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Figure S1. Survival analysis with different metrics. Related to Figure 2.
(A) The tumor fusion candidate neoantigen burden could not separate patients in both cohorts.
(B) The tumor fusion candidate neoantigen score could not separate patients in both cohorts.
(C) The CTL is not related to immunotherapy outcome in both cohorts.
(D) Multivariate cox regression showed that the overall tumor candidate neoantigen score*CTL
was associate with checkpoint inhibitors outcome, independent of age and sex. Hazard ratio with
95% confidence interval was shown for overall neoantigen score*CTL, Age and Sex.
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Figure S2. Survival analyses with different metrics. Related to Figure 2.
(A) The overall tumor neoantigen burden is related to immunotherapy outcome in the Hugo 
cohort, while not in the Van Allen cohort.
(B) The overall tumor neoantigen score is related to immunotherapy outcome in the Hugo 
cohort, while not in the Van Allen cohort.
(C) The overall neoantigen burden*CTL is related to immunotherapy outcome in theVan Allen 
cohort, while not in the Hugo cohort.
(D) Incorporating fitness score in our score scheme improves the accuracy in immunotherapy 
outcome prediction. 
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Figure S3. The overall tumor candidate neoantigen score*CTL is not a prognostic factor 
for overall survival. Related to Figure 2.
(A) The overall tumor candidate neoantigen score*CTL is not a prognostic factor for overall 
survival except for TCGA BLCA (20 cancer types were tested). Taking fusion candidate 
neoantigens into consideration improves the prediction accuracy of overall survival.
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Figure S4. The negative logistic function and the distribution of q-values. Related to Figure 4 and 5.
(A) The negative logistic function of L(x), and m indicates the mismatch between the candidate 
neoantigen and the corresponding normal peptide.
(B) The distribution of q-values of the comparison between passenger fusion and Onco fusion.
(C) The distribution of q-vaues of the comparison between passenger fusion and TSG fusion.
(D) The distribution of q-values of the comparison between passenger fusion and kinase fusion.
TSG: tumor suppressor gene; Onco: oncogene



Transparent Methods 

neoFusion for fusion neoantigen prediction and immunogenic potential 

assessment  

A comprehensive literature review indicated that INTEGRATE-neo (Zhang, Mardis and 

Maher, 2017) is the only existing in silico tool for fusion neoantigen prediction. Several 

issues, however, remain to be overcome (1) In constructing peptides, INTEGRATE-neo 

only considered peptides spanning the fusion breakpoints. However, frameshift fusions 

can create new ORF, as a result all the downstream translated protein sequence alter 

and fusion candidate neoantigens may be missed by the INTEGRATE-neo; (2) 

INTEGRATE-neo do not assess the immunogenic potential of fusion candidate 

neoantigens. Here, we present neoFusion, a pipeline for fusion neoantigen prediction 

and prioritization with a quantitative score schema (Figure 5). Tools used in our fusion 

neoantigen prediction pipeline such as STAR-Fusion are based on literature survey and 

the state-of-the-art tools are chosen. For convenience, end users can take fusions or neo-

peptides detected by themselves as input to neoFusion to assess neo-peptides 

immunogenic potentials. neoFusion outputs list of putative neoantigens generated by 

fusions and prioritizes these candidate neoantigens based on their immunogenicity 

scores. neoFusion is written by python, and it can be easily installed and deployed with 

Docker version. neoFusion comprises the following four main steps: data preprocessing, 

fusion detection and filtering, fusion neoantigen prediction, and fusion candidate 

neoantigen scoring and ranking (Figure 5). 

 

Data preprocessing: Illumina adaptors, low quality (phred score below 20) and N 

bases of raw RNA sequencing data are removed by Trimmomatic-0.36 (Bolger, Lohse 

and Usadel, 2014). Although single-end sequencing data is supported by neoFusion, 

paired-end data are highly recommended. 

 

Fusion detection and filtering: Several bioinformatics methods and software have 

been developed to identify fusion transcripts from RNA-Seq. In our pipeline we employ 

STAR-Fusion to detect fusions as STAR-Fusion show a higher sensitivity in detecting 

the fusions reporting in previous TCGA studied (Gao et al., 2018). Fastq files are 

mapped to the human reference genome (build hg38) followed by fusion calling using 

STAR-Fusion (parameters: --examine_coding_effect; Haas et al., 2017). Fusions having 

FFPM less than 0.1 (fusion fragments per million total reads) or not supporting by 

LargeAnchor reads are filtered. Furthermore, fusions reported in normal samples were 

filtered, including the ones from GTEx tissues (The Genotype-Tissue Expression 

project) and non-cancer cell study. Fusions were separated into three categories with 

respect to the frame of the 3’ gene, i.e., noframe fusions (breakpoint at UTR, intron or 

non-coding RNA. Those noframe fusions are not an obvious fusion protein based on 

the reference coding region annotations and they are filtered to reduce false positives 

in predicting fusion neoantigens; Haas et al., 2017; Kim and Zhou, 2018), inframe 

fusions (fusion do not create transcript frameshift) and frameshift fusions. 

 



Fusion neoantigen prediction: For each predicted fusion, we obtained the translated 

protein sequence output by STAR-Fusion and constructed 9-11 kmers (default 

parameter) peptides. Peptides existing in the human reference proteome were not likely 

to be neoantigens and they were filtered to reduce false positives. HLA alleles were 

determined (unless provided) from RNA sequencing data by OptiType (Szolek et al., 

2014), which, with the default setting, achieved ~97% accuracy. pMHC binding affinity 

and binding affinity percent rank were predicted by NetMHCpan version 4.0 (Jurtz et 

al., 2017) in binding affinity mode with other parameters set as default. Peptides with 

binding affinity percent rank <=2 are reported as candidate neoantigens (Nielsen and 

Andreatta, 2016); The binding affinity percent rank was used for filtering as the authors 

of NetMHCpan demonstrated that different MHC molecules present epitopes at distinct 

binding thresholds. Specifically, for example, set 500nM binding affinity threshold to 

filter peptides that would not be presented by HLA-A02:02 is fine, however this 

threshold maybe not suitable for HLA-B07:02. Therefore, binding affinity percent rank 

was proposed for peptides filtering and proven to be more accurate: for each allele, 

NetMHCpan translated the predicted binding affinity values to a percentile score by 

comparing them to the predicted binding affinities of a set of 400000 random natural 

peptides. 

 

Fusion candidate neoantigen scoring and ranking: We quantitatively assessed the 

immunogenic potential of candidate neoantigens by their candidate neoantigen scores 

and prioritized candidate neoantigens according to their scores. We aimed to prioritize 

neo-peptides that are likely to be presented by MHC I on the cell surface and recognized 

by T cells. 

 

Candidate neoantigen score scheme 

The following features were used to construct our candidate neoantigen score scheme 

based on our previous work (Zhou et al., 2019). 

C: Combined score of binding affinity, proteasomal C’ terminal cleavage, and TAP 

transport efficiency, as output by NetCTLpan (Stranzl et al., 2010). One of the first steps 

involved in MHC I neoantigen presentation is the degradation of intracellular proteins 

by the proteasome. Only a subset of the peptides is transported by transporter associated 

with TAP complex into the endoplasmatic reticulum. 

Rm: The binding affinity percent rank of the candidate neoantigen, as output by 

NetMHCpan 4.0. 

Rn: The binding affinity percent rank of the candidate neoantigen corresponding wild 

type peptide. The wild type peptide, a single peptide as long as and most similar to the 

candidate neoantigen with up to 4 mismatches in the human reference proteome, was 

determined by pepmatch_db_x86_64 program with default parameter (Bjerregaard et 

al., 2017). 

m: Mismatch between candidate neoantigen and the corresponding wild type peptide. 

H: The hydrophobicity of amino acids at the TCR contact residues is a strong hallmark 

of CD8+ T cell-mediated immunity (Chowell et al., 2015). In our previous work, three 

eXtreme Gradient Boosting (XGBoost) machine-learning models were trained to 



predict the probability of pMHC recognized by T cells (Zhou et al., 2019). Briefly, 

immunogenic peptides (pMHCs with a T cell response) and non-immunogenic peptides 

(pMHCs without a T cell response) were collected from the Immune Epitope Database 

and Analysis Resource (Vita et al., 2009). Then, the hydrophobicity of amino acid was 

used as the input feature to train the model. 

R (fitness score): Recently, several methods measuring the T cell recognition 

probability of pMHC were proposed based on sequence comparison analysis. Here we 

used the neoantigen fitness model presented by Luksza et al. to calculate the T cell 

fitness score (Luksza et al., 2017). Briefly, the model gives R, the likelihood that a 

neoantigen will be recognized by the TCR repertoire, by alignment with a set of 

peptides retrieved from IEDB. These peptides are linear epitopes from human 

infectious diseases that are positively recognized by T cells after class I MHC 

presentation. The model assumed that a neoantigen is more likely to be immunogenic 

if the neoantigen is more similar to those peptides. R was defined by a multistate 

thermodynamic model in which sequence similarity was treated as a proxy for binding 

energy. To assess the sequence similarity between a neoantigen with peptide sequence 

s and an IEDB epitope e, gapless alignment with a BLOSUM62 amino acid similarity 

matrix was computed and their alignment scores denoted as |𝑠, 𝑒| . For a given 

neoantigen with peptide sequence s, the T cell recognition score was calculated as:  

R =  𝑍(𝑘)−1 ∑ 𝑒𝑥𝑝(−𝑘(𝑎 − |𝑠, 𝑒|))𝑒∈𝐼𝐸𝐷𝐵     (1) 

where a represents the horizontal displacement of the binding curve, k sets the steepness 

of the curve at a, and 

𝑍(𝑘) = 1 + ∑ 𝑒𝑥𝑝 (−𝑘(𝑎 − |𝑠, 𝑒|))𝑒∈𝐼𝐸𝐷𝐵     (2) 

Which represents the partition function over the unbound state and the all-bound state. 

Here, k=4.87 and a=26, which were determined in the original study. 

 

The likelihood of peptide presented by MHC I is defined as: 

𝐴 = 𝐶 ∗ 𝐿(𝑅𝑚)   (3) 

The likelihood of pMHC recognized by T cells is defined as:  

    𝐵 = 𝐻 ∗ 𝑅 ∗ (1 − 2−𝑚𝐿(𝑅𝑛))    (4) 

The candidate neoantigen score is defined as: 

𝑆 = 𝐴 ∗ 𝐵    (5) 

Where L(x) is a logistic function given by: 

𝐿(𝑥) =
1

1+𝑒5(𝑥−2)    (6) 

L(x) is a negative logistic function (Bjerregaard et al., 2017; Figure S4A). This function 

gives a value approaching 0 for a high binding affinity percent rank, a midpoint at a 

binding affinity percent rank of 2, and a value of one for a lowbinding affinity percent 

rank. The constant 2 defines the inflection point and it was chosen since a binding 

affinity percent rank of 2 is the recommened cutoff for peptide binding. The equation 

(1 − 2−𝑚𝐿(𝑅𝑛)) is a penalized function when scoring the candidate neoantigens: If 

the candidate neoantigen corresponding wild type peptide has a low dissociation 

constant, tolerance mechanisms will remove TCRs that are specific to the wild type 



peptide. Owing to cross-reactivity, candidate neoantigen specific TCRs could be 

reduced. 

 

It should be note that (1) All the factors relevant to immunogenic potential in our score 

scheme is not fusion candidate neoantigen specific. Therefore, our score scheme can be 

employed to evaluate the immunogenic potential of the SNV&indel based candidate 

neoantigens as well as the fusion based candidate neoantigens; (2) The exact 

determinants of immunogenicity are not well understood, the score scheme is designed 

empirically based on current knowledge. Our score scheme can be updated when further 

knowledge related to immunogenicity becomes available. 

 

Evaluation of the rationality and effectiveness of our proposed score scheme 

To evaluate the rationality of our proposed score scheme, we applied it to five public 

peptides datasets with experimentally confirmed immunogenic and non-immunogenic 

peptides (Table S5). Of the five peptides datasets, four are SNV&indel mutation based 

neo-peptides, one is fusion mutation based neo-peptides recently validated by Yang 

(Robbins et al., 2013; Rajasagi et al., 2014; Carreno et al., 2015; Gros et al., 2016; 

Yang et al., 2019). Furthermore, to evaluate the performance of our proposed score 

scheme, we compared it with other available tools, including the neoantigen fitness 

model (Luksza et al., 2017), MuPeXI 1.2 (Bjerregaard et al., 2017), neopepsee (Kim et 

al., 2018) and a tool available at IEDB (Calis et al., 2013) that were all developed for 

peptides immunogenic potential evaluation. Peptides were scored according to our 

score scheme and these tools (Table S5). Area under the precision-recall curve (PR-

AUC) and area under the receiver operating characteristic curve (ROC-AUC) were used 

to benchmark the performance. In 2 of 5 peptides datasets, our score scheme presented 

the highest ROC-AUC and in 3 of 5 peptides datasets, our score scheme presented the 

highest PR-AUC, indicating its superiority and rationality. 

 

The following definitions are also presented related to our evaluations: 

specific candidate neoantigen: a candidate neoantigen with binding affinity percent 

rank <=2 and the corresponding wild type peptide with binding affinity percent rank >2. 

Due to self-immune tolerance, compared with non-specific candidate neoantigens, 

specific candidate neoantigens tend to have higher immunogenic potential (Turajlic et 

al., 2017). 

fusion mutation burden ratio = 
fusion mutation burden

SNV&indel mutation burden
 

fusion candidate neoantigen burden ratio = 
fusion candidate neoantigen burden

SNV&indel candidate neoantigen burden
 

 

fusion specific candidate neoantigen burden ratio = 
fusion specific candidate neoantigen burden

SNV&indel specific candidate neoantigen burden
 

candidate neoantigen per mutation: candidate neoantigens a mutation can generate 

specific candidate neoantigen per mutation: specific candidate neoantigens a 

mutation can generate 



specific candidate neoantigen per candidate neoantigen = 

specific candidate neoantigen burden

candidate neoantigen burden
 , a metric to evaluate the likelihood that a candidate 

neoantigen is the specific candidate neoantigen 

 

Analysis of the MS cohort dataset 

We analyzed 10 breast cancer cell lines in the MS dataset obtained from Rozanov 

(Rozanov et al., 2018). MHC I bound peptides were eluted by MHC I 

immunoprecipitation and the eluted peptides were analyzed by mass spectrometry. 

Fusion candidate neoantigens were predicted following our neoFusion pipeline with 

RNA sequencing data. We used ProteoWizard (Chambers et al., 2012) to convert Raw 

MS data to mzML format. For each cancer cell line, MS data were searched against the 

human reference proteome downloaded from UniProt concatenated with fusion 

candidate neoantigens. MS data were searched with Comet (Eng, Jahan and Hoopmann, 

2013) and filtered with Percolator (Käll et al., 2007) to identify fusion peptides 

presented by MHC I at a false discovery rate of 1%. Comet software parameters were 

set as in the original article. Peptide-spectrum matches were visualized by xiSPEC 

(Kolbowski, Combe and Rappsilber, 2018), a web-based spectrum viewer. 

 

In our study, all the predicted fusion candidate neoantigens were scored and prioritized 

according to our score scheme. It should be noted during scoring those predicted fusion 

neoantigens, only the likelihood of peptides presentation by MHC was calculated as 

those peptides were eluted from pMHC complexes. The fusion candidate neoantigen 

TAISPIAVLPR in HCC1806 (92 fusion candidate neoantigens in total) and 

APKSSSGFSL in HCC1428 (29 fusion candidate neoantigens in total) rank 6/92 and 

2/29, respectively (Table S1). The probability of the co-occurrence of such two ranks 

or lower is equal to 0.0236. 

 

Analysis of the ICB cohort dataset  

Two ICB cohorts with whole-exome sequencing and RNA sequencing data were 

downloaded. Among 39 patients with melanoma treated by anti-CTLA-4 in the Van 

Allen cohort, 17 patients had responses, 22 patients had no responses. Among 25 

patients with melanoma treated by anti-PD-1 in the Hugo cohort, 12 patients had 

responses, 13 patients had no responses. Fusion candidate neoantigens were predicted 

following our neoFusion pipeline. SNV&indel candidate neoantigens of the Van Allen 

cohort were determined by our inhouse pipeline. In brief, somatic SNV&indel VCFs 

were generated following GATK (Van der Auwera et al., 2013) best practices workflow. 

Mutations should pass all the criteria described in the VCF file. Mutations with an 

allelic frequency less than 0.05, coverage less than 15X, or supported by fewer than 5 

reads were filtered. SNV&indel VCFs of the Hugo cohort were obtained from the 

supplementary material of the original article. We utilized StringTie (Pertea et al., 2015) 

to quantify the gene expression level in transcripts per million (TPM). HLA alleles of 

each sample were inferred from the RNA sequencing data by OptiType. VCFs and 

expression profile files were inputted to the MuPeXI program to predict SNV&indel 



neoantigens (parameter, peptide length: 9,10,11; reference version: hg38). SNV&indel 

candidate neoantigen expression threshold was set to 1 TPM. Fusion and SNV&indel 

candidate neoantigen score were calculated according to our score scheme. 

 

The tumor fusion candidate neoantigen score (TFS) was defined as the sum of the fusion 

candidate neoantigen score. The tumor SNV&indel candidate neoantigen score (TSS) 

was defined as the sum of the SNV&indel candidate neoantigen score. The overall 

tumor candidate neoantigen score was defined as: TNS = TFS + TSS. Like Luksza et 

al., the cytotoxic lymphocyte (CTL) fraction was used as the proxy for immune 

cytolytic activity (Luksza et al., 2017). Gene expression profile files output by StringTie 

were inputted to MCPcounter (Becht et al., 2016) to derive the CTL fraction. 

 

Survival analysis was performed using the Kaplan-Meier method, with p-value 

determined by a log-rank test. Samples were split by the median value cutoff. Survival 

data were retrieved from the original study. The hazard ratio was determined through a 

Cox proportional hazards model. Multivariate Cox regression was performed using the 

overall tumor candidate neoantigen score*CTL, considering sex and age. 

 

Analysis of the TCGA cohort dataset 

Of 9624 tumor samples representing 33 tumor types, 25664 fusions were retrieved from 

Gao et al. (Gao et al., 2018; Table S3). In addition, 7489 tumors SNV&indel VCFs 

from 20 solid tumor types were downloaded from TCGA. Finally, only 6552 samples 

possessed fusion mutation, SNV&indel mutation, and HLA allele information 

(Thorsson et al., 2018). Fusion neoantigens were predicted following our neoFusion 

pipeline. Somatic SNV&indel VCFs and corresponding expression files were 

downloaded from TCGA and inputted to the MuPeXI program to predict SNV&indel 

neoantigens. Predicted fusion neoantigens and predicted SNV&indel neoantigens were 

scored using our score scheme (Table S4). The landscape of the microsatellite 

instability of TCGA tumor samples was obtained from Bonneville (Miya et al., 2017). 

As suggested by Bonneville, for all cases, a threshold of 0.4 was set to differentiate 

samples with high microsatellite instability from those with microsatellite stability.  

 

SMG1, SMG5, SMG6, SMG7, UPF1, UPF2, UPF3A and UPF3B genes were selected 

as the biomarkers of nonsense-mediated decay (Han et al., 2018). The TCGA sample 

expression files were downloaded from TCGA website. Compared with samples 

without frameshift fusion mutation, except for the SMG6 and UPF3A genes, the 

expression level of other genes in samples harboring frameshift fusion are slightly 

higher (10%~20%, Student’s t-test, p-value<0.01). 

 

The fusion score was calculated as the sum of candidate neoantigen scores generated 

by that fusion. For the fusion that occurred multiple times, its median value was used 

to represent its fusion score. In total, there were 8634 passenger fusion scores, 844 

kinase fusion scores, 204 Onco fusion scores and 172 TSG fusion scores. One-sided 

Mann-Whitney U hypothesis test might be affected by extremely different sample size. 



To control sample size effect, we randomly sampled 600 passenger fusion scores and 

we compared them with fusion scores of other categories. We repeated random 

sampling procedure for 10000 times and we plotted the distribution of the corrected p-

values to determine whether the passenger fusion scores are significantly different from 

other categories. It is shown that the Onco fusion score was significantly lower than the 

passenger fusion score, but not others (Figure S4B-D). 

 

TCGA BLCA CTL fraction information was obtained from Thorsson (Thorsson et al., 

2018), and overall survival information was downloaded from TCGA website. 
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