
Supporting information 
 

Direct observation of Thermomyces lanuginosus lipase diffusional 
states by Single Particle Tracking and their remodeling by mutations 
and inhibition  
 
Søren Schmidt-Rasmussen Nielsen1,2, Philip M. Lund1,2, Amalie S. Kallenbach1,2, Henrik 
Pinholt1,2, Johannes Thomsen1,2, Lars Iversen3, Allan Svendsen3, Sune Christensen3 and 
Nikos S. Hatzakis1,2* 
 
Author affiliations 
1Department of Chemistry & Nanoscience Center, Thorvaldsensvej 40, University of 
Copenhagen, Frederiksberg C, 1871, Denmark. 2NovoNordisk center for protein research 
Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, 
Blegdamsvej 3B, 2200 Copenhagen, Denmark. 3Novozymes A/S, Krogshøjsvej 36, DK 2880 
Bagværd, Denmark. 
 
Correspondence should be addressed to: hatzakis@nano.ku.dk 
 
  



 
Supplementary Methods 
 
M1. Extraction of diffusion coefficient from step length. 
To extract diffusion coefficient from single particle tracking data, we applied a simple Brownian 
diffusion model (sub class of the Gamma distribution). The approach was used to a) predict the 
most likely diffusion for each individual trajectory (and thus extract a mean diffusion, see Table 1) 
and b) predict the most likely diffusion coefficient for each state in each trajectory found via HMM 
analysis. The principle of maximum likelihood was used to estimate D, as it has no need for 
binning of data and hence avoids the introduction of binning bias. To estimate D, we used the 
equation below (as we published earlier1) to maximize the likelihood given a distribution of 
observed step lengths, where the probability is given by: 
 

𝑝(𝑟, 𝑡, 𝐷) =
𝑟
2𝐷𝑡

∗ exp	(−
𝑟0

4𝐷𝑡
)	 

 
Where r is the observed step length, t is the time interval between steps and D is the 
corresponding diffusion coefficient.  
 
M2. Determination of functional states and transition rates by Hidden Markov Analysis 
Deconvolution of underlying functional states was performed by analysis with a Hidden Markov 
Model approach, similar to published methodologies2, on the distribution of observed step 
lengths for each trace following gamma distributions. Analysis of traces across lipase variants 
revealed, through BIC score (see Table S1), that a 3-state model was the best description. The 
analysis was done by fitting the total distribution of observed step lengths for each variant by 1-4 
gamma distribution(s) and then comparing the results. All found states, for a given lipase variant, 
were plotted together in a histogram and fitted with a mixture of three Gaussians (four different 
populations in total, see Fig. 2). 
 
Each pair of mobility transitions found (“state before” and “state after”), were plotted as Transition 
Density Plots (TDPs), as shown in Fig. S9, and separated into two clusters per diagonal using a 
combination of k-means clustering, as reported recently by us3, and two dimensional gaussian 
mixture model (four clusters in total). The number of clusters were determined from earlier 
discussed Gaussian distributions, and corresponds to the three underlying states found for each 
variant. To exclude severe outliers in each cluster, data points outside a 98 % confidence interval 
(2.5 sigma) of each cluster center was excluded from further treatment. While this ensures 
reasonable cluster separation, we note that clusters in close proximity may still suffer from 
overlapping and that this could influence the kinetic characterization (see Fig. S9-10). Transition 
rates were determined through fitting a single exponential decay to the lifetime of each state (see 
Fig. S10 for single exponential fits and Table 2 for transition rates)2. From this, a four-state linear 
model (Fig. 2) was derived using similar methods as recently2,4.  



 
 

The equilibrium constant between states can be found as, 
 

𝐾34 =
𝑘6
𝑘76

 

 
From which the relative free energy difference between adjacent states can be calculated, 

 
∆𝐺 = −𝑅𝑇𝑙𝑛(𝐾34) 

 
where R is the gas constant, T the absolute temperature (here 298 K) and Keq from above. 
Alternatively, the equilibrium concentrations, and thus state occupancies, can be extracted using 
the equilibrium constants between states, assuming they sum up to 1 and are interdependent: 
 

𝐸1 =
1

1 + 𝐾6 + 𝐾6 ∗ 𝐾0
 

𝐸2 =
𝐾6

1 + 𝐾6 + 𝐾6 ∗ 𝐾0
 

𝐸3 =
𝐾6 ∗ 𝐾0

1 + 𝐾6 + 𝐾6 ∗ 𝐾0
 

 
where Kn is the equilibrium constant between adjacent states. Note that since all lipase variants 
display only three out of the four observed global states, the model for each individual variant 
looks as: 
 

 
𝐸1𝐾1⇋ 𝐸2𝐾2⇋ 𝐸3 

 
Furthermore, the activation energy (energy barrier), Ea, can be found from transition state theory 
using the equation: 
 

𝐸C = −𝑅𝑇(
ℎ𝑘EF
𝑘G𝑇

) 

 
where R is the gas constant, T the absolute temperature (298 K), h the Planck constant, kij the rate 
from state i to j and kB is the Boltzmann constant. Note that since all variants display 3 states, the 
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above can be directly applied - even though the actual mobility of E3 changes between highly 
active and the less active variants.  

 
M3. Fitting HMM states by Gaussian distributions.  
Gaussian distributions were used to describe and deconvolute individual underlying functional 
states within the observed HMM states (Fig. 2). The fitting was done using the maximum 
likelihood. Since these methods set to maximize the likelihood function, and the resulting fit is 
generated from probabilities for each individual data point belonging to a certain Gaussian 
population, no binning is needed. This was preferred over a tradition non-least-squares approach, 
as binning may bias the fit and thus elute the true population. All fitting was done using custom 
made routines in Python.  
 
M4. Bayesian Information Criterion (BIC) 
All fits were evaluated using the Bayesian Information Criterion (BIC) a widely employed 
methodology to avoid overfitting as it punishes over-fitting by penalizing the addition of 
parameters in relation to the likelihood of the fit5. BIC can be calculated as 
 

𝐵𝐼𝐶 = −2 ∗ ln(𝐿) + 𝑘 ∗ ln(𝑛) 
 
where L is the maximum likelihood function for a given dataset and the free parameters, k is the 
number of parameters included in the model and n is the number of data points. BIC allowed us 
to identify the optimal number for each individual condition (see Table S1), thus one can utilize 
this and evaluate what model best describes the data.  
 
M5. Hydrodynamic radius calculations 
The hydrodynamic radius of a spherical body undergoing Brownian motion can be calculated 
from Stokes-Einstein theory6 using the equation: 

𝐷 =
𝑘G𝑇
6𝜋ηr

 

Where, kB is the Boltzmann constant, T the temperature in Kelvin, η the dynamic viscosity of the 
medium and r the Stokes radius (hydrodynamic radius). In this equation the only unknow 
parameter is the dynamic viscosity of the medium. To utilize the equation, one must assume true 
Brownian motion, meaning a hard sphere experiencing drag force from a viscous solvent. 
 
As pure trimyristin at 21° degrees does not display a dynamic viscosity7, we used mobile lipids 
(see Fig. S1) to estimate the dynamic viscosity of our surfaces, following recently published 
methods8. By estimating the size of DOPE-ATTO655 conjugation to 1.5 nm9, a resulting viscosity 
of 5.82 ± 0.016 poise for the slightly hydrated trimyristin was found. From here the hydrodynamic 
radius of lipases was calculated using Stokes-Einstein. The results can be seen in supplementary 
table S4.  



 
Supplementary Figures 
S1. Lipid diffusion within the trimyristin layer by SPT 

 
 
Fig. S1. Lipid diffusion (ATTO-655-DOPE) within the trimyristin surface layer by SPT (1 ppm). A) 
Single particle tracking of fluorescently tagged DOPE lipids additionally reveals no significant 
change, again for both samples containing active lipase (dark green) and no lipase (light green). 
Error bars at least triplicate measurements.  
  



S2. Individual bleaching steps and lifetimes for all lipase types 

 
Fig. S2. Tracking characteristics for lipase variants. A) Table of all variant, showing number of 
tracks and the respective mean lifetimes for all conditions. B) Representative traces of enzymes 
display bleaching in a single step (normalized to t=0), confirming the docking and consequent 
bleaching of a single labeled individual lipase. The fact that imaging lifetimes are practically 
identical for all variants support that signal loss is due to bleaching rather than enzyme 
dissociation from surface. C) Labeling yield determined by electron spray mass spectrometry 
(intact mass) to be 83-86 %. 
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S3. Effect of labeling on enzymatic function 

 
Fig. S3. Effect of labeling on enzymatic function. A) Comparison of enzymatic activity for labeled 
(yellow and cyan) and unlabeled (red and purple) species display no observable effect of labeling. 
Red curve shows native variant, purple native with specific cysteine mutation for labeling, cyan 
display cysteine mutant with Alexa-488 label and yellow the cysteine mutant with an Alexa-647 
label.  
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S4. Surface integrity over time 
 

 
Fig. S4. Surface structural integrity over time after buffer addition, analyzed by confocal 
fluorescent microscopy. A) Images displaying time correlation of defects in the layer to be very 
stable over a period of > 40 min. Images are taken at 10 min, 25 min and 40 min respectively. 
Scale bar 5 µm.  B) Area of defects on trimyristin surfaces containing 5 ppm ATTO655-DOPE lipid 
display little to no change over huge time span. SPT experiments are performed within the first 5 
min of exposure to buffer. Error bar indicate triplicate measurements. Inset: Fluorescent intensity 
as a function of time further confirms the integrity of the substrate surface. 
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S5. HMM fitted traces 
 

 
 
Fig. S5. A collection of representative traces and their HMM idealized states found as described 
in M3. 
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S6. Comparison of step lengths from simulation and SPT 

 
Fig. S6. Comparison of step length from simulation and SPT. A) Step length distributions from 
simulated data (green) and tracked data (yellow). Data was simulated by making a video of 
gaussian intensity spots moving on a surface, following a single Brownian diffusion model. Data 
confirms the software’s ability to track single particles on a surface. Noise was introduced to 
match experimental data. B) BIC values for HMM analysis on the tracked data from A. As 
expected, the methodology here suggests that a single underlying diffusional state is the best 
description. 
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S7. Step length distribution of immobile particles irreversibly bound to the surface  

 
 
Fig. S7. Mobility of immobile streptavidin irreversibly bound to the surface via streptavidin-biotin 
linker)4. A) Distribution of step lengths for immobile proteins, practically yields the lower limit for 
the setup. B) Time trajectories for immobile proteins (black) and a freely diffusion lipase (red). 
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S8. Evaluation of anomalous diffusion parameter for all variants and conditions 

 
 
Fig. S8. Anomalous diffusion parameter. A) Anomalous diffusion parameter for all lipase mutants. 
Inspection reveals, that highly active variants display an increased tendency for values 
significantly above 1 – in agreement with our hypothesis and recently suggested models10. B) 
Direct comparison of mutant L2 and the native variant. C) Subtraction of values from B clearly 
visualizes the differences between highly active and less variants. 
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S9. Transition Density Plots for all variants and conditions 

 
Fig. S9. Transition density plots (TDPs) displaying the frequency of transitions between states. 
Initial state and final state step length values for each transition are accumulated into 2D 
histograms for all variants and conditions. All observed transitions between states for lipase 
mutants reveal a linear model for shifts between states, and enabled formulation of the model. A) 
Mutant variant L2. B) Mutant variant L3. Note that the immobile state is sampled only to a minute 
degree, however visible in histograms (see Fig. 2). C) Native variant. D) Native variant under 
product inhibited conditions. E) Variant L3 under product inhibited conditions. We note the slight 
overlap of cluster for panel D, which may result in increased errors for this species, as discussed 
in supplementary methods M2. 
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S10.Transition rates for all pairs of possible transitions for all variants and conditions 

 
Fig. S10. Summary of lifetimes for all transitions for lipases under normal conditions, derived from 
TDPs using clustering (see M2). Red line indicate single exponential fit using maximum likelihood. 
A) Variant L2. B) Variant L3. C) Native lipase variant. D) Native product inhibited. E) L3 product 
inhibited. We note slightly improper fit for panel D (bottom left), which could be originate from 
poorly separated data in the corresponding TDP (see Fig. S9D). As for panel E (top right), we 
ascribe this to lack of data points. However, as 18/20 data set seems to fit well using a single 
exponential fit, we believe this to be the best approximation for explaining the observed 
behaviors. 
  



S11. Diffusion coefficient from HMM found states 

 
 
Fig. S11. Diffusion coefficients from individual HMM found states. For each trajectory each 
individual state were fitted to a Brownian diffusion model as described earlier. Dashed red lines 
indicate a gaussian fit by 3 independent distributions, black line indicate the sum of all gaussians.  
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S12. Model with microscopic rates for all variant and conditions  

 
Fig. S12. Model with microscopic rates for all variants and conditions. Product inhibition operates 
via prohibiting transition to the fast diffusing highly active state  
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S13. Comparison of product inhibited variants 

 
Fig. S13. Direct comparison of the idealized step lengths found via HMM for product inhibited 
experiments. Inspection reveals a clear tendency for L3 to move faster as expected. This is in 
agreement with the observed diminished inhibition for bulk activity. 
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Supplementary Table 1. BIC values of HMM models 
 
LIPASE BIC VALUES FROM HMM MODELS  
 1 component 2 components 3 components 4 components 

L2 -2.01 -2.73 -3.28 -3.10 
L3 -0.22 -2.09 -2.58 -1.23 
NATIVE -1.91 -2.46 -2.55 -1.85 
NATIVE PRODUCT 0.01 -0.56 -0.67 0.03 
L3 PRODUCT 0.38 -0.61 -1.21 -0.52 

 
 
Supplementary Table 1. Table of BIC values from HMM analysis using gamma distributions to 
describe the data. For all variants, a model using 3 components is slightly preferred. 
  



Supplementary Table 2. Activation energies and free energy difference 
 Transition rates [s-1] 

Lipase k1 k-1 k2 k-2 k3 k-3 

L2 70.78 ± 0.014 
 

72.19 ± 0.015 
 

71.84 ± 0.011 
 

70.90 ± 0.011 
 

  

L3 72.34 ± 0.04 
 

72.61 ± 0.028 
 

  71.71 ± 0.008 
  

68.70 ± 0.007 
 

Native 73.12 ± 0.10 71.31 ± 0.12   70.35 ± 0.035 67.92 ± 0.027 
 

Native product 72.97 ± 0.08 73.80 ± 0.13 73.55 ± 0.07 73.38 ± 0.11 
  

  

L3 product 73.07 ± 0.31 72.97 ± 0.25 72.06 ± 0.011 72.26 ± 0.10 
 

  

* Error indicate one standard deviation 

 
Supplementary Table 2. Activation energies between lipase states 
  



Supplementary Table 3. Free energy difference 
 Relative free energy 

Lipase Immobile Slow Intermediate Fast/active 

L2 1.40 ± 0.2 0 0.84 ± 0.02  

L3 0.28 ± 0.05 0  3.02 ± 0.01 

Native - 1.81 ± 0.16 0  2.43 ± 0.04 

Native product  0.81 ± 0.14 0 0.18 ± 0.13  

L3 product - 0.1 ± 0.05 0 - 0.2 ± 0.06  

* Error indicate one standard deviation 

 
Supplementary Table 3. Activation energies between lipase states 
  



Supplementary Table 4. Statistical comparison of average lipase diffusion 
 Native L3 L2 Native product L3 product 

Native      

L3 <0.0001     

L2 <0.0001 <0.0001    

Native product <0.0001 <0.0001 <0.0001   

L3 product <0.0001 <0.0001 <0.0001 <0.0001  

DOPE-ATTO655 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

 
Supplementary Table 4. Statistical comparison of average diffusion coefficient for all tested 
conditions by two-sided Welch’s test (assuming unequal population variance). Reported values 
are the two-tailed p-value for each set of comparisons having identical means. 
  



 
Supplementary Table 5. Hydrodynamic radius by Stokes-Einstein 

 R [nm]* 
Native 1.6 ± 0.8 
L3 1.2 ± 0.4  
L2 1.8 ± 0.6  

* Error indicate one standard deviation of at least 6 different experiments (surface preparations).  

 
Supplementary Table 5. Lipase hydrodynamic radius from average diffusion. 
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