# Supplemental Data

| SUPPLEMENTAL FIGURES                                                           | 2 |
|--------------------------------------------------------------------------------|---|
| SUPPLEMENTAL FIGURE 1: PATIENT WORKFLOW                                        | 2 |
| SUPPLEMENTAL FIGURE 2: NESTED CROSS VALIDATION SCHEME                          | 3 |
| SUPPLEMENTAL FIGURE 3: CALIBRATION CURVES                                      | 1 |
| SUPPLEMENTAL TABLE                                                             | 5 |
| SUPPLEMENTAL TABLE 1: HISTOLOGIES OF SOFT TISSUE SARCOMAS                      | 5 |
| SUPPLEMENTAL TABLE 2: MRI ACQUISITION PARAMETERS                               | 5 |
| SUPPLEMENTAL TABLE 3: MRI PLANE ORIENTATION DISTRIBUTION                       | 7 |
| SUPPLEMENTAL TABLE 4: EXTRACTED RADIOMICS FEATURES AND IMAGE DISCRETIZATION 8  | 3 |
| SUPPLEMENTAL TABLE 5: COMPARISON OF MACHINE LEARNING TECHNIQUES11              | L |
| SUPPLEMENTAL TABLE 6: INFLUENCE OF FEATURE REDUCTION AND RESAMPLING TECHNIQUES |   |
| ON PREDICTIVE MODEL PERFORMANCE                                                | 2 |
| SUPPLEMENTAL TABLE 7: HYPERPARAMETER OPTIMIZATION OF PENALIZED REGRESSION      |   |
| MODELS                                                                         | 3 |
| SUPPLEMENTAL TABLE 8: FEATURE RANKING OF PREDICTION MODELS                     | 1 |
| SUPPLEMENTAL TABLE 9: PERFORMANCE METRICS OF THE RADIOMIC CLASSIFIERS          | 5 |
| SUPPLEMENTAL TABLE 11: PREDICTIVE PERFORMANCE OF PROGNOSTIC MODELS FOR OVERALL |   |
| SURVIVAL                                                                       | 3 |

# **Supplemental Figures**

### Supplemental Figure 1: Patient workflow

Representation of the patient workflow of the two independent patient cohorts from the Technical University of Munich (TUM) (training set) and the University of Washington (UW) (validation set).





# Supplemental Figure 2: Nested cross validation scheme

#### **Supplemental Figure 3: Calibration Curves**

Calibration curves for the *Clinical* model (a), the *Tumor-Volume* model (b), the *Radiomics-T1FSGd* model (c), the *Radiomics-T2FS* model (d), the *Radiomics-combined* model (e), and *Clinical-Volume-combined* (f) on the validation set are shown.



# **Supplemental Table**

### Supplemental Table 1: Histologies of Soft Tissue Sarcomas

Sorted by patient number. The distribution of histologies was significantly different (p<0.001, determined by the Chi-squared test.).

| Histological subtype (%)              | TUM      | UW       |
|---------------------------------------|----------|----------|
|                                       | Training | Testing  |
| Liposarcoma                           | 43 (35%) | 6 (6%)   |
| Pleomorphic Sarcoma                   | 24 (20%) | 38 (37%) |
| Myxofibrosarcoma                      | 19 (16%) | 5 (5%)   |
| Myxoid liposarcoma                    | 9 (7%)   | 10 (10%) |
| Synovialsarcoma                       | 8 (7%)   | 0        |
| Dedifferenciated liposarcoma          | 7 (6%)   | 2 (2%)   |
| Leiomyosarcoma                        | 5 (4%)   | 10 (10%) |
| Alveolar sarcoma                      | 2 (2%)   | 0        |
| Rhabdomyosarcoma                      | 2 (2%)   | 1 (1%)   |
| Angiosarcoma                          | 1 (1%)   | 1 (1%)   |
| Myofibroblastic sarcoma               | 1 (1%)   | 3 (3%)   |
| Synovial sarcoma                      | 1 (1%)   | 8 (8%)   |
| Fibromyxoid                           | 0        | 1 (1%)   |
| MPNST                                 | 0        | 5 (5%)   |
| Spindle cell sarcoma                  | 0        | 4 (4%)   |
| Solitary Fibrous Tumor                | 0        | 2 (2%)   |
| Myxoinflammatory fibroblastic sarcoma | 0        | 2 (2%)   |
| Other                                 | 0        | 5 (5%)   |

abbreviations: TUM: Technical University of Munich, UW: University of Washington.

#### Supplemental Table 2: MRI acquisition parameters

| median values are depicted. I valuers in blackets represent are range. |          |                           |                                   |  |  |  |
|------------------------------------------------------------------------|----------|---------------------------|-----------------------------------|--|--|--|
|                                                                        | Sequence | TUM <sup>a</sup>          | UW <sup>ь</sup>                   |  |  |  |
|                                                                        |          | Training                  | Validation                        |  |  |  |
| Magnetic field strength                                                |          | 1·5 T (1·0 - 3·0)         | 1.5 (0.7 - 3.5)                   |  |  |  |
|                                                                        |          |                           |                                   |  |  |  |
| In-Plane resolution (mm)                                               |          | 0.81 x 0.81               | 0·56 x 0·56                       |  |  |  |
|                                                                        |          | (0.31x0.31 - 1.4x1.4)     | $(0.19 \ge 0.19 - 1.56 \ge 1.56)$ |  |  |  |
| Slice thickness (mm)                                                   |          | 7 (3·3 - 10)              | 6                                 |  |  |  |
|                                                                        |          |                           | $(1 \cdot 0 - 11 \cdot 0)$        |  |  |  |
| Matrix                                                                 |          | 320 x 320                 | 512 x 512                         |  |  |  |
|                                                                        | T1FSGd   | (176 x 176 - 1152 x 1152) | (190 x 224 - 1200 x 1200)         |  |  |  |
| TR (ms)                                                                |          | 683.5 (102 - 1430)        | 630 (400- 1038)                   |  |  |  |
| TE (ms)                                                                |          | 12 (4 - 39)               | 11.8 (3 - 40)                     |  |  |  |
| In-Plane resolution (mm)                                               |          | 0.81 x 0.81               | 0.625 x 0.625                     |  |  |  |
|                                                                        |          | (0.31x0.31 - 1.4x1.4)     | (0·17 x 0·17 - 1·71 x 1·71)       |  |  |  |
| Slice thickness (mm)                                                   |          | 7 (3·3 - 10)              | 6.5 (3.0 - 11.6)                  |  |  |  |
|                                                                        |          |                           |                                   |  |  |  |
| Matrix                                                                 |          | 448 x448                  | 480 x 480                         |  |  |  |
|                                                                        |          | (224 x 224 - 1536 x 1536) | (169 x 192 - 880 x880)            |  |  |  |
| TR (ms)                                                                |          | 6520 (1086 - 18516)       | 3933 (9 -11098)                   |  |  |  |
|                                                                        | T2FS     |                           |                                   |  |  |  |
| TE (ms)                                                                |          | 60 (30 - 133)             | 68.8 (9-120)                      |  |  |  |
|                                                                        |          |                           |                                   |  |  |  |

Median values are depicted. Numbers in brackets represent the range.

Abbreviation: p: patients, T1wFS: T1-weighted fat saturated with contrast enhancement, T2FS: T2-weighted fat saturated, TE: echo time, TR: repetition time, TUM: Technical University of Munich, UW: University of Washington.

<sup>a</sup>MRI Scanner: GE (Chicago, USA): Signa HdX, Signa Excite; Philips (Amsterdam, Netherlands): Achieva, Ingenia, Intera; Siemens (Munich, Germany): Aera, Avanto, Biograph\_mM, Espree, Magnetom Vision, Verio, Symphony, Verio.

<sup>b</sup>MRI Scanner: GE (Chicago, USA): Discovery MR750, Genesis Signa, Signa HdX, Optima 450, Signa Excite; Philips (Amsterdam, Netherlands): Achieva, Gyroscan NT Ingenia, NT Intera; Siemens (Munich, Germany): Avanto, Espree, Harmony, Symphony, TrioTim; Hitachi (Tokio, Japan): Altaire, Oasis.

| Plane orientation | Sequence | TUM <sup>a</sup> | UW <sup>b</sup> |
|-------------------|----------|------------------|-----------------|
| Axial             |          | 121 (99%)        | 101 (98%)       |
| Coronar           | T1FSGd   | 1 (1%)           | 2 (2%)          |
| Sagittal          |          | 0                | 0               |
| Axial             |          | 19 (16%)         | 101 (98%)       |
| Coronar           | T2FS     | 98 (80%)         | 2 (2%)          |
| Sagittal          |          | 5 (4%)           | 0               |

Supplemental Table 3: MRI plane orientation distribution

Abbreviation: p: patients, T1wFS: T1-weight fat saturated with contrast enhancement, T2FS: T2-weight fat saturated, TUM: Technical University of Munich, UW: University of Washington.

#### Supplemental Table 4: Extracted radiomics features and image discretization

Image discretization was performed using a fixed bin width of ten as previously described. <sup>1</sup> Following the implementation in the pyradiomics package (version 2.1) bins were defined in that way, that the bin edges are equally spaced from zero. <sup>2</sup> The leftmost edge (minX<sub>gl</sub>) was defined as follows:

$$X_{b.i} = \left(\frac{X_{gl,i}}{W}\right) - \left(\frac{\min X_{gl}}{W}\right) + 1$$

where W is the bin width value.  $X_{gl,i}$  and  $X_{b,i}$  correspond to gray level intensities before and after discretization, respectively. If the range intensity values is equally dividable by the bin width, the maximum number of number of gray levels corresponds to the number of bins plus one. <sup>3</sup> Also see the pyradiomics documentation [https://pyradiomics.readthedocs.io/en/latest/radiomics.html#module-radiomics.imageoperations].

All over 1394 features per sequence were extract from the labelmap (shape features), the original images or the respective filtered reconstructions (intensity and texture features), summing up to a total of 2788 features per patients (see Supplemental Table 1). The pyradiomics package (version 2.1) implemented in python was used to calculate all features. Most of features were calculated according to the Imaging Biomarker Standardization Initiative (IBSI). <sup>4</sup> Differences to the IBSI definitions are listed below. The online documentation of the pyradiomics package (http://pyradiomics.readthedocs.io/en/latest/features.html) displays further details such as formulae.

|      | Shape Features                              |
|------|---------------------------------------------|
| 1.)  | Voxel Volume (IBSI: Approximate Volume)     |
| 2.)  | Mesh Volume (IBSI: Volume)                  |
| 3.)  | Surface Area                                |
| 4.)  | Surface Area to Volume ratio                |
| 5.)  | Sphericity                                  |
| 6.)  | Spherical Disproportion                     |
| 7.)  | Maximum 3D Diameter                         |
| 8.)  | Maximum 2D Diameter Slice                   |
| 9.)  | Maximum 2D Diameter Column                  |
| 10.) | Maximum 2D Diameter Row                     |
| 11.) | Major Axis Length                           |
| 12.) | Minor Axis Length                           |
| 13.) | Least Axis Length                           |
| 14.) | Elongation                                  |
| 15.) | Flatness                                    |
|      | First Order Features                        |
| 1.)  | Energy                                      |
| 2.)  | Total Energy <sup>a</sup>                   |
| 3.)  | Entropy (IBSI: Intensity Histogram Entropy) |
| 4.)  | Minimum                                     |
| 5.)  | 10th Percentile                             |
| 6.)  | 90th Percentile                             |
| 7.)  | Maximum                                     |
| 8.)  | Mean                                        |
| 9.)  | Median                                      |
| 10.) | Interquartile Range                         |
| 11.) | Range                                       |
| 12.) | Mean Absolute Deviation (MAD)               |
| 13.) | Robust Mean Absolute Deviation (rMAD)       |
| 14.) | Root Mean Squared (RMS)                     |

| 15.) | Skewness                                          |
|------|---------------------------------------------------|
| 16.) | Kurtosis <sup>b</sup>                             |
| 17.) | Variance                                          |
| 18.) | Uniformity (IBSI: Intensity Histogram Uniformity) |
|      | Gray Level Co-occurrence Matrix (GLCM) Features   |
| 1.)  | Autocorrelation                                   |
| 2.)  | Joint Average                                     |
| 3.)  | Cluster Prominence                                |
| 4.)  | Cluster Shade                                     |
| 5.)  | Cluster Tendency                                  |
| 6.)  | Contrast                                          |
| 7.)  | Correlation                                       |
| 8.)  | Difference Average                                |
| 9.)  | Difference Entropy                                |
| 10.) | Difference Variance                               |
| 11.) | Joint Energy (IBSI: Angular Second Moment)        |
| 12.) | Joint Entropy                                     |
| 13.) | Informal Measure of Correlation (IMC) 1           |
| 14.) | Informal Measure of Correlation (IMC) 2           |
| 15.) | Inverse Difference Moment (IDM)                   |
| 16.) | Inverse Difference Moment Normalized (IDMN)       |
| 17.) | Inverse Difference (ID)                           |
| 18.) | Inverse Difference Normalized (IDN)               |
| 19.) | Inverse Variance                                  |
| 20.) | Maximum Probability (IBSI: Joint maximum)         |
| 21.) | Sum Entropy                                       |
| 22.) | Sum of Squares (IBSI: Sum of Squares)             |
| 23.) | Maximal Correlation Coefficient (MCC)             |
|      | Gray Level Size Zone Matrix (GLSZM) Features      |
| 1.)  | Small Area Emphasis (SAE)                         |
| 2.)  | Large Area Emphasis (LAE)                         |
| 3.)  | Gray Level Non-Uniformity (GLN)                   |
| 4.)  | Gray Level Non-Uniformity Normalized (GLNN)       |
| 5.)  | Size-Zone Non-Uniformity (SZN)                    |
| 6.)  | Size-Zone Non-Uniformity Normalized (SZNN)        |
| 7.)  | Zone Percentage (ZP)                              |
| 8.)  | Gray Level Variance (GLV)                         |
| 9.)  | Zone Variance (ZV)                                |
| 10.) | Zone Entropy (ZE)                                 |
| 11.) | Low Gray Level Zone Emphasis (LGLZE)              |
| 12.) | High Gray Level Zone Emphasis (HGLZE)             |
| 13.) | Small Area Low Gray Level Emphasis (SALGLE)       |
| 14.) | Small Area High Gray Level Emphasis (SAHGLE)      |
| 15.) | Large Area Low Gray Level Emphasis (LALGLE)       |
| 16.) | Large Area High Gray Level Emphasis (LAHGLE)      |
| 1    | Gray Level Run Length Matrix (GLRLM) Features     |
| 1.)  | Short Run Emphasis (SRE)                          |

| 2.)          | Long Run Emphasis (LRE)                                                                                                                                    |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.)          | Gray Level Non-Uniformity (GLN)                                                                                                                            |
| 4.)          | Gray Level Non-Uniformity Normalized (GLNN)                                                                                                                |
| 5.)          | Run Length Non-Uniformity (RLN)                                                                                                                            |
| 6.)          | Run Length Non-Uniformity Normalized (RLNN)                                                                                                                |
| 7.)          | Run Percentage (RP)                                                                                                                                        |
| 8.)          | Gray Level Variance (GLV)                                                                                                                                  |
| 9.)          | Run Variance (RV)                                                                                                                                          |
| 10.)         | Run Entropy (RE)                                                                                                                                           |
| 11.)         | Low Gray Level Run Emphasis (LGLRE)                                                                                                                        |
| 12.)         | High Gray Level Run Emphasis (HGLRE)                                                                                                                       |
| 13.)         | Short Run Low Gray Level Emphasis (SRLGLE)                                                                                                                 |
| 14.)         | Short Run High Gray Level Emphasis (SRHGLE)                                                                                                                |
| 15.)         | Long Run Low Gray Level Emphasis (LRLGLE)                                                                                                                  |
| 16.)         | Long Run High Gray Level Emphasis (LRHGLE)                                                                                                                 |
|              | Neighbouring Gray Tone Difference Matrix (NGTDM) Features                                                                                                  |
| 1.)          | Coarseness                                                                                                                                                 |
| 2.)          | Contrast                                                                                                                                                   |
| 3.)          | Busyness                                                                                                                                                   |
| 4.)          | Complexity                                                                                                                                                 |
| 5.)          | Strength                                                                                                                                                   |
|              | Gray Level Dependence Matrix (GLDM) Features                                                                                                               |
| 1.)          | Small Dependence Emphasis (SDE)                                                                                                                            |
| 2.)          | Large Dependence Emphasis (LDE)                                                                                                                            |
| 3.)          | Gray Level Non-Uniformity (GLN)                                                                                                                            |
| 4.)          | Dependence Non-Uniformity (DN)                                                                                                                             |
| 5.)          | Dependence Non-Uniformity Normalized (DNN)                                                                                                                 |
| 6.)          | Gray Level Variance (GLV)                                                                                                                                  |
| 7.)          | Dependence Variance (DV)                                                                                                                                   |
| 8.)          | Dependence Entropy (DE)                                                                                                                                    |
| 9.)          | Low Gray Level Emphasis (LGLE)                                                                                                                             |
| 10.)         | High Gray Level Emphasis (HGLE)                                                                                                                            |
| 11.)         |                                                                                                                                                            |
|              | Small Dependence Low Gray Level Emphasis (SDLGLE)                                                                                                          |
| 12.)         | Small Dependence Low Gray Level Emphasis (SDLGLE)<br>Small Dependence High Gray Level Emphasis (SDHGLE)                                                    |
| 12.)<br>13.) | Small Dependence Low Gray Level Emphasis (SDLGLE)   Small Dependence High Gray Level Emphasis (SDHGLE)   Large Dependence Low Gray Level Emphasis (LDLGLE) |

<sup>a</sup>Not present in the IBSI feature definition. <sup>b</sup>The feature "kurtosis" calculated by the pyradiomics package is not corrected by a factor of three as it is for "kurtosis" following the IBSI feature definition.

|                                 | Details                                   | Hyper-parameter              | Training I | Training Performance (AUC) To |          |        | Testing Performance (AUC) |          |  |
|---------------------------------|-------------------------------------------|------------------------------|------------|-------------------------------|----------|--------|---------------------------|----------|--|
|                                 |                                           |                              | T1FSGd     | T2FS                          | Combined | T1FSGd | T2FS                      | Combined |  |
| Elastic net logistic regression | 0<α<1                                     | α, λ                         | 0.78       | 0.80                          | 0.83     | 0.67   | 0.79                      | 0.78     |  |
| LASSO                           | α = 1                                     | λ                            | 0.78       | 0.77                          | 0.84     | 0.69   | 0.78                      | 0.73     |  |
| Random Forest                   | 1001<br>trees                             | mtry                         | 0.78       | 0.88                          | 0.86     | 0.63   | 0.70                      | 0.73     |  |
| LogitBoost                      |                                           | Iteration number             | 0.75       | 0.88                          | 0.86     | 0.69   | 0.69                      | 0.72     |  |
| Decision tree                   |                                           | Complexity<br>parameter (cp) | 0.70       | 0.73                          | 0.74     | 0.68   | 0.55                      | 0.64     |  |
| Neural Network                  | Single hidden layer                       | size, decay                  | 0.73       | 0.80                          | 0.81     | 0.65   | 0.67                      | 0.74     |  |
| Support vector<br>machine       | Radial basis function<br>kernel transform | C (cost)<br>Sigma            | 0.78       | 0.80                          | 0.83     | 0.56   | 0.6                       | 0.68     |  |

Supplemental Table 5: Comparison of machine learning techniques.

The models were trained and compared using ten iteration of five-fold nested cross validation as described in the main text by applying the code published by Deist et al.. <sup>5</sup> Hyperparemeter optimization was performed using grid search. The training performance was evaluated by five-fold cross validation using the optimal hyperparameter combination. The final model was retrained on the whole training dataset using the optimal hyperparameter and tested on the test set. All performance measures were determined following ComBat correction as described in the manuscript.

abbreviations: AUC: area under the receiver operator characteristic curve, LASSO: least absolute shrinkage and selection operator

Supplemental Table 6: Influence of feature reduction and resampling techniques on predictive model performance

| Pre-processing                | ML Technique            | Training Performance (AUC) |      |          | Testing Performance (AUC) |      |          |
|-------------------------------|-------------------------|----------------------------|------|----------|---------------------------|------|----------|
|                               |                         | T1FSGd                     | T2FS | Combined | T1FSGd                    | T2FS | Combined |
| Principal component analysis  | Net logistic regression | 0.68                       | 0.79 | 0.84     | 0.63                      | 0.79 | 0.73     |
| Principal component analysis  | LASSO                   | 0.67                       | 0.78 | 0.84     | 0.62                      | 0.78 | 0.68     |
| Principal component analysis  | Random Forest           | 0.76                       | 0.83 | 0.84     | 0.58                      | 0.68 | 0.74     |
| SMOTE resampling <sup>#</sup> | LASSO                   | 0.78                       | 0.77 | 0.84     | 0.64                      | 0.74 | 0.66     |
| Weighting                     | LASSO                   | 0.78                       | 0.78 | 0.84     | 0.69                      | 0.76 | 0.74     |

<sup>#</sup>A Synthetic resampling techniques implemented in the "DMwR" package that down samples the majority class and synthesizes new minority instances by interpolating between existing ones was tested. <sup>6,7</sup> Resampling was performed within the cross validation.

abbreviation: AUC: area under the receiver operator characteristic curve, LASSO: least absolute shrinkage and selection operator, ML: machine learning, SMOTE: Synthetic minority sampling technique

#### Supplemental Table 7: Hyperparameter optimization of penalized regression models

For modeling of the prediction models, we applied the penalized regression method. It introduces a penalty into regression models for the inclusion of a large number of input features. As consequence, the coefficient values of unimportant features are reduced towards zero. The amount of shrinkage is modulated by two hyperparameters. The elasticnet mixing parameter  $\alpha$  defines the type of penalization. We chose an  $\alpha$  value of one which is referred to as "least absolute shrinkage and selection operator" (LASSO). As consequence, feature coefficients are penalized with the sum of the absolute coefficients (L1-norm) forcing coefficients of unimportant features to zero leading to the most profound feature reduction compared to the alternative penalized regression models "ridge regression" ( $\alpha = 0$ , shrinks coefficients maximally close to zero) or "elastic net regression" ( $0 < \alpha < 1$ ). The hyperparameter  $\lambda$  fine tunes the amount of coefficient shrinkage. <sup>8</sup> Previous studies have demonstrated a competitive performance compared to other machine learning methods. <sup>9,10</sup> At the same time, it allows for better interpretability due to the direct linear relationship between input features and outcome. The optimal values showed the best performance over all outer cross validation folds and were used for the training of the final models.

| Model  |                  | Radiomics-<br>T1FSGd | Radiomics-<br>T2FS   | Radiomics-<br>combined | Clinical             | Clinical-Volume-<br>combined |
|--------|------------------|----------------------|----------------------|------------------------|----------------------|------------------------------|
| Lambda | Tested<br>values | 0·001-1, by 0·002    | 0·001-1, by<br>0·002 | 0·001-1, by 0·002      | 0·001-1, by<br>0·002 | 0.001-1, by 0.002            |
|        | Optimal<br>Value | 0.33                 | 0.043                | 0.091                  | 0.060                | 0.02                         |

**Supplemental Table 8: Feature ranking of prediction models** Features and the respective importance ranking of the developed prediction models.

| Feature                                              | Importance ranking |
|------------------------------------------------------|--------------------|
| Radiomics-12FS                                       | 1                  |
| wavelet HLH_firstorder_Kartosis                      | 2                  |
| Ibn 3D k ngtdm Busyness                              | 2                  |
| log sigma 5.0 mm 3D glcm Correlation                 | 3                  |
| log sigma 3.0 mm 3D_firstorder_90Percentile          | <u>4</u><br>5      |
| original alrim LongRun owGray evelEmphasis           | 5                  |
| lbn 3D m <sup>2</sup> olcm Difference Variance       | 7                  |
| wavelet HHL firstorder Kurtosis                      | 8                  |
| original shape Sphericity                            | 9                  |
| wavelet HLH glcm ClusterProminence                   | 10                 |
| original shape Elongation                            | 11                 |
| original shape Maximum2DDiameterRow                  | 12                 |
| lbp.3D k glszm ZoneEntropy                           | 13                 |
| original shape Maximum2DDiameterSlice                | 14                 |
| log sigma 5.0 mm 3D glcm MaximumProbability          | 15                 |
| lbp.3D m2_gldm_DependenceEntropy                     | 16                 |
| lbn 3D m2_glcm_MCC                                   | 17                 |
| original firstorder Minimum                          | 18                 |
| lbp.3D m2_glcm_SumEntropy                            | 10                 |
| lbp.3D m2_glszm_GravLevelVariance                    | 20                 |
| wavelet LHH firstorder Skewness                      | 20                 |
| original shape Flatness                              | 21                 |
| log sigma 4.0 mm 3D firstorder 90Percentile          | 22                 |
| log sigma 5.0 mm 3D glcm Imc2                        | 23                 |
| Radiomics-T1FSGd                                     | 24                 |
| wavelet.HLH firstorder Mean                          | 1                  |
| wavelet.HLH glcm MCC                                 | 2                  |
| wavelet.HLH_gldm_DependenceEntropy                   | 3                  |
| wavelet.LLL_glrlm_LongRunLowGrayLevelEmphasis        | 4                  |
| lbp.3D.m1_firstorder_T1FSGd0Percentile               | 5                  |
| lbp.3D.m1_ngtdm_Complexity                           | 6                  |
| lbp.3D.m2_firstorder_RootMeanSquared                 | 7                  |
| lbp.3D.m2_glrlm_HighGrayLevelRunEmphasis             | 8                  |
| lbp.3D.k_firstorder_Kurtosis                         | 9                  |
| lbp.3D.k_glcm_DifferenceEntropy                      | 10                 |
| lbp.3D.k_glrlm_ShortRunHighGrayLevelEmphasis         | 11                 |
| original_shape_Flatness                              | 12                 |
| original_shape_Maximum2DDiameterRow                  | 13                 |
| original_shape_Sphericity                            | 14                 |
| original_firstorder_Skewness                         | 15                 |
| original_glcm_JointEnergy                            | 16                 |
| original_glcm_MCC                                    | 17                 |
| original_gldm_DependenceEntropy                      | 18                 |
| log.sigma.3.0.mm.3D_firstorder_Skewness              | 19                 |
| log.sigma.5.0.mm.3D_firstorder_Skewness              | 20                 |
| log.sigma.5.0.mm.3D_glszm_LargeAreaEmphasis          | 21                 |
| wavelet.LHH_firstorder_Kurtosis                      | 22                 |
| Radiomics-combined                                   |                    |
| log.sigma.3.0.mm.3D_firstorder_90Percentile_T2FS     | 1                  |
| wavelet.LHL_firstorder_Kurtosis_T2FS                 | 2                  |
| log.sigma.3.0.mm.3D_firstorder_Skewness_T1FSGd       | 3                  |
| wavelet.HHL_firstorder_Kurtosis_T2FS                 | 4                  |
| original_firstorder_Skewness_T1FSGd                  | 5                  |
| wavelet.LLL_glrlm_LongRunLowGrayLevelEmphasis_T1FSGd | 6                  |
| wavelet.HLH_firstorder_Mean_T2FS                     | 7                  |
| lbp.3D.m2_glcm_SumEntropy_T2FS                       | 8                  |

| wavelet.LHH_firstorder_Skewness_T2FS               | 9  |
|----------------------------------------------------|----|
| log.sigma.5.0.mm.3D_glszm_LargeAreaEmphasis_T1FSGd | 10 |
| original_shape_Flatness_T2FS                       | 11 |
| log.sigma.4.0.mm.3D_firstorder_90Percentile_T2FS   | 12 |
| original_shape_Flatness_T1FSGd                     | 13 |

### Supplemental Table 9: Performance metrics of the radiomic classifiers

Performance metrics on the validation set for the prediction of high-grade sarcomas including accuracy, negative predictive value (NPV), positive predictive value (PPV), sensitivity, and specificity of the three radiomics models *Radiomics-T1FSGd*, *Radiomics-T2FS*, and *Radiomics-combined* are shown.



# Supplemental Table 10: Predictive performance metrics of radiomic classifiers after ComBat correction with histology as biological covariate.

Area under the receiver operator characteristic curve (AUC) values for the differentiation of high-grade and lowgrade soft tissue sarcomas. 95 % confidence intervals are shown in parentheses.



|                                  | Training              | Validation       |
|----------------------------------|-----------------------|------------------|
| Grad                             | ing prediction models |                  |
| AJCC clinical stage <sup>a</sup> | 0.74 (0.67-0.81)      | 0.69 (0.60-0.78) |
| Radiomics-T1FSGd + AJCC          | 0.76 (0.68-0.85)      | 0.71 (0.61-0.81) |
| Radiomics-T2FS + AJCC            | 0.76 (0.68-0.84)      | 0.74 (0.64-0.84) |
| Radiomics-combined + AJCC        | 0.77 (0.68-0.86)      | 0.72 (0.62-0.83) |
| Tumor volume + AJCC              | 0.78 (0.71-0.85)      | 0.71 (0.61-0.81) |
| I                                | Prognostic models     |                  |
| T1FSGd features                  | 0.70 (0.58-0.80)      | 0.55 (0.45-0.65) |
| T2FS features                    | 0.74 (0.66-0.83)      | 0.60 (0.49-0.70) |
| Combined features                | 0.88 (0.82-0.94)      | 0.60 (0.5-0.69)  |
| Tumor volume                     | 0.59 (0.48-0.71)      | 0.54 (0.43-0.65) |
| T1FSGd features + AJCC           | 0.80 (0.73-0.86)      | 0.67 (0.57-0.77) |
| T2FS features + AJCC             | 0.81 (0.75-0.87)      | 0.70 (0.59-0.80) |
| Combined features + AJCC         | 0.89(0.84-0.94)       | 0.64s(0.55-0.74) |

**Supplemental Table 11: Predictive performance of prognostic models for overall survival** 95% confidence intervals are depicted in parentheses.

a AJCC cancer staging manual 7<sup>th</sup> edition. <sup>11</sup>

#### References

- 1 Peeken JC, Bernhofer M, Spraker MB, *et al.* CT-based radiomic features predict tumor grading and have prognostic value in patients with soft tissue sarcomas treated with neoadjuvant radiation therapy. *Radiother Oncol* 2019; **135**: 187–96.
- 2 van Griethuysen JJM, Fedorov A, Parmar C, *et al.* Computational Radiomics System to Decode the Radiographic Phenotype. *Cancer Res* 2017; **77**: e104–7.
- 3 Leijenaar RTH, Nalbantov G, Carvalho S, *et al.* The effect of SUV discretization in quantitative FDG-PET Radiomics: The need for standardized methodology in tumor texture analysis. *Sci Rep* 2015; **5**: 1– 10.
- 4 Zwanenburg A, Leger S, Vallières M, Löck S. Image biomarker standardisation initiative. *ArXiv* 2016; 1612.07003. http://arxiv.org/abs/1612.07003.
- 5 Deist TM, Jochems A, van Soest J, *et al.* Infrastructure and distributed learning methodology for privacy-preserving multi-centric rapid learning health care: euroCAT. *Clin Transl Radiat Oncol* 2017; **4**: 24–31.
- 6 Chawla N V., Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: Synthetic Minority Over-sampling Technique. *J Artif Intell Res* 2011; **16**: 732–5.
- 7 Menardi G, Torelli N. Training and assessing classification rules with imbalanced data. *Data Min Knowl Discov* 2014; **28**: 92–122.
- 8 Bruce P, Bruce A. Practical Statistics for Data Scientists O'Reilly Media. O'Reilly Media, 2017 http://shop.oreilly.com/product/0636920048992.do (accessed March 27, 2019).
- 9 Deist TM, Dankers FJWM, Valdes G, *et al.* Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers. *Med Phys* 2018; **45**: 3449–59.
- 10 Leger S, Zwanenburg A, Pilz K, *et al.* A comparative study of machine learning methods for time-Toevent survival data for radiomics risk modelling. *Sci Rep* 2017; 7: 1–28.
- 11 Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th Edition of the AJCC Cancer Staging Manual and the Future of TNM. *Ann Surg Oncol* 2010; **17**: 1471–4.