 

sample was amplified in 3-4 different PCR reactions and the products were pooled. 

The PCR products were purified using AMPure beads. Samples were sequenced on a 

NextSeq machine (Illumina). Reads were counted by first locating the CACCG sequence 



that appears in the vector 5′ in all gRNA inserts. The next 20 bases are the gRNA insert, 

which were then mapped to a reference file of all possible gRNAs present in the library 

using bowtie2 (Sanjana et al. 2014).  

 

Identification of essential genes 

For all samples, library sizes were normalized using calcNormFactors function in 

edgeR, which uses the trimmed mean of the M values method (Sanjana et al. 2014). 

This normalization corrects for under estimation of gRNAs abundances due to the 

presence of a few highly represented gRNAs. Following the normalization, the log fold 

change of each gRNA in each proliferation day was calculated relative to the initial 

counts in the plasmid library. In order to determine which genes are under significant 

positive or negative selection we used a simulation-based approach that is based on 

comparing the fold change of gRNAs targeting each gene to the fold change of 

randomly selected control gRNAs. This approach allows the detection of negative and 

positive selection that effect only gene targeting gRNAs in the presence of random 

drift. For each proliferation day we ranked all gRNAs by their representation fold 

change relative to the library. For each gene we then calculated the sum of ranks of 

its gRNA across all days. This score was compared to an empirical null distribution 

generated by randomly selecting 4 control gRNA and calculating their sum of ranks 

(10,000 simulation). The P-value for each gene was calculated by dividing the number 

of time its score was lower or equal to the scores obtained by the random simulation 

of control gRNAs. P-values were corrected for multiple testing using Benjamini-

Hochberg false discovery rate (FDR) procedure. CRISPR score were defined as the sum 

of ranks for each gene divided by 104. 



 

Testing for a possible bias arising from amplified genomic regions 

Recent studies reported that CAS9-mediated cleavage of amplified genomic regions 

could cause a DNA damage response that results in cell death (Ruan et al. 2008; Ihry 

et al. 2018). Thus, low CRISPR scores of genes located in those regions will not 

necessarily reflect essentiality. In order to test this in our data, we used a sliding 

window approach to identify contiguous stretches of low CRISPR scores. To this end, 

for each chromosome we sorted the genes according to their location and used a 

sliding window of 40 genes. Windows in which more than 30% of the genes had a 

CRISPR sore in the bottom 5% were further examined. We detected two such gene 

clusters on chromosome 13 (see figure below). When examining the clusters closely, 

we found that they contain mostly histone genes and that non-histone genes in those 

regions did not have low CRISPR scores. Therefore, we concluded that the clusters 

probably reflect true essentials and not a DNA damage response.  

 

Amplified genomic regions do not generate false-positive hits. (A) The number of 

genes in the bottom 5% of the CRISPR scores for each sliding window for genes in 

chromosome 13, red line indicates a threshold of 30% of the genes in the window. (B) 

The CRISPR scores of the two clusters in chromosome 13 containing genes with low 

crisper scores are shown for histone genes (blue) and non-histone genes (red). 

 



Overlap of essential genes with previous published dataset 

The overlap between genes found to be under significant negative selection (FDR 

corrected P < 0.05) in the screens was tested using Fisher's exact test. Welch's t-test 

was used to test the significance for the difference in the quantitative fold change (day 

15 post transfection) between genes found to be under significant or non-significant 

negative selection in previous screen (Tzelepis et al. 2016). A Combined P-value for 

the two screens were obtained using the sum z (Stouffer's) method (Stouffer et al. 

1949; Whitlock 2005). In this method p-values are converted to Z values, combined, 

and then converted back into P-values.  

 

GO terms and KEGG pathway enrichment analysis  

GO terms enrichment of essential genes was performed using the Gorilla tool (Eden 

et al. 2009) on the background of all genes tested in the screens. GO terms significant 

at FDR corrected value P < 0.05 were summarized using reviGO (Supek et al. 2011). 

Terms that were not specific and contained more than 20% of the tested genes were 

removed. In addition, terms for which all the essential genes overlapped other more 

enriched terms were removed. Comparison of GO term enrichment between essential 

genes in the fast and gradual declining group and between genes essential specifically 

in mESCs or specifically in hESCs relative to genes essential in both mESCs and hESCs 

was performed using Fisher's exact test. Comparison of GO term enrichment between 

all mESCs essential genes and ESCs specifically essential genes was performed on all 

the terms significantly enriched for ESCs essential genes and the top 10 terms enriched 

for all essential genes. P values were calculated using a permutation test by sampling 

187 genes (the number of ESCs essential genes) from the mESCs essential gene list and 



testing their enrichment for each GO term. P values were corrected for multiple 

testing using the FDR correction. KEGG pathways enrichment analysis of essential 

genes was done using the clusterProfiler R package (Yu et al. 2012). Comparison of 

KEGG pathways enrichment between essential genes in the fast and gradual declining 

groups and between genes essential specifically in mESCs or specifically in hESCs 

relative to genes essential in both mESCs and hESCs was performed using Fisher's 

exact test  

 

Analysis of paralog genes 

Paralog genes were identified using ensemble biomart (Smedley et al. 2015) and 

TreeFam (Ruan et al. 2008) databases. The significance of the difference between the 

CRISPR score distribution of genes with and without a paralog in the top KEGG 

pathways was tested using a Mann-Whitney test. The enrichment for genes without a 

paralog for genes in the fast and gradual declining clusters and for non-essential genes 

was tested using a fisher's exact test. 

 

Cluster identification based on gRNA kinetics 

Clustering of essential genes in mESC was performed based on the correlation 

between the depletion rates for all essential genes. The correlation matrix was then 

used for hierarchical clustering using R hclust function with the default settings. The 

dendrogram branches were cut to obtain two main clusters. 

 

 

 



Gene expression in ESCs  

Gene expression for mESCs was obtained from the study of Tesar et al. (Tesar et al. 

2007) and for hESCs from the study of de Leemput et al. (van de Leemput et al. 2014). 

For mESCs microarray data was normalized using quantile normalization and the mean 

expression across 3 samples for each gene. For hESCs normalized counts from RNA-

seq data were used, and for each gene the mean expression across 4 samples was 

calculated. To test for significance differences in gene expression between groups we 

used the Welch's t-test in case of two groups, and Tukey test for 3 groups. 

 

Difference in mean half-life between genes in the gradual and fast declining group 

Data on protein half-life was obtained from Mathieson et al. (Mathieson et al. 2018) 

and Schwanhausser et al. (Schwanhäusser et al. 2011). The difference in the mean 

log10 half-life for genes in the fast and gradual declining groups was determined using 

Welch's t-test.  

 

Comparison of essential genes between mESCs, hESCs and cancer cell lines  

Data on essential genes in haploid hESCs grown on feeder cells was obtained from 

Yilmaz et al. (Yilmaz et al. 2016); data on essential genes in diploid hESCs grown on 

feeder cells was obtained from Mair et al. (Mair et al. 2019). Data on essential genes 

in human cancer cell lines was obtained from project Achilles (Meyers et al. 2017). 

Genes essential in cancer cell lines were defined as genes in the common essential 

gene list (genes in the top ranked essential genes in >90% of cell lines). Haploid hESCs 

were infected with a CRISPR knockout library composed of ~180,000 gRNAs (10 gRNAs 

per gene), cells were collected on days 7,23 and 30 (Yilmaz et al. 2018). Diploid hESCs 



were infected with a  CRISPR knockout library composod of 71,090 gRNAs (4 gRNAs 

per gene), cells were collected on days 4,8 and 12(Mair et al. 2019). 

Human mouse paralogs were identified using biomart (Ensembl genes 97)(Smedley et 

al. 2015). Genes without direct 1:1 orthologs were filtered out and not used in the 

human-mouse comparison.  Genes essential only in ESCs were defined as genes 

essential in mESCs and in at least one of the hESCs (FDR corrected P < 0.05) but not 

present in the human cancer cell lines common essential gene list . Genes essential 

specifically in mESCs were defined as genes not essential in both hESCs . Genes 

essential specifically in hESCs were defined as genes essential in at least one of the 

hESCs lines (FDR corrected P < 0.05) and not essential in mESCs.  

 

Differential expression analysis between mESCs and EpiSCs 

Microarray gene expression data for 3 mESCs samples and 3 EpiSCs samples was 

obtained from Zhou et al. (Zhou et al. 2012). The data was normalized by quintile 

normalization and differential expression was performed using limma (Ritchie et al. 

2015). Association with genes significantly upregulated in mESCs relative to EpiSCs 

was determined using Fisher's exact test.  

 

Overlap with mouse embryonic lethal genes and human LoF intolerant genes 

A list of genes which have a knockout mouse with a phenotype of prenatal lethality, 

abnormal survival (excluding extended life span), decreased prenatal and postnatal 

growth (, excluding increased body size, weight gain and diet related phenotypes) was 

obtained from the mouse Genome Informatics (MGI) database( Table S5) (Bult et al. 

2018). The overlap between genes identified as essential in mESC and the list of genes 



associated with growth and lethality in mice was tested only for genes that have a 

knockout mouse information in the MGI database. The significance of the overlap was 

tested using Fisher's exact test. A list of genes defined as human LoF intolerant was 

obtained from Lek et al. (Lek et al. 2016). The significance of the overlap between 

human LoF intolerant genes and essential genes in mESCs and hESCs was calculated 

using Fisher's exact test. 

 

Association of essential genes with human phenotypes 

Analysis of human phenotypes for genes essential in mESCs or hESCs was based on 

phenotypes in the Human Phenotype Ontology (Köhler et al. 2019). The significance 

of the association was calculated by Fisher's exact test and P-values were corrected 

for multiple testing by FDR procedure. Significant phenotypes with more than 90% 

overlap of genes with a more significant phenotype were filtered out. Association with 

developmental and neurodevelopmental phenotypes for genes essential in mESCs or 

hESCs, was based on the DDG2P dataset from the deciphering developmental 

disorders project (Wright et al. 2015). Neurodevelopmental phenotypes were defined 

as any developmental phenotype involving the brain. The significance of the 

association was calculated using Fisher's exact test. 

 

Gene expression during in vitro human and mouse corticogenesis 

Neurodevelopmental disorders risk genes, as defined by the deciphering 

developmental disorders project (Wright et al. 2015) or genes present in the 

developmental brain disorders database (tires 1 & 2) (Gonzalez-Mantilla et al. 2016), 

were clustered according to their expression patterns during in vitro corticogenesis of 



mouse (Hubbard et al. 2013) or human (van de Leemput et al. 2014) cells. Clustering 

was performed using R hclust function with the default settings (the complete 

method).  
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