
 
Supplementary Figure 1 

Flow cytometry using fluorophore-conjugated MULTI-seq barcode oligonucleotide probes demonstrates robust LMO and CMO 
labeling efficiency on living cells and nuclei, as well as label stability over time and LMO quenching with BSA, related to Figure 1 

(A) Live-cell LMO (gold) and CMO (purple) labeling efficiency varies predictably across a titration curve of anchor and co-



anchor LMO/CMO concentrations. Qualitative trends shown with histograms (top) are supported by regression 
analyses (bottom) demonstrating technical reproducibility and linear relationship between LMO/CMO concentration 
and fluorescence abundance. n = 10,000 events/sample. Data represented as mean ± SEM over 3 experimental 
replicates. 

(B) Time-course analysis of LMO and CMO scaffold loss and exchange on ice following mixing of live cell populations 
labeled with either AF647- or FAM-conjugated barcode probes. Qualitative trends (contour plots, left) document how 
LMO or CMO labeled cells maintain fluorescence signal over unlabeled control cells (grey) over time. Quantitative 
analysis (right) illustrates how LMO scaffolds more stably embed in the plasma membrane relative to CMO scaffolds, 
although sample-to-sample cross-talk is minimal. n = 10,000 events/time-point. Experiment was repeated 3 times 
with similar results. 

(C) Same experiment as described in Fig. S1A, except with nuclei. n = 10,000 events/sample. Data represented as mean 
± SEM over 3 experimental replicates. 

(D) Same experiment as described in Fig. S1B, except with nuclei. Difference between LMO and CMO membrane 
residency kinetics does not occur during nuclear membrane labeling. n = 10,000 events/time-point. 

(E) Same experiment as described in Fig. S1C, except at room temperature. The LMO advantage in label stability shown 
at 4 °C is lost at RT as both CMO (purple) and LMO (gold) labels decrease at similar rates. n = 10,000 events/time-
point 

(F) Live-cells were labeled with LMO or CMO at 200 nM and diluted with either PBS (black) or 1% BSA in PBS (red). The 
cells were pelleted and the supernatant was transferred to unlabeled cells to determine the labeling efficiency of 
remaining LMO or CMO label. Dilution with BSA leads to a decrease in supernatant labeling relative to dilution with 
PBS alone. n = 10,000 events/sample. Data represented as mean ± SEM over 3 experimental replicates. 

 



 
Supplementary Figure 2 

MULTI-seq with LMOs preserves endogenous gene expression during single-cell RNA sequencing, while both LMOs and CMOs are 
non-perturbative during single-nucleus RNA sequencing, related to Figure 1. 



(A) Live-cell LMO (gold) and CMO (purple) labeling efficiency varies predictably across a titration curve of anchor and co-
anchor LMO/CMO concentrations. Qualitative trends shown with histograms (top) are supported by regression 
analyses (bottom) demonstrating technical reproducibility and linear relationship between LMO/CMO concentration 
and fluorescence abundance. n = 10,000 events/sample. Data represented as mean ± SEM over 3 experimental 
replicates. 

(B) Time-course analysis of LMO and CMO scaffold loss and exchange on ice following mixing of live cell populations 
labeled with either AF647- or FAM-conjugated barcode probes. Qualitative trends (contour plots, left) document how 
LMO or CMO labeled cells maintain fluorescence signal over unlabeled control cells (grey) over time. Quantitative 
analysis (right) illustrates how LMO scaffolds more stably embed in the plasma membrane relative to CMO scaffolds, 
although sample-to-sample cross-talk is minimal. n = 10,000 events/time-point. Experiment was repeated 3 times 
with similar results. 

(C) Same experiment as described in Fig. S1A, except with nuclei. n = 10,000 events/sample. Data represented as mean 
± SEM over 3 experimental replicates. 

(D) Same experiment as described in Fig. S1B, except with nuclei. Difference between LMO and CMO membrane 
residency kinetics does not occur during nuclear membrane labeling. n = 10,000 events/time-point. 

(E) Same experiment as described in Fig. S1C, except at room temperature. The LMO advantage in label stability shown 
at 4 °C is lost at RT as both CMO (purple) and LMO (gold) labels decrease at similar rates. n = 10,000 events/time-
point 

(F) Live-cells were labeled with LMO or CMO at 200 nM and diluted with either PBS (black) or 1% BSA in PBS (red). The 
cells were pelleted and the supernatant was transferred to unlabeled cells to determine the labeling efficiency of 
remaining LMO or CMO label. Dilution with BSA leads to a decrease in supernatant labeling relative to dilution with 
PBS alone. n = 10,000 events/sample. Data represented as mean ± SEM over 3 experimental replicates. 

 



 
Supplementary Figure 3 

HMEC MULTI-seq sample classification results and technical replicate, related to Figure 2. 

(A) Schematic overview of 96-plex HMEC scRNA-seq analysis. 96 distinct HMEC cultures consisting of LEPs alone 
(blue), MEPs alone (green), or both cell types together (dark red) were grown in media supplemented with 15 distinct 
signaling molecules or signaling molecule combinations and one control. 

(B) 96-well plate schematic overlaid with a heat map showing the number of cells assigned to each sample barcode 
group. Twenty samples — predominantly those arising from column 2 — were not represented in the original large-
scale HMEC experiment due to technical error during sample preparation.  

(C) Normalized barcode UMI heat map demonstrating that sample groups are predominantly associated with single 
MULTI-seq barcodes. 

(D) Violin plots describing the barcode UMI SNR for negative cells, doublets, and singlets. n = 40,009 cells. 
(E) Same analysis as described in Fig. S4A, except with the 96-plex HMEC technical replicate experiment. All samples 

were classified in the technical replicate. 
(F) Same analysis as described in Fig. S4B, except with the 96-plex HMEC technical replicate experiment. 
(G) Same analysis as described in Fig. S4C, except with the 96-plex HMEC technical replicate experiment. n = 48,091 

cells 



. 

Supplementary Figure 4 

MULTI-seq barcode pre-processing and sample classification workflows, related to Figure 2. 

Results from the 96-plex HMEC experiment are used as representative examples for the barcode classification workflow. Results from 
the 96-plex technical replicate HMEC experiment as used as representative examples for the semi-supervised negative cell 
reclassification workflow. PDF = probability density function. 



 
Supplementary Figure 5 

Transcriptional signatures of co-culturing and signaling molecule stimulation in MEPs, related to Figure 2. 

(A) Distributions of marker gene expression used to identify MEPs (KRT14) and LEPs (KRT19) in gene expression space. 
n = 25,166 cells. 

(B) Distributions of MKI67 expression in gene expression space for LEPs (left) and MEPs (right). MKI67 enrichment was 
used as a proxy for distinguishing proliferative and resting LEPs and MEPs. n = 6,159 (LEP) and 14,428 (MEP) cells. 

(C) MEPs co-cultured with LEPs are not induced to proliferate relative to MEPs grown in monoculture. Clusters 



corresponding to resting (black) and proliferative (blue) LEPs are identifiable in gene expression space (Fig. S5B). 
Projecting sample classification densities onto gene expression space for co-cultured MEPs (red, left) and MEPs 
cultured alone (green, middle) illustrates that both culture compositions are equally proliferative (table, right). n = 
14,428 cells. 

(D) MEPs co-cultured with LEPs exhibit enriched TGF-β signaling (as measured by TGFBI expression) relative to MEPs 
grown in monoculture. Each point represents an average of MEPs grouped according signaling molecule treatment. 
*** = Wilcoxon rank sum test (two-sided), p = 1.5x10-6. n = 32 signaling molecule condition groups. Data are 
represented as mean ± SEM. 

(E) Hierarchical clustering and heat map analysis of MEPs grouped by signaling molecule treatment highlights an EGFR 
signaling transcriptional response specific to EGF and AREG treatment. Dendrogram labels: E = EGF, W = WNT4, A 
= AREG, I = IGF-1, R = RANKL, C = Control.   



 
Supplementary Figure 6 

MULTI-seq application to primary PDX samples, related to Figure 3. 



(A) Representative histology of lung tissue illustrates metastatic progression in early, mid, and late-stage PDX mice. 
Individual metastases denoted with black arrows. H&E staining was performed 3 times (early), 4 times (mid), and 10 
times (late), yielding the same result. 

(B) Negative cell reclassification improves sample classification results. Singlets (black) localize into clusters in barcode 
space whereas doublets (red) localize between singlet clusters. Negative cells either co-localize with singlet or 
doublet clusters (blue outline, bottom) or cluster separately (red outline, bottom). Negative cell reclassification is 
insensitive to the true-negatives that cluster separately, while rescuing a subset of false-negatives that cluster 
amongst singlets and doublets. n = 12,086 cells. 

(C) Barcode SNR comparisons between samples ordered according to the viability (top) or total cell number (nCell, 
bottom) of the MULTI-seq barcoding conditions. See table S3 for details. Data are represented as mean ± SEM. n = 
10,427 cells. 

(D) Mouse immune cells in gene expression space colored according to tissue of origin. Lung immune cells (brown) 
cluster separately from primary tumor immune cells (teal). n = 8,420 cells. 

(E) Bar plots describing the proportion of mouse (pink) and human (blue) cells detected during FACS enrichment and 
detected in the final 10X dataset. Classification of human and mouse cells from the L-A lung demonstrates sample 
classification accuracy and species-independence. 

(F) Marker gene heat map describing markers utilized for defining cell type annotations. RNA UMI abundances are 
scaled from 0-1 for each gene. Values correspond to the average expression within each annotation group. 
Displayed genes represent the top 3 most statistically-significant genes for each cell type (Likelihood-ratio test for 
single cell gene expression57 with Bonferroni multiple comparisons adjustment). 

(G) Unsupervised clustering of classical monocytes recapitulates intercellular heterogeneity due to metastatic 
progression (displayed in Fig. 3D). See Table S6 for differential gene expression analysis results. n = 2,496 cells. 



 
Supplementary Figure 7 

FACS purification of LEP and MEP cells from bulk HMECs, related to Experimental Methods 

Bulk HMECs were labeled with FITC anti-EpCAM and APC-Cy7 anti-CD49f to identify and isolate LEPs and MEPs. LEPs 
are identified as EpCAM high and CD49f low, while MEPs are CD49f high and EpCAM low. Gating strategy causes minor 
cell type impurities in final sorted population. 



 
Supplementary Figure 8 

FACS gating strategy for PDX lung and primary tumor samples, related to Experimental Methods 

(A) Dissociated human metastases and mouse immune cells were separated from dissociate PDX mouse lungs using 
hCD298 and mCD45 following gating for live singlets. Mouse 847 (Sample L-A) is presented here as a representative 
example. 

(B) Dissociated human primary tumor cells and mouse tumor-associated immune cells were separated using hCD298 
and mCD45 following gating for live, singlets. Sample A is presented here as a representative example for all other 
primary tumor samples. 



 

Supplementary Figure 9 

Bioanalyzer traces of representative MULTI-seq barcode library, related to Experimental Methods 

(A) Bioanalyzer traces following cDNA amplification and MULTI-seq barcode enrichment using 3.2X SPRI with 1.8X 
100% isopropanol exhibits two distinct peaks. Bioanalyzer traces are representative of all datasets presented in this 
study (n = 4). The first peak (p1) is an average of 65-70bp in length and likely corresponds to barcodes amplified via 
the MULTI-seq additive primer. The second peak (p2) is an average of 100bp in length and likely corresponds to 
barcodes that successfully underwent MMLV-RTase template switching and were subsequently amplified by the 
standard 10X Genomics Single Cell V2 primer.  

(B) Bioanalyzer analysis following library preparation PCR exhibits one distinct peak (p3) with an average length of 
173bp, matching expectations. Bioanalyzer traces are representative of all datasets presented in this study (n = 4). 

(C) Schematic illustrating the two species of reverse-transcribed MULTI-seq barcodes with and without template 
switching. Processive reverse-transcription without template switching (p1) is more likely than reverse-transcription 
with template switching (p2), resulting in relative enrichment of the 65-70bp product following cDNA amplification. 

	



Dataset % Aligned % Duplicate UMI UMIs/cell SNR NGS Format
POC-LMO 93.8 6.25 77 69 HiSeq 4000 (33.3%)
POC-CMO 94.4 5.74 55 41 HiSeq 4000 (33.3%)
HMEC-orig 97.1 12.62 5095 199 HiSeq 4000 (100%)
HMEC-rep 97.3 13.67 65 34.7 HiSeq 4000 (50%)

PDX 99.0 17.36 4453 49.6 NovaSeq (2.5%)
Nuclei (LMO) 98.8 28.67 731 2.3 NovaSeq (1.25%)
Nuclei (CMO) 98.6 28.18 8415 91.5 NovaSeq (1.25%)

Table S2: MULTI-seq barcode sequencing statistics

% Aligned = Alignment rate, i.e., the proportion of reads aligning to any reference barcode. 

SNR = Signal-to-noise ratio, i.e., the primary classification barcode divided by the next most abundant barcode.  
All sequencing statistics were computed on the subset of reads associated with classified singlets. 
POC = Proof-of-concept. PDX = Patient-Derived Xenograft, HMEC = Human mammary epithelial cell.

Table S1: List of genes with >1.5-fold expression difference between 
LMO/CMO-labeled and unlabeled HEKs, related to Fig. 1

Comparison Markers FC

LMO vs UN

MIF 2.8

KRTCAP2 1.5

TOMM5 1.5

Comparison Markers FC

CMO vs UN

MIF 1.9

S100A2 1.6

MT2A 1.5

AP2B1 -1.5

TOP2A -1.5

MALAT1 -1.5

SNORA76 -1.7

NMT1 -1.8

LMO = LMO-labeled HEKs, CMO = CMO-labeled HEKs, 
UN = Unlabeled HEKs, FC = Fold-change

Comparison Markers FC

LMO vs CMO
SNORA76 1.7

NMT1 1.5

Sample MouseID  #Cells Viability pHu-FACS pHu-10X pMo-FACS pMo-10X
Early-1-PT 1 280K 0.647 0 0 1 1
Mid-1-PT 2 580K 0.0153 0 0 1 1
Late-PT 3 665K 0.0845 0 0 1 1

Early-1-Lung 1 700K 0.33 0 0.01 1 0.99
Early-2-Lung 4 340K 0.38 0 0 1 1
Mid-1-Lung 2 370K 0.50 0.02 0.02 0.98 0.98
Mid-2-Lung 5 550K 0.309 0.01 0.01 0.99 0.99
Late-Lung 3 550K 0.314 0.22 0.15 0.78 0.85
WT-Lung 6 460K 0.392 0 0 1 1

Table S3: PDX metadata, related to Fig. 3

Number of cells and viability refer to the LMO labeling reaction.  
pHu-FACS, pMo-FACS = Proportion of human and mouse cells sorted using FACS.  
pHu-10X, pMo-10X = Proportion of human and mouse cells present in the final dataset.



Table S4: Top 5 marker genes for each low-RNA cluster within 
classified and unclassified datasets, related to Fig. 3

Monocyte

Pou2f2 4.2

Rpsa 2.6

Csf1r 2.6

Ahnak 2.7

Cx3cr1 4.0

Cluster Markers FC

Neutrophil

S100a8 61.1

S100a9 57.6

Il1b 9.3

Msrb1 5.8

Srgn 5.0

Alveolar 
Mac.

Ear2 16.0

Ear10 17.7

Ctsd 6.4

Chil3 7.5

Lpl 7.7

Interstitial 
Mac.

C1qa 11.0

C1qb 9.0

Apoe 6.1

C1qc 7.6

Ccl8 20.4

Endothelial

Ramp2 58.2

Ly6c1 60.2

Cldn5 38.1

Ctla2a 34.4

Aqp1 25.3

Broken-1

Xist 4.3

Lgals1 1.6

Rpl25 1.6

Rps20 1.8

Grn 1.9

Cluster Markers FC

Neutrophil

S100a9 47.4

S100a8 48.6

Retnlg 48.3

Pglyrp1 13.1

S100a11 9.2

Broken-2

mt-Nd4 2.3

mt-Nd1 2.4

Rpl14 1.7

mt-Co2 2.4

mt-Co3 2.5

Classified Unclassified



Table S5: List of genes with >1.5-fold expression difference between classical monocytes 
at distinct stages of metastatic progression, related to Fig. 3.

Cluster Markers FC

Late-1

Fos 2.6

Dusp1 2.3

Jun 2.6

Atf3 2.2

Ier3 2.0

Ccl3 2.6

Tsc22d3 1.7

S100a8 3.7

Ccl2 2.0

Saa3 2.5

Fosb 1.7

Socs3 1.8

Wfdc21 2.4

Klf6 1.5

S100a9 2.2

Egr1 1.5

Hspa1a 1.8

Lcn2 1.6

Lrg1 1.6

Ccl4 1.9

Late-2

Rgcc 2.8

Rsrp1 2.8

Nfkbia 2.4

Mmp19 2.4

Cxcr4 2.3

Arg2 2.3

Lmna 2.2

Saa3 2.0

WT

Ear2 2.3

Rsrp1 2.1

Plaur 1.7

Rgcc 2.1

Klf4 1.7

Jund 1.6

Wsb1 1.6

Pdlim1 1.6

Tagln2 1.6

Pglyrp1 2.0

Fn1 1.5

Ezr 1.5

Tsc22d3 1.5

Cks2 1.8

Hspa1a 1.6

Cluster Markers FC

Mid-2

Tppp3 2.4

Adgre5 1.7

Tagln2 1.7

Crip1 1.6

Metrnl 1.8

Emp3 1.6

Cd74 2.1

Cd300a 1.6

Btg2 1.5

Pou2f2 1.7

Sgk1 1.6

Il1b 1.8

Gngt2 1.5

Hist1h1c 1.6

Early/Mid
Isg15 1.8

Thbs1 1.7



Table S6: List of genes with >1.5-fold expression difference  
between late-stage classical monocytes, related to Fig. 3.

Thsb1- 
Cd14- 

Late CMs 

Fos 2.8

Dusp1 2.4

Jun 2.5

Atf3 2.1

Ccl3 2.7

Tsc22d3 1.7

Rgs2 1.7

S100a8 3.2

S100a9 2.6

Txnip 1.6

Egr1 1.6

Ccl4 2.2

Ccl2 1.5

Wfdc21 1.5

Thsb1+ 
Cd14+ 

Late CMs 

Cd14 2.4

Cepbp 1.5

Lmna 2.2

Btg1 1.5

Plaur 1.6

Rgcc 1.9

Nfkbia 1.6

Tnpo3 1.6

Tlr2 1.6

Tubb6 1.6

C5ar1 1.6

Mmp19 1.6

Cxcr4 1.7

Tppp3 1.7

Ninj1 1.5

Skil 1.5

Thbs1 1.6

Dmkn 1.6

CM Subtype Markers FC CM Subtype Markers FC



MULTI-seq: Universal sample multiplexing for single-cell RNA sequencing using lipid-1 
tagged indices.  2 
 3 
SUPPLEMENTAL NOTES 4 
 5 
 Aspects of the expression library analysis workflow that were shared between all datasets 6 
were outlined in the ‘Expression library analysis’ section of the Computational Methods. 7 
However, unique analytical techniques were applied to each presented dataset. In-depth 8 
summaries of these analyses are discussed below. 9 
 10 
Proof-of-Concept scRNA-seq and snRNA-seq 11 
 12 
Testing the effects of MULTI-seq barcoding on scRNA-seq and snRNA-seq data: MULTI-seq 13 
could negatively influence scRNA-seq and snRNA-seq data in two main ways: by (1) competing 14 
with endogenous mRNAs for capture bead hybridization regions, or (2) inducing a transcriptional 15 
response to LMO or CMO labeling. To test these possibilities, we first parsed our proof-of-16 
concept scRNA-seq and snRNA-seq datasets to include only HEK293 (HEK) cells and MEF 17 
nuclei, respectively. Focusing on individual cell types ensures that any observed performance 18 
differences are primarily due to technical and not biological reasons. 19 
 20 
 All HEK cells and MEF nuclei subsets were indistinguishable with regards to the total 21 
number of detected RNA UMIs and genes (Fig. S2C, Fig. S2H, left). Moreover, barcode and 22 
RNA UMIs were not negatively correlated (Fig. S2C, Fig. S2H, right). These observations 23 
suggest that MULTI-seq barcodes do not detrimentally compete with endogenous transcripts 24 
during mRNA capture. Additionally, LMO-, CMO-, and unlabeled HEK cells and MEF nuclei 25 
exhibited similar proportions of reads aligning to mitochondrial genes (Fig. S2C, Fig. S2H, left); 26 
therefore, LMO and CMO labeling are unlikely to induce an apoptotic cellular response. To 27 
explore whether MULTI-seq labeling perturbs endogenous gene expression in other ways, we 28 
compared the proportion of each cell/nuclei’s 100 nearest neighbors in principal component (PC) 29 
space that were derived from LMO-, CMO-, or unlabeled subsets. Neighborhoods were defined 30 
by computing the Euclidean distance matrix for statistically-significant PCs with the ‘rdist’ R 31 
function.  32 

 33 
For HEK cells, neighborhood analysis revealed that CMO-labeled cells preferentially co-34 

localized in gene expression space, while LMO-labeled and unlabeled neighborhoods were 35 
nearly indistinguishable (Fig. S2D). We then performed differential gene expression analysis 36 
between HEKs from each sample group, which demonstrated that 3 and 8 genes were 1.5-fold 37 
enriched in LMO- or CMO-labeled HEKs relative to unlabeled controls, respectively (Table S1). 38 
Intriguingly, even after only < 1 hour on ice, CMO-labeled HEKs exhibited differential expression 39 
of AP2B1, which has established roles in cholesterol and sphingolipid transport. When 40 
considered along with flow cytometry analyses demonstrating that CMOs exhibit reduced live-41 
cell membrane residency compared to LMOs (Fig. S1B), these results collectively illustrate that 42 
LMOs are the preferred reagent for scRNA-seq sample multiplexing. 43 

 44 
In contrast to HEK cells, MEF nuclei from each labeling condition had uniform 45 

neighborhood proportions (Fig. S2I). Additionally, we did not detect any genes that were 46 
differentially expressed > 0.7-fold between LMO-, CMO-, and unlabeled nuclei. These results 47 



demonstrate that the transcriptional response to CMO labeling observed in HEK cells was 48 
absent in nuclei. Moreover, we observed a ~10-fold increase in barcode nUMIs for CMO-labeled 49 
MEF nuclei relative to LMO-labeled nuclei (Fig. S2H, right). This observation was in-line with our 50 
previous flow cytometry titration experiments (Fig. S1C). We believe that this difference in 51 
sample barcode capture efficiency was due to the presence of BSA in nuclei resuspension 52 
buffer, which is necessary to prevent aggregation nuclei purification. BSA has a lipid-binding 53 
pocket which likely sequesters LMOs, leading to reduced sample barcode association with the 54 
nuclear membrane. When considered along with the commercial-availability of CMOs, these 55 
results collectively illustrate that CMOs are the preferred reagent for snRNA-seq sample 56 
multiplexing.  57 

 58 
Sample classification accuracy: To analyze the accuracy of MULTI-seq classifications during 59 
snRNA-seq, we compared MULTI-seq sample classifications to cell type annotations determined 60 
by (1) mm10 pre-mRNA reference transcriptome alignment for MEFs, (2) CD3D expression for 61 
Jurkats, and (3) Xist expression for HEKs, which were isolated from a female donor. Inter-62 
species doublets were defined as cells with > 256 RNA UMIs from both the human and mouse 63 
pre-mRNA reference transcriptomes. Sample classification accuracy was then approximated 64 
using the proportion of matching MULTI-seq classifications and cell type annotations (Fig. 1F). 65 
The mismatch rate for all three cell types was ~0.5% while 85% of known mouse-human 66 
doublets were identified.  67 
 68 
Jurkat T-cell activation time-course: Gene expression centroids for each Jurkat time-point were 69 
computed as the mean t-SNE embedding coordinates amongst cells classified into each time-70 
point group.  71 
 72 
Semi-Supervised Negative Cell Reclassification  73 
 74 
 In its current form, MULTI-seq barcoding is an imperfect process that produces a small 75 
fraction of cells that cannot be classified into sample groups. These negative cells are of two 76 
varieties: True and false negatives. True negatives manifest in barcode space as high-density 77 
regions lacking enrichment for any particular barcode (e.g., central HMEC region in Fig. S4; top-78 
right PDX region in Fig. S6B). True negatives result from cells with poor barcode labeling. In 79 
contrast, false negatives result from algorithmic misclassification. 80 
 81 

False negatives manifest in barcode space as negatives intermixed amongst high-density 82 
regions exhibiting enrichment for a single barcode. Since a single inter-maxima quantile 83 
threshold is applied to all barcodes during sample classification, we believe false negatives arise 84 
because this thresholding strategy may be sub-optimal for a subset of barcode distributions. 85 
Thus, although false negatives have poor absolute signal in comparison to high-confidence 86 
singlets, we reasoned that false negatives could be ‘rescued’ by computing the relative strength 87 
of each barcode signal on a cell-by-cell basis. 88 
 89 
 To distinguish which negative cells are the best candidates for reclassification before 90 
reclassifying negatives into their appropriate barcode groups, we used the following strategy: 91 
 92 

1. Repeat the original sample classification workflow, recording the total number of 93 
thresholds that each negative cell surpasses at each quantile. 94 



2. Compute each cell’s classification stability (CS) – defined as the number of quantiles 95 
across which a cell surpasses a single threshold. 96 

3. Subset equal numbers of ‘ground-truth’ cells from the original classification results. 97 
4. Perform semi-supervised k-means clustering on merged data including ‘ground-truth’ and 98 

negative cells. Clustering is semi-supervised because one member of each ‘ground-truth’ 99 
sample group is used to initialize cluster centers. 100 

5. Compute the rate at which ‘ground-truth’ and negative cell classifications match the k-101 
means results. 102 

6. Iteratively repeat steps 4 and 5 using a different ‘ground-truth’ cell to initialize cluster 103 
centers during each iteration. Repeat until all ‘ground-truth’ cells have been used. 104 

7. Compare k-means matching rates between ‘ground-truth’ and negative cells binned 105 
according to CS values. Negative cells with CS values resulting in matching rates that 106 
approximate ‘ground-truth’ matching rates are reclassified. 107 

 108 
 Negative cell reclassification rescues 10%-20% of negative cells across the different 109 
datasets presented in this study. While not insignificant, we believe that further optimization will 110 
improve performance. For instance, in our PDX data, two distinct clusters of negative cells 111 
remain following reclassification (Fig. S6B) – a true-negative population low for all barcodes (red 112 
outline, bottom right) and a putative false-negative population (blue outline, center right). It is 113 
unclear if these cells are doublet or singlets. However, we interpret this observation as evidence 114 
that further optimization will improve performance. 115 
 116 
96-plex HMEC 117 
 118 
Exploring transcriptional responses to cell type composition: Besides transcriptional variability 119 
between MEPs and LEPs, the cell type composition of HMEC cultures represented the most 120 
pronounced source of variability in our 96-plex HMEC experiment (Fig. 2B). To explore the 121 
transcriptional responses to cell type composition, we began by pre-processing data subsets 122 
containing only MEPs or LEPs. Separating cell types revealed distinct resting and proliferative 123 
MEP and LEP subsets discernible by enriched MKI67 expression (Fig. S5B). To assess whether 124 
co-culture influenced proliferation, we specified subsets of cells where each cell type 125 
composition (e.g., mono- or co-cultures) were equally abundant. We then determined whether 126 
mono- and co-cultured cells were evenly represented in the resting and proliferative states. 127 
Down-sampling in this fashion controls for differences in the total numbers of cells from each 128 
group. This analysis revealed that LEPs were specifically induced to proliferate in the presence 129 
of MEPs (Fig. 2D), whereas the same effect was not observed in MEPs cultured in the presence 130 
of LEPs (Fig. S5C).  131 
 132 
 Next, we pre-processed data subsets containing only resting MEPs or LEPs. Notably, we 133 
did not proceed with all resting cells but, rather, down-sampled every culture composition (e.g., 134 
mono- or co-cultures) to have equal numbers of cells from each signaling molecule perturbation.  135 
We then computed the average TGFBI expression amongst MEPs and LEPs grouped by 136 
signaling molecule exposure and observed that co-cultured LEPs and MEPs were associated 137 
with elevated TGFBI expression independent of perturbation (Fig. 2D, Fig. S5D). In our proof-138 
of-concept scRNA-seq experiment, we observed that TGFBI expression is increased specifically 139 
in HMECs responding to TGF-β (Fig. 1E). Thus, these results suggest that co-culturing induces 140 
paracrine-mediated TGF-β signaling in both LEPs and MEPs. 141 



Exploring transcriptional responses to signaling molecule perturbation: Using data subsets 142 
containing equal numbers of resting MEPs or LEPs from each culture composition and signaling 143 
molecule condition (described above), we next sought to characterize transcriptional responses 144 
to signaling molecules. To this end, we grouped cells according to signaling molecule exposure 145 
and performed hierarchical clustering on the average gene expression profile for each group 146 
using the ‘BuildClusterTree’ function in ‘Seurat’. Hierarchical clustering revealed two distinct 147 
clades corresponding to cells stimulated with (1) the EGFR ligands AREG and EGF and (2) 148 
RANKL, IGF1, or WNT4. Notably, AREG/EGF stimulation dominated the effect of 149 
RANKL/IGF1/WNT4, as cells grown in media supplemented with both AREG/EGF and 150 
RANKL/IGF1/WNT4 remained members the EGFR ligand clade.  151 
 152 
 Differential gene expression analysis between these two clades revealed that AREG/EGF 153 
stimulated cells expressed elevated levels of a number of EGFR signaling target genes (Fig. 2E, 154 
S5E), as expected. Differentially-expressed genes amongst RANKL/IGF1/WNT4 stimulated 155 
cells could not be as readily connected to their corresponding signaling pathways. This 156 
observation suggests that the rich media used to culture HMECs buffered the cells against 157 
RANKL/IGF1/WNT4 induction. This notion is further supported by the fact that cells stimulated 158 
with EGFR ligands – which were purposefully depleted from the M87A media used in this 159 
experiment – represented the most pronounced transcriptional signature amongst signaling 160 
molecule conditions. 161 
 162 
 Amongst cells induced with EGFR ligands, hierarchical clustering also revealed sub-163 
clades corresponding to cells exposed to AREG or EGF. However, differential gene expression 164 
analyses between these groups using a fold-change threshold of 1.25 were largely unsuccessful 165 
(data not shown). Higher numbers of cells per sample or more sophisticated analytical methods 166 
may be necessary to better understand transcriptional responses to distinct EGFR ligands.  167 
 168 
Doublet analysis, comparison to computational doublet prediction methods: Recently described 169 
computational double detection methods like DoubletFinder (McGinnis et al., 2018) require 170 
parameter selection prior to being applied to scRNA-seq data. To fit DoubletFinder parameters 171 
to our 96-plex HMEC scRNA-seq data, we began by performing a parameter sweep using the 172 
‘paramSweep’ function in the ‘DoubletFinder’ R package. Ideal parameters were then defined 173 
using the ‘summarizeSweep’ function, which uses receiver operating curve analysis to compute 174 
the predictive capacity of each parameter set relative to ground-truth doublet labels. We used 175 
MULTI-seq doublet classifications as ground-truth in this application.  176 
 177 

With ideal parameters defined (e.g., pN = 0.25, pK = 0.03), we then thresholded 178 
DoubletFinder results by adjusting the total number of MULTI-seq-defined doublets to account 179 
for homotypic doublet formation. Homotypic doublets are doublets that are formed from 180 
transcriptionally-similar cells and are known to be undetectable using computational doublet 181 
detection methods that rely solely on gene expression features (McGinnis et al., 2018, Wolock 182 
et al., 2018). To account for homotypic doublets, we multiplied the total doublet number (3413) 183 
by the sum of squared cell type frequencies (0.51), resulting in 1738 total doublet predictions.  184 
 185 
 DoubletFinder and MULTI-seq doublet classifications largely co-localize in gene 186 
expression space (Fig. 2C), exhibiting enrichment amongst cells expressing high levels of both 187 
LEP and MEP markers (Fig. S5A). Beyond cells expressing both KRT19 and KRT14, doublet-188 



enriched regions with either LEP- or MEP-like expression patterns are also detected by MULTI-189 
seq (Fig. 2B, arrow). These doublets are likely to represent doublets formed from LEP and MEP 190 
sub-states (e.g., EGFR-induced, proliferative, etc.), that would be overlooked when classifying 191 
doublets using marker gene analysis, alone.  192 
 193 
 Although DoubletFinder and MULTI-seq doublet classifications are generally in 194 
agreement, there are two noteworthy and expected discrepancies. First, MULTI-seq identifies 195 
many doublets that DoubletFinder classifies as singlets that are evenly interspersed amongst 196 
LEP and MEP clusters in gene expression space. These doublets likely correspond to homotypic 197 
doublets formed from transcriptionally-similar MEPs or LEPs. Because DoubletFinder predicts 198 
doublets as cells that cluster separately from real singlets in gene expression space, we 199 
expected DoubletFinder to be insensitive to homotypic doublets.   200 
 201 

Second, DoubletFinder identifies many doublets that were classified as singlets during 202 
MULTI-seq sample classification. We expect MULTI-seq to be insensitive to the subset of 203 
doublets derived from cells barcoded with the same MULTI-seq sample index (e.g., 1/76 = ~1% 204 
false-negative rate). Sample multiplexing methods are generally insensitive to such doublets, 205 
which emphasizes how sample multiplexing and computational doublet detection methods can 206 
serve complementary roles in this context. However, we would expect these doublets to be 207 
randomly distributed amongst existing doublet clusters in gene expression space. Instead, 208 
DoubletFinder identifies many cells as doublets that are MULTI-seq-defined singlets and form 209 
distinct clusters in gene expression space (Fig. 2C, arrow). These discordant cells are 210 
proliferative LEPs, and thus represent DoubletFinder false-positives. The performance of 211 
computational detection methods suffer when applied to scRNA-seq data with low numbers of 212 
cell states (McGinnis et al., 2018, Wolock et al., 2018) and, hence, further emphasizes the utility 213 
of sample multiplexing for doublet detection. 214 
 215 
Signal-to-noise ratio (SNR) computation: SNR for singlets, doublets, and negative cells was 216 
calculated as the quotient of the two most abundant raw barcode UMI abundances for each cell 217 
(Fig. S3D). Since cells are discarded as doublets when surpassing two or more barcode-specific 218 
thresholds during our sample classification workflow, we reasoned that the relative abundances 219 
of the top two barcodes was a sufficient SNR definition. In singlets, on-target barcodes are an 220 
average of 199-fold higher than the most abundant off-target barcode. Doublets have much 221 
lower SNR but higher total barcode nUMIs. This observation matches expectations, as doublet 222 
formation results in the pooling of MULTI-seq barcodes from two cells. Negative cells exhibit 223 
very low SNR and total nUMIs, indicating that negative cells were not sufficiently labeled with 224 
LMOs to enable sample classification. The same SNR trends were also observed in our 96-plex 225 
HMEC technical replicate data (Fig. S3G). 226 
 227 
Sample drop-out and 96-plex technical replicate scRNA-seq experiment: During our initial 96-228 
plex HMEC experiment, 20 samples were unaccounted for in the final dataset. Missing barcodes 229 
were defined as those lacking any region of significant enrichment in barcode space. The 230 
presence of missing sample barcodes is problematic during the MULTI-seq sample classification 231 
workflow, as extremely low barcode thresholds result in unrealistically-high numbers of doublets. 232 
Thus, we suggest visual inspection of barcode abundances in barcode space (e.g., as generated 233 
using t-SNE) prior to sample classification for all MULTI-seq datasets. Barcodes that are not 234 
enriched in distinct domains of barcode space should be discarded. 235 



 236 
 To determine why barcodes were missing from our 96-plex HMEC data, we checked the 237 
position of every missing barcode on the 96-well plate utilized during sample barcoding, 238 
washing, and pooling. Interestingly, 7/20 missing barcodes were positioned in a single column 239 
on the 96-well plate (Fig. S3B), suggesting that manual pipetting error (e.g., poor resuspension 240 
during pooling) caused at least a portion of the missing barcodes. To verify that MULTI-seq can 241 
indeed be scaled to large sample numbers, we performed a 96-plex technical replicate 242 
experiment. In this experiment, we pooled 96 HMEC cultures and sequenced the resulting 243 
expression library at very shallow depth. Shallow sequencing results are sufficient to identify 244 
cell-associated droplets, which we then used to perform sample classification on barcode data 245 
sequenced at standard depth (Table S2). This workflow resulted in the accurate classification of 246 
cells into all 96 sample groups (Fig. S3E-G), illustrating that MULTI-seq can be scaled to high 247 
sample numbers.   248 
 249 
 250 
PDX 251 
 252 
MULTI-seq sample classifications distinguish low-RNA from low-quality cells: Following 253 
expression library pre-processing (e.g., using CellRanger), raw RNA UMI count matrices must 254 
be parsed to define cell barcodes associated with intact cells versus ambient mRNA and cell 255 
debris. This challenge is commonly addressed by identifying the inflection point of log-log RNA 256 
UMI by RNA UMI rank distributions, which follows the assumption that droplets containing intact 257 
cells should feature elevated nUMIs. This strategy is inherently biased against cells with 258 
intrinsically low RNA content, and may be confounded by distributions with multiple inflection 259 
points (e.g., datasets with many cell types, Lun et al., 2018). 260 
 261 
 The RNA UMI distribution for mouse immune cells sequenced during our PDX experiment 262 
exemplifies this issue. Specifically, we observed a mode corresponding to cell barcodes with 263 
~500 total RNA UMIs that was discarded by the standard CellRanger UMI threshold (Fig. 3C, 264 
top left). To assess whether this region represented intact low-RNA cells, we performed the 265 
MULTI-seq sample classification workflow on all cell barcodes with at least 100 RNA UMIs. We 266 
selected this threshold because droplets with < 100 RNA UMIs can be confidently assumed to 267 
be empty (Lun et al., 2018). Intriguingly, sample classifications produced 2,580 singlets and 583 268 
negatives amongst cells with RNA UMIs between 100 and the CellRanger threshold (1350 RNA 269 
UMIs).  270 
 271 
 To test whether sample classification results could be used to distinguish low-RNA cells 272 
from ambient mRNA and cellular debris, we first pre-processed putative low-RNA singlets using 273 
‘Seurat’ and used unsupervised clustering and differential gene expression analyses to reveal 274 
discrete clusters in gene expression space characterized by established marker genes for 275 
neutrophils, monocytes, alveolar macrophages and endothelial cells (Fig. 3C, top right, Table 276 
S4). In contrast, equivalent analyses of unclassified cell barcodes with 100-1350 RNA UMIs 277 
revealed clusters corresponding to broken cells and a small number of neutrophils. We 278 
annotated broken cells into two subsets – one with enriched mitochondrial gene expression and 279 
another with elevated levels of lncRNAs (e.g., Xist) and ribosomal RNAs (Table S4). We 280 
speculate that the latter represents nuclei released from cells due to shear stress.  281 
 282 



Collectively, these results suggest that MULTI-seq – and sample multiplexing methods, 283 
writ-large (see Stoeckius et al., 2018 for analogous analyses) – improves scRNA-seq quality 284 
control workflows by distinguishing low-RNA cells from ambient mRNA and debris. We anticipate 285 
that this feature will further increase scRNA-seq cell throughput while diminishing the effects of 286 
systematic bias against cells with intrinsically-low RNA content. 287 
 288 
Cell state annotation definition: Mouse lung immune cell state annotations (Fig. 3D) were defined 289 
by performing unsupervised clustering and assessing the accuracy of clustering results using 290 
marker genes identified previously in the same tissue (e.g., Reyfman et al., 2018; Tabula Muris 291 
Consortium, 2018). We then performed marker gene analysis (fold-change threshold = 2) on 292 
these cell groups and selected the top three most statistically-significant genes. Prior to heatmap 293 
visualization, we computed the average expression of each marker gene within each cell group 294 
and scaled these averages from 0 to 1 (Fig. S6F). 295 
 296 
Immune cell proportion shifts: To assess whether lung immune cell type proportions shifted 297 
during metastatic progression in our PDX mice, we first defined a subset of cells where each 298 
tumor stage (e.g., WT, early, mid, and late) was equally represented. Down-sampling in this 299 
fashion controls for technical differences in the number of sequenced cells. We then computed 300 
the proportion of each cell type present in lung immune cells from each tumor stage (Fig 3E). 301 
Statistically-significant proportional shifts relative to WT proportions were then defined using two-302 
proportion z-tests (as implemented in the ‘prop.test’ R function) with Bonferroni multiple 303 
comparison correction (as implemented in the ‘p.adjust’ R function).  304 
 305 
Classical monocyte heterogeneity: Tumor stage-specific heterogeneity amongst classical 306 
monocytes (CMs) was visually discernible in mouse immune cell gene expression space (Fig. 307 
3D, bottom, Fig. 3F). CMs are also known to be recruited to the metastatic lung in PDX breast 308 
cancer mouse models, where they exhibit metastasis-associated phenotypic heterogeneity 309 
(Catena et al., 2013, Condamine et al., 2015, Kitamura et al., 2018, Ouzounova et al., 2017). 310 
For these reasons, we sought to characterize CM heterogeneity during metastatic progression 311 
in our PDX data.  312 
 313 
 We began by pre-processing a dataset including only CMs using ‘Seurat’. Unsupervised 314 
clustering of these data revealed sub-structure demarcating each tumor stage (Fig. S6G). Early-315 
stage CMs were distinct from WT CMs despite the lack of detectable metastases, which 316 
suggests that this data could provide insight into CM transcriptional behavior during metastatic 317 
colonization (Table S5). Early-stage CMs were also transcriptionally-similar to a subset of mid-318 
stage CMs. However, mid- and late-stage CMs manifested as two distinct sub-states featuring 319 
heterogeneous expression of many genes previously linked to metastatic/aggressive behavior 320 
(Table S5). 321 
 322 
 To explore CM heterogeneity in the presence of metastases, we further parsed CMs to 323 
include only those from late-stage PDX mice. Unsupervised clustering and differential gene 324 
expression analyses revealed that late-stage CM subsets could be distinguished according to 325 
Thbs1 and Cd14 expression (Fig. 3F, Table S6). Considering the established anti-metastatic 326 
role of Thbs1 in the lungs of metastatic PDX breast cancer models (Catena et al., 2013), we 327 
speculate that Thbs1+/Cd14+ CMs functionally inhibit metastatic progression. In contrast, 328 
Thbs1-/Cd14- CMs expressed elevated levels of known pro-metastatic genes (Ouzounova et 329 



al., 2017), which suggests that these CMs contribute to metastatic progression. Further 330 
exploration of the functional consequences and mechanisms regulating CM heterogeneity will 331 
be the subject of a future publication.  332 
 333 
Sample-to-sample SNR comparison: While preparing our PDX samples for scRNA-seq, we 334 
tracked the cell viability (by FACS) and number of cells (by manual counting with a 335 
hemocytometer) for each MULTI-seq labeling reaction in order to assess how these two features 336 
influence LMO labeling efficiency. We reasoned that poor viability and high cell numbers would 337 
decrease LMO labeling efficiency, resulting in lower SNR relative to cells labeled in high-viability, 338 
low-cell-number conditions. 339 
 340 

We computed the SNR for each mouse singlet as the quotient of the top two abundant 341 
raw barcode UMIs (as described previously). Comparing SNR distributions between samples 342 
does not reveal any pronounced differences correlating with either viability or cell number (Fig. 343 
S2C). Since the viability was highly variable between all samples (Table S3), this suggests that 344 
viability does not negatively influence SNR. Moreover, SNR was not sensitive to the number of 345 
cells in the range tested in this experiment. However, we anticipate that larger inter-sample 346 
differences in cell numbers would indeed result in variable SNR. 347 
 348 
Computing inter-sample variability using Earth Mover’s Distance: Earth Mover’s Distance (EMD) 349 
measures the distance in gene expression space that is required to map two distinct high-350 
dimensional manifolds onto one another. To this end, EMD is an emerging tool to quantify 351 
differences amongst sets of cells in scRNA-seq data. We used EMD, as implemented in the 352 
‘calculate_emd’ function from the ‘EMDomics’ R package (Nabavi et al., 2016), to quantify the 353 
variability between lung immune cells from biological replicate mice and mice from distinct tumor 354 
stages.  355 
 356 

Specifically, we first down-sampled our existing data to include equal numbers of CMs 357 
from each tumor stage and mouse. Down-sampling in this fashion is necessary to control for 358 
differences in EMD results solely due to the total number of cells. We then extracted the PC 359 
space embeddings for this cell subset, and performed EMD on cells grouped by (1) tumor stage 360 
and (2) mouse ID. Notably, we only extracted embeddings for statistically-significant PCs (e.g., 361 
10 for the CM-only dataset). We then scaled all of the EMD values from 0 to 1 and found the 362 
mean EMD between tumor stages and biological replicates (e.g., mice 1/4 and 2/5). CMs from 363 
biological replicates had a lower mean scaled EMD than CMs from each tumor stage (0.16 vs. 364 
0.69), demonstrating that the observed CM heterogeneity between different tumor stages is not 365 
solely attributable to variability between individual mice.  366 
 367 
SUPPLEMENTAL METHODS 368 
 369 
Analytical flow cytometry: The BD FACSCalibur instrument was used to perform analytical flow 370 
cytometry experiments measuring live-cell and nuclear membrane labeling efficiency (Fig. 371 
S1A,C), LMO and CMO membrane residency kinetics on ice (Fig. S1B,D) and at room 372 
temperature (Fig. S1E), and efficacy of BSA quenching (Fig. S1F). HEK293 cells and nuclei 373 
were utilized for all experiments. Samples were prepared using the same workflows as proof-of-374 
concept scRNA-seq and snRNA-seq experiments (discussed above) with one exception. In 375 
place of barcode oligonucleotides, anchor LMOs or CMOs were pre-hybridized to equimolar 376 



concentrations of FAM- or AF647-conjugated oligonucleotides matching the barcode 377 
oligonucleotide 5’ PCR handle excluding the barcode and poly-A regions.  378 
  379 

For titration experiments, 5x105 cells or nuclei were suspended in 180 μL cold PBS 380 
followed by addition of 20 µL 10X anchor LMO or CMO pre-mixed with equimolar complimentary 381 
oligonucleotide conjugated to AF647 (final concentrations of 10 nM, 50 nM, 100 nM, 500 nM, or 382 
1000 nM). Cells were incubated on ice for 5 minutes followed by addition of 20 μL of 10X stock 383 
corresponding co-anchor. The experiment was repeated three times, mean fluorescence 384 
intensity was calculated for each condition, and linear regression was performed. For exchange 385 
experiments, HEK293 cells were labeled with 200 nM LMOs or CMOs bearing FAM- or AF647-386 
conjugated oligonucleotides. FAM- and AF647-labeled cells were then mixed and kept on ice for 387 
2 hours in PBS with 1% BSA (2% for nuclei), during which cell aliquots were analyzed every 30 388 
minutes. For room temperature experiments, cells were incubated for 30 minutes at room 389 
temperature and analyzed every 10 minutes. Label stability was computed as proportional 390 
differences between FAM or AF647 intensity relative to time zero. Off-target labeling was 391 
computed as FAM abundance on AF647-labeled cells (or vice versa). Fluorophore only controls 392 
were included in nuclei flow cytometry experiments because fluorophore-conjugated 393 
oligonucleotides demonstrate non-specific labeling. All analyses were performed in FlowJo and 394 
R.   395 
 396 
 For BSA quenching experiments, HEK293 cells were labeled with 200 nM LMOs or CMOs 397 
in 100 μL total volume PBS as described above. Prior to washing, each sample was diluted with 398 
ice cold PBS or PBS containing 1% BSA followed by centrifugation (160 rcf, 4 °C, 4 min). The 399 
150 μL supernatant was removed from each primary labeling mixture and used to resuspend 400 
unlabeled HEK293 cells (secondary labeling). All primary and secondary labeled cells were 401 
washed 3X with ice cold PBS containing 1% BSA and analyzed by flow cytometry. Each 402 
secondary labeled sample was plotted as a proportion of the primary labeled sample (Fig. S1F). 403 
All analyses were performed in FlowJo and R. 404 
 405 
 406 
Synthesis of lipid-modified oligonucleotides (LMOs): Oligonucleotides were synthesized on an 407 
Applied Biosystems Expedite 8909 DNA synthesizer, as previously described (Weber et al24, 408 
Supplemental Information).  409 
 410 

Specifically, Hexadecanoic (palmitic) acid, tetracosanoid (lignoceric) acid, N,N-411 
diisopropylethylamine (DIPEA), N,N-diisopropylcarbodiimide (DIC), N,N-dimethylformamide 412 
(DMF), methylamine, ammonium hydroxide, and piperidine were obtained from Sigma-Aldrich. 413 
HPLC grade acetonitrile (CH3CN), triethylamine (NEt3), acetic acid, and anhydrous 414 
dichloromethane (CH2Cl2) were obtained from Fisher Scientific. 6-(4-415 
Monomethoxytritylamino)hexyl-(2-cyanoethyl)-(N,N-diisopropyl)-phosphoramidite (5’-Amino-416 
Modifier C6 Phopshoramidite), standard phosphoramidites, and DNA synthesis reagents were 417 
obtained from Glen Research. Controlled pore glass (CPG) supports (2-418 
Dimethoxytrityloxymethyl-6-fluorenylmethoxycarbonylamino-hexane- 1-succinoyl)-long chain 419 
alkylamino-CPG (3'-Amino-Modifier C7 CPG 1000), 5'-Dimethoxytrityl-N-dimethylformamidine-420 
2'-deoxyGuanosine, 3'-succinoyl-long chain alkylamino-CPG (dmf-dG-CPG 1000), and 5'-421 
Dimethoxytrityl-N-Acetyl-2'-deoxyCytidine, 3'-succinoyl-long chain alkylamino-CPG (Ac-dC-422 



CPG 1000) synthesis columns were obtained from Glen Research. All materials were used as 423 
received from manufacturer. 424 

For the anchor LMO, after synthesis of the DNA sequence, the 5’ end was modified with 425 
an amine using 5’-Amino-Modifier C6 Phosphoramidite (100 mM) and a custom 15-minute 426 
coupling protocol. After synthesis of 5′ amino-modified DNA, the MMT protecting group was 427 
removed manually on the synthesizer by priming alternately with deblock and dry CH3CN at least 428 
three times until yellow color disappears. CPG beads were dried by priming several times with 429 
dry Helium gas. For the 3′ FMOC-protected amino-modified CPG, prior to oligonucleotide 430 
synthesis, the FMOC group was removed by suspending the CPG in a solution of 20% piperidine 431 
in dimethylformamide for 10 minutes at room temperature. The beads were then washed three 432 
times each with DMF and CH2Cl2. This procedure was repeated twice more to ensure complete 433 
deprotection of the FMOC protecting group prior to coupling to the fatty acid. Residual solvent 434 
was removed with reduced pressure on a Savant SPD121P SpeedVac System (ThermoFisher).  435 

Fatty acid conjugation was performed on solid support by coupling the carboxylic acid 436 
moiety of the fatty acid to the 3’ or 5’ free amine—lignoceric acid and palmitic acid for the anchor 437 
and co-anchor, respectively. The solid support was transferred to a microcentrifuge tube and 438 
resuspended in a solution of anhydrous dichloromethane containing 200 mM fatty acid, 400 mM 439 
DIPEA, and 200 mM DIC. The microcentrifuge tubes were sealed with parafilm, crowned with a 440 
cap lock, and shaken overnight at room temperature. The beads were then washed 3X with 441 
CH2Cl2, 3X with DMF, and 2X CH2Cl2. Oligonucleotides were then deprotected and cleaved from 442 
solid support by suspending the resin in a 1:1 mixture of ammonium hydroxide and 40% 443 
methylamine (AMA) for 15 minutes at 65 °C with a cap lock followed by evaporation of AMA with 444 
a Savant SPD121P SpeedVac System. Cleaved oligonucleotides were dissolved in 0.7 mL of 445 
0.1 M triethylammonium acetate (TEAA) and filtered through 0.2 μM Ultrafree-MC Centrifugal 446 
Filter Units (Millipore) to remove any residual CPG support prior to HPLC purification. 447 

Fatty acid-modified oligonucleotides were purified from unmodified oligonucleotides by 448 
reversed-phase high-performance liquid chromatography (HPLC) using an Agilent 1200 Series 449 
HPLC System outfitted with a C8 column (Hypersil Gold, Thermo Scientific) and equipped with 450 
a diode array detector (DAD) monitoring at 230 and 260 nm. For HPLC purification, Buffer A was 451 
0.1 M TEAA at pH 7 and buffer B was CH3CN. running a gradient between 8 and 95% CH3CN 452 
over 30 minutes. Pure fractions were collected manually and lyophilized. The resulting powder 453 
was then resuspended in distilled water and lyophilized again two more times to remove residual 454 
TEAA salts prior to use. Purified fatty acid-modified oligonucleotides were resuspended in 455 
distilled water and concentrations were determined by measuring their absorbance at 260 nm 456 
on a Thermo-Fischer NanoDrop 2000 series. 457 


