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Supplementary Figure 1: Related to figure 2. Modelling methodology details. A)
Schematic for the externally exposed surface area and volume allocation to nodes. Node
i is shared among six triangular prism elements, the total surface area highlighted in red,
volume on green. B) Schematics for the oriented growth and related rotational corrections.
A growth of doubling in volume, parallel to x-axis, with aspect ratio of 2 is demonstrated
for all cases. All coordinate axes display x in red, y in green and z in blue. In the simu-
lations, x is aligned with the DV axis, y with AP axis and z with AB axis of the tissue.
i) Simple scenario where the world and local coordinates are aligned. ii) The elements
have a rigid body rotation that deviates the local z-axis from the world coordinates, x &
y are aligned. The growth follows local coordinate system, and the rigid body rotation
is not accounted for. iii) The case where due to deformation in the tissue, the elements
have gone through a rigid body rotation around the z-axis. The growth orientation is
corrected for the rotation around z, and growth on x-y plane is applied in world coordi-
nates. The wrong emergent grown shape in the case when this rotation was ignored is
shown for comparison. C) Schematic for the hard wall potential applied to ensure volume
exclusion. i) packing forces between nodes i and j in x-axis. The dashed box is enlarged
on the inset, the calculated potential is applied in the opposite directions on both nodes.
ii) The packing potential with distance displayed, the parameters defining the potential
function are marked. D) Schematic displaying the adhesion of nodes i and j, the ini-
tial configuration same as Ci, the nodes are carried to the mid-point and their degrees
of freedom bound. E) Schematic for node collapse on elements with nodes approaching
within a small threshold distance of each other, implemented to limit element flipping.
i) Node configuration outside collapse limit, ii) nodes moved within the collapse limit of
each other due to viscoelastic system forces. iii) Configuration after node collapse. In
D and E, the schematics are for demonstration purposes only and distances are not to
scale. F) A sample simulated initial mesh, displaying the symmetricity assumption and
showing the simulated half. Schematic added on the simulation mesh to demonstrate
the no-bending boundary condition at circumference. G) Schematic demonstrating the
algorithm to detect fold initiation with element surface normals. The detection is carried
out on elements with exposed surfaces on either apical or basal surfaces, apical surface is
utilised in demonstration. i) two normals on elements (green arrows) are within the vicin-
ity of each other and the angle between the normals is wider than the selected threshold.
ii) Two elements are assigned to be on fold initiation regions. iii) All elements that have
their apical surfaces within the bounding box of the identified element couple are marked
to be on fold initiation surface. For fold identification on the basal surface, the bounding
box will check for basal surfaces of the remaining elements. iv) The fold initiation region
is extended to cover the whole tissue thickness. H) The numbering of prism nodes in finite
element formulations.
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Supplementary Figure 2: Legend on next page.
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Supplementary Figure 2: Related to Figure 3. Alternative relative stiffness states of
the tissue. Tissue morphology with, A) increasing relative stiffness of apical and basal
surfaces and external viscous resistance; B) increasing relative stiffness of tissue midline,
and external viscous resistance. Each panel demonstrates simulation results for a tissue
growing from 48 hour AEL to 96 hours AEL, with uniform in-plane growth rates, as stated
in Figure 3A. Images are taken the cross-section of the tissue midline at 96 hours AEL,
ventral tip on the right. Row and Column organisation same as Figure 3A. Both in A
and B, ii) Apical indentation maps automatically identified from the curvature of facing
surfaces, each continuous folding region is marked in a single colour. iii) Fold position
deviations, calculated as sum of percentage deviation from each experimental fold at the
tissue centre. Both i & ii calculated at same time points of (i), row column organisation is
same as in (i). C) Simulation with same parameters as Figure 3B, on a symmetric, circular
initial mesh. Snapshot is from 96 hours AEL, sagittal view as central cross-section, and
dorsal tip to the right. Scale bar 20 µm.
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Supplementary Figure 3: Legend on next page.
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Supplementary Figure 3: Related to Figure 4. Details of the growth rate analysis
methodology. A) Definition of the growth phases. i) The targeted experimental timings.
ii) The morphological staging of the dissected wing discs according to the folding stage.
iii) The timing for the application of the growth phases in the simulations. B) Schematic
representing the alignment of the growth rate measurements for a given time period.
HH fold position (dashed line) is calculated as the average of all the wing-discs utilised
in growth rate measurements for the selected time period. The HH position of each
individual wing disc (solid line) is aligned to the average position. The two sides of the
fold are rescaled to fit within the average size of the tissue, moving the data points (red on
notum side, and green on pouch side) in the process. C) Measurements for the size of the
pouch at different time periods within 48 to 96 hours AEL. Top schematics demonstrate
how the pouch position and size are normalised. Plot demonstrates means with whiskers
on one standard deviation. D) The order in which the grid points are checked, and filled as
necessary. i) Order goes from light to dark shades of dots on grid points. ii) Once an empty
grid point (with no experimental data points) is reached, the existing data in immediate
neighbours are averaged to cover the empty point. The order of sampling for empty grid
points is of significance as filled regions contribute to the filling of their neighbours, thus
enabling us to fill the extended patches of empty regions on the grid. E) The extended
version of growth maps demonstrated in Figure 4B. Colour bars on the right hand side
of the panes are valid for all. The measured fold positions, and the corresponding tissue
compartments are marked on the heatmaps, the positions are measured for 72-88 hours
AEL in i&ii, for 96 hours AEL in iii. F) i) Apical indentation maps and ii) fold position
deviations of simulations with experimental growth rate, as presented in Figure 4C. G)
Non-heat shock controls, NLF-GFP in magenta. No spontaneous expression is observed
in wing disc columnar epithelium. Scale bars 50 µm
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Supplementary Figure 4: Legend on next page.
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Supplementary Figure 4: Related to Figure 5. A) Simulations with apical surface is
stiffer than the rest of the cell body. i) The effects of apical viscous resistance coefficient
and tissue stiffness heterogeneity on emergent morphology, columns: increasing apical vis-
cous resistance coefficient, rows: increasing relative stiffness of apical surface. Simulation
in lower right corner is detailed in Figure 5D. ii) Fold position deviations, calculated as
sum of percentage deviation from each experimental fold at the tissue centre, row column
organisation is same as in (i). The tissue has explicit BM definition at 1600 Pa stiffness
and renewal half-life of 8 hour, basal viscous resistance coefficient is 10 Pa s µm−1. B)
Simulations with tissue midline stiffer than the rest of the tissue, grid organisation and all
remaining simulation parameters are same as (A). C) Simulations with tissue apical and
basal surfaces stiffer than the rest of the cell body, grid organisation and all remaining
simulation parameters are same as (A). D) Timeline of z-growth added simulation in Fig-
ure 5G and Movie 5. Snapshots are from 72, 78, and 84 hours AEL, respectively. Scale
bar is 20 µm. i) top view, ii) cross-section view, iii) apical indentation maps. iv) The
positions of the folds on the tissue cross section apical surface profile, the red stars mark
the experimental fold positions measured for 72-88 hours AEL (Fig. 1Ci). E) Kymographs
of apical indentations in time. Y position of all nodes falling into the three major folds at
84 hours AEL are plotted in time. Colour coding same as (Diii) at 84 hours AEL.
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Supplementary Figure 5: Legend on next page.
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Supplementary Figure 5: Related to Figure 5. A) The effects of BM stiffness and
BM renewal half-life on emergent morphology. Rows, increasing BM stiffness, columns
increasing renewal half-life (slower remodelling). i) Sagittal views displayed for each pa-
rameter combination at 84 hr AEL. ii) apical indentation maps. Acceptable parameter
combinations marked with a green tick in (i & ii). Failing simulations form a forked HH
fold, merging with the NH fold at tissue midline. iii) Percentage deviation of fold positions
from the experimental positions measured at tissue midline at 36 hr AEL. The simulation
presented in Figure 5G is marked by the dashed rectangle. B) The late stages of the
simulation in Figure 5G, at 96 hours AEL. The initiated folds do not successfully progress
into a fully folded morphology. The tissue goes through large scale buckling, the HH fold
is opened up and hinge sinks well below the notum in z. Scale bar, 20 µm. C) The larger
field view images of EM images (Figure 5A), i) 72 hr AEL, scale bar 1 µm, ii) 120 hr AEL,
scale bar 5 µm. D) The larger field of view images where the pseudostratification images
are taken from i) Figure 5Fiv-v, ii) Figure 5Fvi-vii. Scale bars 50 µm. E) Simulation on
a circular initial tissue shape, with parameters same as Figure 5G. Scale bar 20 µm. F)
i-iii)Normalised cell volume maps in three growth phases (top) and the growth rates scaled
with the cell volume (bottom). iv) Simulation with volume scaled growth rates, snapshots
are from 78 hr AEL, top panel: simulation snapshot from top view, middle: simulation
snapshot from cross-section of the midline, bottom: fold initiation map of the simulation.
Scale bar is 20 µm. The physical properties and boundary conditions of simulations in
E/G-H are the same as presented on Figure 5D.
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Supplementary Figure 6: Legend on next page.
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Supplementary Figure 6: Related to Figure 6. The differential growth in early growth
phases and related force accumulation is necessary and sufficient for correct morphology
in overgrowth clones, wild type and mutant wing discs. A) i) Early growth rates and
orientations applied for the initial 16 hours (48 to 64 hours AEL) of simulation, continued
by uniform growth. Top panel: The growth maps applied, colour coding same as Figure
4B. Middle panel: Simulation snapshots from 84 hours AEL, top and sagittal view, scale
bar 20 µm. Bottom panel: Apical indentations map at tissue at 84 hours AEL, scale
same as simulation snapshots. ii) Early growth rates and orientations applied for the
initial 16 hours (48 to 64 hours AEL) of simulation, continued by experimental growth
rates without any orientation. Top panel: Simulation snapshots from 84 hours AEL,
top and sagittal view. Bottom panel: Apical indentations map at tissue at 84 hours
AEL, scale same as simulation snapshots. iii) Same as (ii), but the growth rates are
also reduced to 50 percent of experimentally measured after the initial 16 hours. All
simulation physical parameters are same as 5D. B) Simulation with experimental growth
rates, with all accumulated forces relaxed at 58 hours AEL (10 hours into simulation). i)
Top panels: Tissue morphology at 58 hours AEL, immediately prior to relaxation of forces.
Middle panel: Strains accumulated in DV orientation, and bottom panel: strains on AP
orientation, colour coding in (iii). ii) Simulation snapshots at 84 hours AEL, following
the relaxation of forces at 58 hr AEL. iv) Strains of (ii), left: strains accumulated in DV
orientation, right: strains on AP orientation, colour coding in (iii). v) Accumulated strains
in wild type simulation, in Fig. 5G, panel structure and colour coding same as (iv). C)
The range of tested overgrowth in clones, i) snapshot at the onset of simulation (48 hr
AEL), with the induced clone (magenta) within white rectangle enlarged on the right.
Clone diameter approximately 4 micrometers. ii) Simulation snapshot, top view from
75 hr AEL, for 300 percent growth in clone (corresponding to Fig. 6D). The while line
marks the line of cross-section represented in (iii). iii) Simulation snapshots demonstrating
ectopic fold emergence as the overgrowth is increased. The setup demonstrated in Figure
6 B is boxed. Simulation snapshots from 75 hr AEL unless stated otherwise on the image,
all physical properties same as Fig. 5D. D) i) Schematic marking the pattern of wingless
expression in wild type wing discs. The inner ring appears prior to fold formation in
early third instar, followed by the outer ring in late third instar. ii) Wingless staining in
spdfg, prior to formation of folds, the stage where the inner ring should have appeared.
iii) Wingless staining in late third instar mutant wing disc, showing the outer ring of
expression, and lacking the inner ring. Scale bars 50 µm. E) The top views maximum
projection images of the experimental spdfg mutants shown in Figure 6I, Scale bars 50 µm
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Method S1: Methodology for the computational model, re-
lated to STAR Methods

1 Introduction

This methods section describes our finite element model of tissue morphogenesis. In our
model, the tissue is treated as a continuous material. The discretisation is based on
6-node prism elements, that can grow and vary in size from subcellular to multicellular
(Fig. 2A-C, S1A). The driving force behind the shape change of the tissue is this growth
of the elements. Emergent nodal positions, thus the tissue morphology, is governed by the
balance of the elastic forces and external viscous resistance to movement. The discrete
form of balance equations give rise to a system of non-linear equations, that are linearised
and solved numerically with a Newton-Raphson method.

The stress-strain relationship of the tissue is represented by a Neo-Hookean material
model. The sub-compartments of the tissue utilise different set of parameters, but
satisfy the same governing equations, for example the basement membrane has relatively
higher stiffness. When applied, the external viscous resistance is proportional to the
exposed surface area and velocity. The parameters utilised through the manuscript are
summarised in Supplementary Table 3.

The initial geometry is defined by tessellation of the contour of a wing disc at 48 hours
AEL using the Trianlge software (Shewchuk, 2005). The contour is scaled to the average
dimensions (Fig. 1C, 2E). We assume anterior-posterior symmetry and simulate half of
the tissue. As such, the simulations are run with fixed y-position (along AP axis) for all
nodes at the dorsal-ventral plane of symmetry, that is at the midline of the tissue. The
outer boundary conditions at the circumference of the tissue limit bending, such that all
nodes on the same column at the boundary have the same x & y coordinates (Fig. S1F).
During simulations, the tissue surface can form adhesions. Volume exclusion is ensured
by a hard-wall potential and element flipping is avoided by collapsing nodes on single
elements when the edge of the element is below a set threshold (Fig. S1C-E).

2 Modelling methodology

2.1 Equilibrium equation and finite element discretisation

The tissue is modelled as a deformable body occupying a time varying domain Ωt. We
denote by x(t) the current positions of the material point that is initially at position X.
After neglecting body loads (gravity) and inertial terms, the equilibrium equations of Ωt

are given by Cauchy’s equations and appropriate boundary conditions:

∇ · σ = 0, ∀x ∈ int(Ωt)

σn = t̄, ∀x ∈ Γn

x = x̄ ∀x ∈ Γx,

(1)

with t̄ and x̄ prescribed loads and positions at boundaries Γn and Γx, respectively, which
will specified later, and n the external normal.
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The finite element formulation is obtained by a standard construction of the equivalent
weak form (Bonet and Wood, 2008), which reads,∫

Ωt

d(δv) : σdVt =

∫
Γn

δv · t̄dSt,∀δv ∈ H0 (2)

The vector δv is a test function belonging to appropriate Hilbert space H0 of functions
with bounded integrals, and the strain tensor d(δv) = 1

2

(
∇xδv + (∇xδv)T

)
is a measure

of the body deformation.

The finite element discretisation is achieved by introducing an interpolation of the
positions x(t) ≈ Nj(x)xj(t) and the test functions δv ≈ Ni(x)δvi with a set of complete
shape functions Ni(x) (Supplementary Table 1) and where xj(t) are time varying nodal
positions. In our case, we use six noded elements forming a triangular prism aligned
along the apical-basal axis (see Figure S1H), so that positions are interpolated linearly
along each element height, and bi-liniearly at each element cross-section. Then within
each element, a numerical approximation is carried out with six Gauss points quadrature
(Supplementary Table 2).

The imposition of the discretised version of the weak form in (2) leads to the following
system of equations (see Bonet and Wood, 2008 for a detailed derivation):

g(x, t) ≡ gelast(x, t)− gext(x, t) = 0 (3)

where for each node i, the elastic and external residual contributions are given by,

gelasti =

∫
Ωt

σ∇xNidVt (4)

gexti =

∫
Ωt

Nit̄dSt (5)

Here, and in the subsequent derivations, we use x to represent x (t) for clarity. This
nodal contributions are computed element-wise and assembled in the standard manner in
the finite element context (Bonet and Wood, 2008).

As it will be described below, the stress tensor σ follows a non-linear constitutive law
that varies along time, while the external forces in gext includes time dependent viscous
forces. As a result, and due to the presence of large deformations, the set of non-linear
equations in (3) is discretised in time using a backward Euler implicit scheme and solved
iteratively at each time-step with a Newton-Raphson process in order to achieve quadratic
convergence. This process requires the linearisation of the residual g(xn, tn) at each time-
step tn. At iteration k, the new iterative changes of the displacements δx are found by
solving the following linear equations:

g(xkn, tn) +Kδx = 0 → xk+1
n = xkn + δx. (6)

The Jacobian K = ∂g
∂x is also updated at each iteration from xkn and xn−1. Its expression

will be specified below.

15



2.2 Deformation gradient decomposition and elastic constitutive law

The elastic constitutive law requires the computation of the total deformation gradient
F = ∂x

∂X , which is decomposed into elastic and growth components,

F = F eF g (7)

The stress tensor σ is assumed to follow a compressible Neo-Hookean non-linear consti-
tutive law that solely depends on the elastic component F e through an elastic density
function (Bonet and Wood, 2008)

W (Ce) =
µ

2
(trace(Ce)− 3)− µ ln Je +

λ

2
(ln Je)2 (8)

with λ and µ constant material parameters, Ce = F eTF e the right Cauchy-Green strain
tensor, and Je = det(F e) =

√
det(Ce). The Cauchy stress is then given by

σ = Je−1F eSF eT (9)

with S = 2∂W (Ce)
∂Ce the second Piola-Kirchhoff stress tensor:

Se = µ(I−C−1) + λ(lnJe)C−1 (10)

Note that the computation of the stresses from the current deformation F depends on
the growth component F g, which as will shown below is time dependent.

From the expression of gelasi in equation (4) and the definition of the elasticity function
and stresses through equations (8)-(9), the following contribution to the Jacobian, coupling
nodes i and j can be derived

Kelast
ij =

∂gelasti

∂xj
=

∫
V
BT
i F {C}F TBjdV + I

∫
V
∇xNT

i σ∇xNjdV. (11)

with Bi a deformation matrix that allows to compute the deformation rate as d(δx) =
Biδxi, and {C} the matrix notation of the fourth order elasticity tensor C,

Cijkl = λC−1
ij C

−1
kl + 2 (µ− λln(J)) Iijkl (12)

where Iijkl is given by

Iijkl =
1

2

[
C−1
ik C

−1
jl +C−1

il C
−1
jk

]
. (13)

2.3 External force contribution

We assume that the external forces at the boundary Γn correspond to a viscous loading
due to friction with the external environment. The nodal drag forces are consequently
given by

gexti =

∫
Γn

ηextNivdSt

with ηext the external viscous resistance coefficient, and v the velocity at the boundary,
the boundary domain being the externally exposed apical and basal surfaces of the tissue..
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This resistance is defined on a nodal basis and is heterogeneous within different regions
of the tissue, having most significant influence on the dynamics of the apical surface
(Supplementary Table 3). Both the velocity and the boundary Γn are time-dependent. In
order to reduce the computations and the linearisation needed for the Newton-Rapshon
solution, the nodal contribution is approximated at time tn as

gexti,n =

∫
Γn

ηextNivdSt ≈ ηextAn−1,i
xn − xn−1

∆t

with ∆t = tn − tn−1 the time-step size, and An−1,i the area attributed to node i at time
tn−1, which is computed as,

An−1,i =
∑

e=1:nowner

An−1,e

ne,surf
(14)

Here, nowner is the number of elements connected to node i, An−1,e is the exposed surface
area of interest on element e at time tn−1, and ne,surf is the number of nodes that element
e has on its exposed surface of interest (Fig. S1A). For instance, for prisms of 6 nodes,
the number of nodes associated with the apical surface would be 3. From the expression
of gexti , the following contribution of the external forces to the Jacobian can be deduced:

Kext
ij =

ηextAn−1,i

∆t
I.

2.4 Calculation of growth

The growth rates are input to the simulations in the form of the experimental growth maps
of Figure 4. To obtain the local growth rate of a single element, first the relative position
of the element centre in the xy-plane bounding box of the tissue is calculated. Then the
growth rate, [rx, ry, rz], and the growth orientation angle, θg, is interpolated from the
nearest corners of the input growth map grid (Figure 2 for experimental measurements).
This growth is then incorporated into the element by a multiplicative decomposition in
equation (7): F = F eF g (see Fig. 2B). Consequently, F g must be updated at each time
step ∆t, depending on the input growth rates, growth orientation, and the current rigid
body rotations of the element according to,

F g
t+∆t = RerRgr

 erx∆t 0 0
0 ery∆t 0
0 0 erz∆t

RT
grR

T
erF

g
t . (15)

Here the growth rates are in the local coordinates of the element, Rgr is the rotation
matrix for the growth orientation angle (θg) and Rer is the rotation matrix associated
with the current elemental rotation in the plane of the tissue. Rgr is simply the rotation
around the z-axis with the input growth orientation angle θg.

This growth orientation angle θg in simulation inputs is calculated from the maximum
projection of the experimental images on the xy-plane. To match this methodology, the
current rotation of the element around the z-axis is corrected in order to ensure that the
orientation of the growth follows the xy-plane of the tissue. At the beginning of the sim-
ulations, the local coordinate system of each element is aligned with the world coordinate
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system. During the simulation, the local coordinate system of the element could deviate
from the world coordinates, due to rigid body rotations, imposed by the deformations of
the surrounding tissue (Fig. S1B). Any rotation around the z-axis, changing the xy-plane
of the element, should be accounted for, so that the element will continue growing on the
desired orientation in the world coordinates. On the other hand, the tilt of the z-axis
itself should be ignored; an element with tilted apical-basal (AB) axis should not start
elongating in the AB direction (Fig. S1B). To obtain the rotation matrix Rer first the
current rigid body rotation of the element is calculated from the deformation gradient via
single value decomposition such that:

F = V PUT . (16)

Then the rotation matrix corresponding to the rigid body rotation of the deformed element
can be obtained from:

Rrigid = V UT (17)

and the angle of rotation around the z axis is extracted from the calculated rigid body
rotation matrix from:

θz = arctan (Rrigid (0, 1) ,Rrigid (0, 0)) (18)

where

Rrigid = Rx (θx)Ry (θy)Rz (θz) . (19)

The elemental rotation matrix Rer corrects for the rotation in z, as such, Rer is rotation
around z axis by −θz.

2.5 Calculation of remodelling

While the cellular elements of the tissue grow with specified growth rates and orienta-
tions, the basal membrane (BM) grows by remodelling. The application of remodelling
follows the logic of equation (15), with the growth increment and related rotations defined
from deformations, rather than an input growth profile. As such, the rigid body rotation
correction, Rer, is the identity matrix for BM remodelling, and the equivalent of growth
orientation, Rgr, is obtained through the elastic deformation orientation. In the gener-
alised definition, the remodelling growth at each time step is obtained via Eigen value
decomposition of the Cauchy-Green strain matrix E = 1

2 (C − I) of the element, and the
deformations on the principal axes are calculated via equation,

Fkk =
√

2ek + 1 (20)

Here, Fkk is the current deformation along the principal axis k, (such that a 50% stretch
will give a value of 1.5), and ek is the kth Eigen value of E. In the specific case of basement
membrane remodelling, as the BM is stretched there is no evidence that the BM should
be getting thinner. On the contrary, BM does get thicker with age as demonstrated in
our quantification of EM images of wing disc BMs at 72 and 120 hr AEL (Figure 5A).
Moreover, as the remodelling in the simulation is based on the strains on the elements,
while the BM is deformed and the new BM is allocated, the BM thickness should not be
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reduced with remodelling. As such, remodelling is limited to plane of the tissue. BM is
not remodelled in the apical-basal axis, only the x & y dimensions of the strain matrix are
included in the decomposition. Here, the range of k in equations (20) - (22) are limited
to k = 1 : 2 in 2D, excluding local z coordinates of the element, which is aligned with
apical-basal axis. Similarly, the Eigen value decomposition is also carried out on the x-y
plane of the Cauchy-Green strain matrix E. The deformation after the relaxation to be
observed within the current time step ∆t is then calculated from the given remodelling
half-life, t1/2 as follows:

F t+∆t
kk =

(
F tkk − 1

)(1

2

)∆t/t1/2

(21)

The calculated new deformation is then converted to a growth increment, with the orien-
tation of the growth defined by the eigenvectors matrix V Eigen to give the remodelling
deformation gradient.

F r = V eigen

 F t+∆t
11 /F t11 0 0

0 F t+∆t
22 /F t22 0

0 0 1

V T
eigen (22)

The remodelling serves to mimic BM remodelling carried out by the cells as the tissue
grows, adding or removing material from the BM layer as needed. Therefore, remodelling
of BM is done without volume conservation (determinant of F r can deviate from unity). At
each time step, the remodelling growth increment F r is added to total growth deformation
gradient F g,

F g = F rF g′ (23)

where F g′ is the growth increment of the current step prior to remodelling as calculated
through equation (15). For a simplified visual representation of the emergent remodelling,
the relaxation of deformation is represented in a 2D schematic in Figure 5C, where upon
change of the current shape of an element (blue square, Fig. 5Ci-ii), the preferred shape
(red dashed square) resulting from application of remodelling on reference shape gradually
changes and aligns with the current shape (Fig 5Cii-iii), relaxing the strains in the process
(Fig. 5Civ).

2.6 Node-node interactions

Nodes can interact with each other via a packing hard-wall potential to simulate tissue
self-contact, or through adhesions. When the two surfaces of the tissue are in close vicinity,
they form adhesions, that is, nodes are joined together and are collapsed to a single node.
Packing forces are used instead for cases where adhesion between the nodes would cause
the shared element to flip. In cases where the nodes of an element are approaching too
close to each other, such as the case of a highly constrained apical surface at a fold, the
nodes of the element are also collapsed, in order to avoid element flipping.

2.6.1 Calculation of packing hard-wall potential

The hard wall potential is defined to simulate contact and ensure volume exclusion as the
elements move too close to each other (Fig. S1C). The potential is applied on a nodal
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basis. The threshold of repulsion force application, ∆pack, is dynamic in the simulations,
scaling to the average side length of an element in the vicinity of potential node-node
interaction. The threshold in the simulations throughout the manuscript is defined to
be 40% of the average local side length, calculated on a 10 by 5 grid on the tissue xy
bounding box. The parameters of the hard-wall potential are selected numerically in
order to ensure volume exclusion and stability, not necessitating a biological basis, the
values are presented in Supplementary Table 3.

The magnitude f(d) of the applied packing force is a function of the distance d
between nodes, and is calculated with an inverse logic function:

f (d) =
〈mass〉

1 + e−k(d−d0)
(24)

Here, the amplitude 〈mass〉 is defined such that the force will scale with the average
mass of the packing node couple. The mass itself is taken proportional to the volume
associated to each node. The slope of the curve in the force profile will tend to zero as
the distance between nodes approaches the packing threshold ∆pack. Parameter k of the
sigmoid function in (24) is defined by the saturation term ssat and the packing threshold
∆pack as

−k =
2 ssat

∆pack
(25)

The packing threshold ∆pack is dependent on the current average side lengths of mesh
elements. The sigmoid saturation is set to 5, as this is the approximate saturation distance
of the standard logistic function. The distance is shifted with distance d0 to move the mid
point of the function to approximately 60% of the packing threshold distance. The forces
between each pair of nodes i and j is computed from f(d) as,

f i(d) = f(d) ei , f j(d) = f(d) ej = −f(d) ei = −f i (26)

with d = ||xi − xj || and ei = (xi − xj) /d. The forces f i and f j are added to the global
residual vector g in (3), and the term

∂f i
∂xj

=
f(d)

d

(
I− eieTj

)
+ f ′(d)eie

T
j ,

with f ′(d) = −2 〈mass〉 ssatf(d)(1− f(d))/∆pack, is also added to the corresponding term
Kij in the Jacobian during the Newton-Raphson solution process.

2.6.2 Calculation of node binding for node adhesion, elemental collapse and
boundary conditions

Nodes within a close vicinity can bind to each other (Fig. S1D). This can be due to
adhesion of two surfaces in the case of nodes that are not shared among any elements, or
due to the collapse of an elemental surface. Adhesion is defined by moving both nodes
to the mid-point, and collapsing their degrees of freedom. The two nodes are assigned
master and slave status arbitrarily. All the driving and drag forces of the slave node are
carried on to the master node, and the Jacobian is updated accordingly. Upon obtaining
the displacements, the displacement of the slave node is updated with the displacement

20



of the master node. This is equivalent to a master-slave treatment of the nodal constraint
xslave = xmaster (see for instance (Muñoz, J.J. and Jelenić, 2004).

The distance threshold for adhesion is calculated the same manner as the hard
wall potential. The threshold for element collapse is stricter than adhesion; defined on an
elemental basis, as a distance below 10% of the initial reference length between the two
potentially collapsing nodes, as opposed to being proportional to the current average side
length of the system (Fig. S2E). The residual nodal forces g and Jacobian K are then
modified as follows:

Kbound = NTKN + Ī (27)

gbound = NT g (28)

N ij =


1 if i = j and i is not a slave
1 if i is slave to j
0 elsewhere

(29)

Īij =

{
1 if i = j and i is a slave
0 elsewhere

(30)

The same master slave definition is used for no-bending boundary condition. At the
circumference, the basal node of each column of nodes is assigned as the master of all the
remaining nodes of the column, and the degrees of freedom in x and y directions of slaves
are fixed on the master (Fig. S1F).

2.7 A beginners guide to implementation of the linearised form of elastic
stresses and the stiffness matrix

2.7.1 Nodal definition and shape functions of a prism

For a triangular prism, the number of nodes, n, is 6, the numbering starting from the bot-
tom three nodes (Fig. S1F). The finite element modelling discretisation using Lagrangian
interpolation on a nodes can be carried through shape functions N . These shape functions
and their derivatives in the parametric coordinates η, ζ and ν are given in Table 1 for a
six point discretisation of the prism element. The numerical calculation for nodal forces
(g) and the derivatives of the forces with respect to nodal movements (K) are carried out
at six Gauss points, with the parametric coordinates and weights as given in Table 2.

2.7.2 Calculation of deformation gradient F

The deformation gradient can be represented in the form of derivatives of current and
reference coordinates in the parametric coordinates:

F =
∂x

∂X
=
∂x

∂ξ

(
∂X

∂ξ

)−1

(31)

By the definition of shape functions x =
n∑
i=1

Nixi, ∂x/∂ξ can be obtained from the shape

function derivatives with n=6 for the current prism definition and the nodal data in Table
1:
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λ = 1− ξ − η α = (1− ζ) /2 b = (1 + ζ) /2

Node Shape function. Shape function Shape function Shape function.
derivative wrt ξ derivative wrt ζ derivative wrt η

N ∂N
ξ

∂N
ζ

∂N
η

1 λα −α −α −λ
2

2 ξα α 0 −ξ
2

3 ηα 0 α −ν
2

4 λb −b −b λ
2

5 ξb b 0 ξ
2

6 ηb 0 b η
2

Supplementary Table 1: Shape functions and derivatives of prism element. Related to
STAR methods

Gauss point ξ ζ η weight

1 1
6

1
6

1√
3

1
6

2 2
3

1
6

1√
3

1
6

3 1
6

2
3

1√
3

1
6

4 1
6

1
6 − 1√

3
1
6

5 2
3

1
6 − 1√

3
1
6

6 1
6

2
3 − 1√

3
1
6

Supplementary Table 2: Gauss points used in calculation. Related to STAR methods
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∂x

∂ξ
=

 Shape
Function
Derivatives

x
T

=




∂N1

∂ξ

∂N2

∂ξ
...

∂N6

∂ξ
∂N1

∂η

∂N2

∂η
...

∂N6

∂η
∂N1

∂ζ

∂N2

∂ζ
...

∂N6

∂ζ





x1 y1 z1

x2 y2 z2

. . .

. . .

. . .
x6 y6 z6





T

(32)

and similarly,

∂X

∂ξ
=

 Shape
Function
Derivatives

X
T

(33)

2.7.3 Calculation of nodal elastic forces

After obtaining F e through the calculation in Section 2.7.2, the elemental Cauchy stress
can be calculated via equation (9), through the right Cauch-Green strain tensor and the
second Piola-Kirshoff stress tensor Se in (10). Once the elemental elastic stresses are
obtained, these can be mapped to the nodal forces through equation (34),

geelemental =

∫∫∫
BTσe|F |

∣∣∣∣∂X∂ξ
∣∣∣∣ dξdηdζ (34)

Here, matrix B = [B1 . . .Bn] is the deformation matrix, where each matrix Bi is given
by (Hughes, 2008):

Bi =



Ni,x 0 0
0 Ni,y 0
0 0 Ni,z

Ni,y Ni,x 0
Ni,y 0 Ni,x

0 Ni,z Ni,x

 (35)

and with Ni,x being the short hand for ∂Ni/∂x. Note that these derivatives are computed
using the Jacobian ∂x/∂ξ in 32,

∇xNi =

(
∂x

∂ξ

)−T
∇ξNi

where ∇xNi is the nodal shape function derivative array as in ∇xNi = [Ni,x Ni,y Ni,z]
T

and ∇ξN = [Ni,ξ Ni,ζ Ni,ζ ]
T .

2.7.4 Calculation of the stiffness matrix (Kelast)

The stiffness matrix Kelast, elastic part of the system Jacobian, is calculated in two
parts, as given in the integral form in equation (11). The first part is carried out through
a series of nested loops for the nodal contributions of node pair a & b. For any Kab,ik,
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the ik component of the nodal contributions for the node pair ab of the on the element,
the summation should be carried out over j,l & IJKL. The volume integration is included
by the multiplication by determinants of the deformation gradient and reference shape
position derivatives with respect to parametric coordinates.

[Ke
ab]

1
ik =

∫∫∫ ∑
j

∑
l

∑
I

∑
J

∑
K

∑
L

F eiIF
e
jJF

e
kKF

e
lLCIJKL∇xN b

l ∇xNa
j |F g|

∣∣∣∣∂X∂ξ
∣∣∣∣ dξdηdζ.

(36)

Here, ∇xN b is the nodal shape function derivative array as in ∇xN b = [Nb,ξ Nb,ζ Nb,ν ]T

and C is the Lagrangian elasticity tensor obtained from equation (12).

The second part of the integral is calculated from the ∇xNa and ∇xN b as defined above,
the elemental stresses from equation (9) and the volume integration:

[Ke
ab]

2
ik =

∫∫∫
∇xNaTσe∇xN b |F |

∣∣∣∣∂X∂ξ
∣∣∣∣ dξdηdζ. (37)

2.8 A pseudo algorithm of the simulation procedure

Initiate simulation mesh

Set up system symmetry

Set up tissue bounding box and relative element positions

Set up tissue compartments (ECM , apical actomyosin layer)

Assign tissue physical properties

Set up boundary conditions

Calculate shape function derivatives

Calculate nodal masses and exposed external surfaces

Induce mutant clones (if applicable)

Set time , t = 0.

While t < tfinal:

Reset all system forces

Update elemental rotation matrices Rer.

Update bounding box and relative element positions.

Calculate F g increments from experimental growth maps or other

specified input (Section 2.4).

Calculate ECM remodelling increments F r (Section 2.5).

Update total growth F g of elements (Section 2.4).

Update nodal exposed surfaces (Equation (14)).
Detect packing nodes (Section 2.6.1).

Update node adhesion (Section 2.6.2).

Update elemental collapse to avoid flipping (Section 2.6.2).

Solve for positions via implicit Newton -Raphson numerical integration:

Initiate xk
n = xn−1 for k=1.

While the iteration displacements (δx) have not converged to zero:

Reset matrices (g = 0 , K = I).

Calculate nodal displacements dx(t) = xk
n − xn−1.

Calculate elastic terms gelast
elemental and Kelast

elemental:

Interpolated at 6 Gauss points for each element:

Calculate F (Section 2.7.2).
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Extract F e (Equation (7)).
Calculate σ (Equation (9)).

Calculate gelast
elemental (Section 2.7.3).

Calculate Kelast
elemental (Section 2.7.4).

Add each gelast
elemental to system residual g.

Add each Kelast
elemental to system Jacobian K.

Calculate external viscous resistance terms:

Calculate and add gext to system residual g (Section 2.3).

Calculate and add Kext to the system Jacobian K (Section 2.3).

Calculate packing:

Calculate and add packing forces to g (Section 2.6.1).

Calculate and add packing related terms to K (Section 2.6.1 ).

Update fixed degrees of freedom and node binding (Section 2.6.2).

Solve for δx from g and K (Equation (6)).

Update xk+1
n = xk

n + δx
k = k + 1

Check if system converged with norm(δx) < 1E-8

t = t+ ∆t

3 Analysis of simulation results

3.1 Automated fold detection and construction of apical indentation
maps

Fold initiation is automatically detected by the curvature of the facing regions on the
apical surface. This is done by calculating the surface normal of all elements exposed on
the apical surface. If the surface normals within the vicinity of each other face in opposite
directions (dot product being negative), the elements are defined to be on a folding curve.
All the elements lying in between the two elements are also included on the fold surface
(Fig. S1G). The threshold distance for identifying curved regions is selected as 3 µm.
The threshold is selected to ensure detection of fold initiation that is clearly visible when
the morphology is visualised, but it does not assign fold initiation identity to elements
at opposing sides of a possible curve peak. For the looser folds of the uniform growth
rate simulations, a more generous threshold of 6 µm is used. In the apical indentation
maps, these automatically identified indentations are marked on the tissue outline with
each continuous indentation given in a single colour (for example Fig. 3Aii).

3.2 Simulation fold position scoring

The positions of the continuous folds that are detected and that reach the midline are
aligned with the experimental fold positions (Fig, 1Cii), so that the minimum deviation
is calculated. If the simulation produces less than 3 folds, each missing fold is counted as
100% deviation. The deviation score is calculated as sum of percentage deviation from
each experimental fold at the tissue centre, maximum total deviation being 300% The
score does not penalise for additional folds, such as those observed with uniform growth
of tissues with explicit BM definition (Figure 5E). The deviation score also does not check
the fold morphology, such as the high hinge folds with uniform growth rates that reach
taller than the pouch region (Fig. 3Ai). Therefore each low deviation value should be
examined against both additional folds and non-biological fold morphology.
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Parameter Description Value / Range Reference

Tissue viscoelasticity

Ecells Cellular layer Young’s modulus 25 Pa Simulated for range

Eactin Actin rich apical layer Young’s modulus 26 - 200 Pa Simulated for range

ηext External viscous resistance coefficient 10 - 16000 Pa s µm−1 Simulated for range

ν Poisson ratio of the tissue 0.29 Pa s µm−1 Schluck et al, 2013

Basement membrane

hBM The thickness of basement membrane 0.2µm Calculated from measurements in this study

t1/2 Basement membrane remodelling half-life 1 - 16 hr Simulated for range

EBM Basement membrane Young’s modulus 400 - 3200 Pa Simulated for range

Node-node interactions

∆pack Packing hard-wall potential 40 % of local average selected for numerical stability
cut-off distance mesh side length selected for numerical stability

d0 Packing hard-wall potential sigmoid shift 60 % of ∆pack selected for numerical stability

ssat Packing hard-wall potential 5 standard logistic function
sigmoid saturation term

∆collapse The distance threshold below which 10 % of equivalent reference selected for numerical stability
nodes of an element are collapsed shape edge length

∆adhesion The distance threshold below which ∆pack selected for numerical stability
two nodes adhere

Tissue dimensions The width, length and height of the tissue see Fig. 1 Measurements in this study

Growth rates Spatio-temporal growth rates see Fig. 4 Measurements in this study
defined by the growth maps

Supplementary Table 3: Parameters of the simulations. Related to STAR methods
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