
Supplementary Methods 

 

Bayesian Dirichlet process for clustering VAFs across multiple samples 

We develop a model for clustering variant allele fractions (VAFs) of mutations called in a single 

sample to mutation data across multiple samples from the same individual. In normal somatic 

cells, the vast majority of the genome retains its normal, diploid copy number, which means 

that we can cluster the VAFs directly (excluding mutations on the X and Y chromosomes in 

males) – this has the considerable advantage that the Dirichlet Process model we build can 

rely directly on conjugate prior distributions. The model could be extended to include a 

correction for different copy number states in given samples for a particular mutation 

through, for example, a Metropolis-Hastings update, but at considerable computational cost. 

The full mathematical development of the model is detailed in the Supplementary 

Information. 

 

For every somatic mutation, we have a vector of the number of sequencing reads reporting 

the variant allele across each sample, together with the total sequencing depth for each 

mutation in each sample. We assume that each mutation can be assigned to one of an 

unknown number of clones – each clone has an expected VAF across the set of sequenced 

samples. We want to estimate: 

1. The number of clusters (clones); 

2. The location of each cluster in the n-dimensional VAF hypercube; 

3. The allocation of mutations to each cluster. 

 

We model these data using a hierarchical Bayesian model, where the distribution of clone 

sizes and numbers follows a Dirichlet process.  

 

We define 𝑁 as the number of somatic mutations across all 𝑀 samples in a given sample; 

𝑛$,&, 𝑖 = 1,… ,𝑁, 𝑗 = 1,… ,𝑀 as the total read depth for mutation 𝑖 in sample 𝑗; of which 𝑦$,&  

report the reference allele. Then 𝑦$,&~Bin(𝑛$,&, 𝜋$,&), where 𝜋$,& is the expected proportion of 

reads reporting the reference allele. Here, 𝜋$,&  follows a Dirichlet process: 𝝅𝒊~𝐷𝑃(𝛼𝑃6) ∈

[0,1];. We use the stick-breaking representation of the Dirichlet process: 



𝑃 = 	=𝜔?𝛿𝝅𝒉, with 𝝅𝒉~𝑃6,
B
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where 𝛿E is a point mass at 𝜋 and 𝜔? is the weight of the ℎth mutation cluster (that is, 

effectively the proportion of mutations found in cluster ℎ). To capture the stick-breaking 

formulation, we let 𝜔? = 𝑉? ∏ (1 − 𝑉J)JK? , with 𝑉?~Beta(1, 𝛼). We set a practical maximum 

number of clusters, 𝐶, as 100. As priors, we set 𝑃6~𝑈(0,1); and 𝛼~Γ(0.01,0.01). 

 

To model the posterior distribution of the Dirichlet process, we use Gibbs sampling, as 

follows: 

 

Step 1: Allocating each mutation to one of the clusters 

We set indicator variables, 𝑆$𝜖{1,2,… , 𝐶}, to denote allocation of mutation 𝑖 to a cluster. The 

posterior distribution of these variables is therefore: 

Pr(𝑆$ = ℎ|−) =
(𝑉? ∏ (1 − 𝑉J)) X∏ X
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where ℎ = 1,2,… , 𝐶. 

 

Step 2: Up-dating the stick-breaking weights 

These are conditionally conjugate beta posterior distributions: 

(𝑉?|−) ~	Betad1 +=1(𝑆$ = ℎ) , 𝛼 +
f
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=1(𝑆$ > ℎ)
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where ℎ = 1,… , 𝐶 − 1 and 𝑉c = 1. 

 

Step 3: Up-dating the cluster positions in the M-dimensional VAF hypercube 

We want to generate draws from the posterior distribution of (𝝅𝒉|−). Since the prior is 

𝑈(0,1);, we have: 

𝜋?,&~Betai1 += 𝑦$,&
$:k\C?

, 1 += l𝑛$,& − 𝑦$,&m
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	n 

 

Step 4: Testing a split-merge step on the current clustering 



With large numbers of samples, many of which are not clonally related to other samples from 

the same individual, the clusters tend to fall on the edges of the VAF hypercube. The posterior 

distribution can be rather peaky, with local maxima separated by large regions of very low 

probability. This can make the Gibbs sampler prone to becoming imprisoned, without fully 

exploring the complete posterior distribution. To alleviate this problem, we include a 

potential split-merge step at each cycle of the Gibbs sampler, following a previously described 

Metropolis-Hastings proposal for conjugate distributions (see D. Dahl: An improved merge-

split sampler for conjugate Dirichlet process mixture models. University of Wisconsin-Madison 

Technical Report 1086; 2003). 

 

Two mutations, denoted 𝑖 and 𝑗, are drawn at random from the current state of the Gibbs 

sampler. If the two mutations are currently in the same cluster, a potential split step is 

considered: 

• Form two new sets seeded with each mutation: 𝑆$ = {𝑖} and 𝑆& = {𝑗}. 

• Generate a random permutation of the remaining mutations in the given cluster. 

• Taking each mutation, 𝑘, in turn, allocate to cluster 𝑆$  with probability given by the 

beta-binomial posterior distribution based on mutations already allocated (Equation 

1): 

Pr(𝑘 ∈ 𝑆$|𝒚, 𝒏)

∝ |𝑆$|sX
𝑛t,a
𝑦t,aY

Bl𝑦t,a + ∑ 𝑦J,a + 1, 			𝑛t,a − 𝑦t,a + ∑ l𝑛J,a − 𝑦J,am + 1JKtJKt m
Bl∑ 𝑦J,a + 1,			 ∑ l𝑛J,a − 𝑦J,am + 1JKtJKt m

,
a

 

where this is normalised by the sum of this and the equivalent expression for 𝑘 ∈ 𝑆&. 

Otherwise, allocate to 𝑆&. 

• Compute the Metropolis-Hastings ratio as below. 

 

If the two mutations are in different clusters, a potential merge step is considered: 

• Form one merged set with all mutations currently allocated to the two clusters: 𝑆 =

𝑆$ ⋃ 𝑆&. 

• Compute the Metropolis-Hastings ratio as below. 

 



The Metropolis-Hastings ratio is computed as follows: Given the proposed new allocation 𝜼∗, 

and the current existing allocation 𝜼, the ratio is calculated as: 

𝛼(𝜼∗|𝜼) = min i1,
𝑝(𝜼∗|𝒚) Pr(𝜼|𝜼∗)
𝑝(𝜼|𝒚) Pr(𝜼∗|𝜼) n. 

 

If the proposal is a merge step, Pr(𝜼∗|𝜼) = 1, since there is only one way to merge two 

clusters into one. Pr(𝜼|𝜼∗) is calculated as the product of the sequential beta-binomial 

posterior probabilities as if the merged cluster were being split into the two original clusters 

(Equation 1 above), noting that the mutations should be in a random order for the calculation. 

The partition probabilities are given by: 

𝑝(𝜼∗|𝒚)

∝ 𝛼Γ(|𝑆|)ssX
𝑛t,a
𝑦t,aY

Bl𝑦t,a + ∑ 𝑦J,a + 1, 			𝑛t,a − 𝑦t,a + ∑ l𝑛J,a − 𝑦J,am + 1JKtJKt m
Bl∑ 𝑦J,a + 1,			 ∑ l𝑛J,a − 𝑦J,am + 1JKtJKt m

at∈k

 

 

𝑝(𝜼|𝒚)

∝ 𝛼xΓ(|𝑆$|)Γly𝑆&ymssX
𝑛t,a
𝑦t,aY

Bl𝑦t,a + ∑ 𝑦J,a + 1, 			𝑛t,a − 𝑦t,a + ∑ l𝑛J,a − 𝑦J,am + 1JKtJKt m
Bl∑ 𝑦J,a + 1,			 ∑ l𝑛J,a − 𝑦J,am + 1JKtJKt m

at∈k\

 

xssX
𝑛t,a
𝑦t,aY

Bl𝑦t,a + ∑ 𝑦J,a + 1, 			𝑛t,a − 𝑦t,a + ∑ l𝑛J,a − 𝑦J,am + 1JKtJKt m
Bl∑ 𝑦J,a + 1,			 ∑ l𝑛J,a − 𝑦J,am + 1JKtJKt m

at∈k]

 

  

If the proposal is a split step, Pr(𝜼|𝜼∗) = 1 and Pr(𝜼∗|𝜼) is the product of the probabilities in 

Equation 1 above. The partition probabilities are the reverse of the two equations 

immediately above. 

 

The proposed new split or merge step is accepted with probability given by the Metropolis-

Hastings ratio. 

 

Step 5: Up-dating the hyperparameter 

The posterior distribution for 𝛼 is: 

(𝛼|−)~Γz𝐶 + 𝐴 − 1, 𝐵 −= log	(1 − 𝑉J)
c_D
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� 

where the prior is 𝛼~Γ(𝐴,𝐵). 


