
 

 

Does host socio-spatial behavior lead to fine-scale spatial genetic structure of its 

associated parasites? 
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Supplementary data 1: Spatial structure of Mediterranean mouflon   

Spatial data were collected in a National Hunting and Wildlife Reserve (1,658 ha, 532-1,124 m above 

sea level) which is situated in the central part of the Caroux-Espinouse massif (see [4], Figure 1). The 

Mediterranean mouflon population inhabiting the reserve has been monitored since 1974 by capture-

mark-recapture. Two types of spatial data were used: (i) visual observations, since marked animals 

were visually monitored year-round and spatially located on a map virtually divided into 125x125 m 

squares and (ii) GPS data, since numerous individuals have also been equipped with GPS collars 

(Lotek 3300S, revision 2; Lotek Engineering Inc., Carp, ON, Canada) since 2006. GPS data were 

collected according to two different schedules: one recording locations intensively every 20 minutes 

over 48-hour periods 1-3 times per month, and one recording locations continuously every 2 hours 

(see [6-7] for more details).   

In subsequent analyses, only adult individuals having a fixed home range (i.e. two or more 

year-old females and four or more year-old males, see [1-3]) were considered. For individuals 

followed by GPS (N = 146), we randomly subsampled 20 GPS locations by animal to avoid 

oversampling of a very local zone over the study area (see [10]). For individuals monitored by visual 

resightings, only those having at least four observations were considered in subsequent analyses (N = 

290). We pooled both datasets to compute the arithmetic center of all its locations for each individual. 

Spatial data were thus available for a total of 436 individuals (332 females and 104 males).  

To determine whether Mediterranean mouflon of both sexes show socio-spatial structuring, we 

performed partitioning using the medoids clustering method [5] on Euclidean distances between these 

averaged locations. The best partitioning solution (number of clusters presents, k) was chosen as the 

one maximizing the silhouette width of value of k tested. As recommended by Martins et al. [8], 

spatial analyses were also performed with a minimum number of 10 visual resightings per individual 

instead of four, leading to the same results (not shown).  

 An optimal value of six and eight clusters for males and females respectively was observed 

(see Supplementary figure 1), highlighting the existence of a marked spatial structure, even at the local 

scale (as compared to our entire studied area) of the Wildlife Reserve.  

 



 

 

 

 

Supplementary Figure 1: Silhouette width of different clustering solutions performed on spatial 

data for the Mediterranean mouflon population of the Caroux-Espinouse massif. 

 

 

 

  



 

 

Supplementary data 2: Microsatellite panel  

Supplementary Table 1: Characteristics of the five microsatellite loci and the three multiplexes used to genotype Haemonchus contortus sampled in the 

Caroux-Espinouse massif.  

Microsatellite Primer F (5'-3') Primer R (5'-3') 
Size 

(pb) 

Annealing 

(°C) 
Reference 

Fluorescent 

dyes 
Multiplex 

Included in main 

article analyses 

Hcms25 
ACA-GGA-GTT-ATG-

AAT-TTC-CGG 

GCT-TCA-GTT-TGA-

ATT-GCT-TCC-C 
170-312 60 [9] FAM A Yes 

Hcms8a20 
CAA-ACT-TGA-CCC-

GAC-CTC-TC 

AGC-GCG-TTG-CAC-

AAA-ACA-TT 
170-300 60 [11] NED A No 

Hcms27 
ACA-TAA-ATC-TAG-

GTA-GGG-TAG-G 

ACA-GAA-GAA-CGA-

TCA-GAA-TCT-C 
338-358 58 [9] FAM B No 

Hcms40 
TCG-ATA-GTT-GTC-

ACT-TCC-AA 

TCG-AAT-CCT-GAG-

TCT-ACC-GT 
233-299 58 [11] FAM B Yes 

Hcms33 
ATA-GCG-GTT-CGG-

AGG-GGT-TTC 

CCC-CGT-CAA-ATA-

AAA-GGC-TAG-A 
180-240 58 [9] FAM C Yes 

Hcms36 
GCA-TAG-CGG-CAA-

GGA-CGT-ATG-G 

CAT-GAC-GTA-CTC-

TGG-TTG-TTC-G 
138-158 58 [9] FAM C Yes 

Hcms22co3 
GAG-CTT-CAT-TGA-

GAG-AAT-GGA-ATT 

GGT-CCT-CAT-ATA-

CGA-TCA-ACT-AA 
227-258 58 [11] NED C Yes 



 

 

Supplementary data 3: Detailed results of spatial genetic structure assessment  

 

Supplementary Figure 2: sPCA eigenvalues for H. contortus sampled in the Mediterranean 

mouflon population of the Caroux-Espinouse massif. 

The first positive eigenvalue was 0.018, while the next eigenvalues were lower than 0.010. The first 

negative eigenvalue was -0.023, while the next eigenvalues were lower than -0.020.  

 

  



 

 

 

Supplementary Figure 3: Posterior density and modal number of genetic clusters inferred by 

GENELAND along the MCMC chain of the best run (i.e. highest posterior density) after burn 

in.  
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