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EQUATIONS FOR THE PURE SIZER MODEL 

Cells were assumed to have a perfect cylindrical shape with hemispherical ends. Surface area and 

volume were calculated using values of the cell length and of the cell radius: 𝐴 = 2𝜋𝑅𝐿 and  

𝑉 = 𝜋𝑅2𝐿 − 2𝜋𝑅3/3. We initially assumed no variation of the cell width during a single cell cycle, 

although later this assumption was relaxed. 

 

Notations: In the following: 𝜇 is the relative error of the cell in sensing size, 𝜌 is the relative cell to cell 

variability of the radius (so that the true radius of a cell is 𝑅(1 + 𝜌)), 𝛼 is the relative error at division 

due to asymmetric misplacement of the septum (so that cell does not divide symmetrically in two 

halves but into (1 + 𝛼)/2 and (1 − 𝛼)/2 fractions), and 𝜀 is the experimental error (in μm) in 

measuring distances. All these quantities are assumed to have a Gaussian distribution with mean zero. 

The following calculations will then be extended to negative values of the geometrical quantities but 

where the probability weight of these tails is too small to have a significant impact on the results. We 

also need different copies of some random variables in order to describe the variation at different 

moments of the cell cycle: for instance, depending on whether we are considering birth or division, 

the relative error of the cell in sensing size at division must be described by  𝜇𝑏 or  𝜇𝑑, respectively. 

These are independent and identically distributed random variables. The same holds for the error in 

our measurements (𝜀𝑏 for the length at birth, 𝜀𝑑 for the length at division and 𝜀𝑟 for the cell radius).  

 

Cell length, area and volume for the case of surface area sensing: By stating that a cell is sensing 

surface area, this means that division occurs at a given area 𝐴 (plus the error 𝐴𝜇𝑑 due to the cellular 

error in size sensing). Therefore, the real division length (𝐿𝑑, not affected by our error in its 

measurement) of a cell with real radius 𝑅(1 + 𝜌) is the length such that the resulting cell area is equal 

to the target value corrected by the error due to the imperfect cell sensing, i.e. 2𝜋𝑅(1 + 𝜌)𝐿𝑑 =



𝐴(1 + 𝜇𝑑). By adding the error 𝜀𝑑  of our measurement, we have the corresponding measured 

quantity 𝐿𝑑
∗ :  

𝐿𝑑
∗ =

𝐴(1+𝜇𝑑)

2𝜋𝑅(1+𝜌)
+ 𝜀𝑑 .      (S1) 

Following similar reasoning, we derive the measured radius 𝑅∗ =  𝑅(1 + 𝜌) + 𝜀𝑟. Because of the 

experimental errors, the expression of the measured area at division does not coincide with the 

theoretical value corrected by the sensing error, i.e. 𝐴(1 + 𝜇𝑑). By definition, the measured area at 

division is 

𝐴𝑑
∗ = 2𝜋𝑅∗𝐿𝑑

∗ = 2𝜋[𝑅(1 + 𝜌) +  𝜀𝑟] [
𝐴(1+𝜇𝑑)

2𝜋𝑅(1+𝜌)
+ 𝜀𝑑],   (S2) 

while the measured volume at division is 

𝑉𝑑
∗ = 𝜋(𝑅∗)2𝐿𝑑

∗ −
2

3
𝜋(𝑅∗)3 = 𝜋[𝑅(1 + 𝜌) +  𝜀𝑟]2 [

𝐴(1+𝜇𝑑)

2𝜋𝑅(1+𝜌)
+ 𝜀𝑑] −

2𝜋[𝑅(1+𝜌)+ 𝜀𝑟]3

3
. (S3) 

The length at birth is derived from the length at division (defined by replacing 𝜇𝑑  with 𝜇𝑏) and by 

including the error 𝛼 due to asymmetric mispositioning of the division septum. After division, 

contraction of the ring and turgor pressure deform the plane of division into a new hemispherical end 

while conserving the radius and cell volume [1], leading to an extra term 𝑅(1 + 𝜌)/3: 

𝐿𝑏
∗ =

𝐴(1+𝜇𝑏)(1+𝛼)

4𝜋𝑅(1+𝜌)
+

𝑅(1+𝜌)

3
+ 𝜀𝑏 .   (S4) 

We also verified that a use of a different fraction, e.g. 𝑅(1 + 𝜌)/2, does not affect our results. Similar 

to above, we also derived expressions for the measured area and the measured volume at birth. These 

equations allow us to calculate all the quantities measured in the experiments, namely the 4 

coefficients of variation (for radius, length, area and volume, see below), and the slopes of the 3 

division-birth plots (using length, area or volume as the geometrical feature used for size control).  

 

Coefficients of variation: The coefficient of variation of X is defined as CV𝑋 =
𝜎𝑋

E[𝑋]
, where E[𝑋] denotes 

the expected value of the random variable X, and σX the standard deviation. As an example, we report 

here the calculation of the Coefficient of Variation (CV) of the measured length at division in the case 

of area size sensing, i.e. when: 

𝐿𝑑
∗ =

𝐴(1 + 𝜇𝑑)

2𝜋𝑅(1 + 𝜌)
+ 𝜀𝑑 . 

Because of the small value of 𝜎𝜌, the second-order approximation (1 + 𝜌)−𝑚 ≈ 1 − 𝑚𝜌 +
𝑚(𝑚+1)

2
𝜌2 

is used in all calculations. The definition of the variance is  

𝜎𝐿𝑑
∗

2 = E[(𝐿𝑑
∗ )2] − E[𝐿𝑑

∗ ]2. 

Each term is then calculated as follows: 



E[(𝐿𝑑
∗ )2] = ∭ [

𝐴(1 + 𝜇𝑑)

2𝜋𝑅(1 + 𝜌)
+ 𝜀𝑑]

2

𝑃(𝜇𝑑)𝑃(𝜌)𝑃(𝜀𝑑)𝑑𝜇𝑑𝑑𝜌𝑑𝜀𝑑

+∞

−∞

= 

≈ (
𝐴

2𝜋𝑅
)

2

∬ (1 + 2𝜇𝑑 + 𝜇𝑑
2)(1 − 2𝜌 + 3𝜌2)𝑃(𝜇𝑑)𝑃(𝜌)𝑑𝜇𝑑𝑑𝜌

+∞

−∞

+ ∫ 𝜀𝑑
2𝑃(𝜀𝑑)𝑑𝜀𝑑

+∞

−∞

+ ∭
𝐴(1 + 𝜇𝑑)𝜀𝑑

𝜋𝑅(1 + 𝜌)
𝑃(𝜇𝑑)𝑃(𝜌)𝑃(𝜀𝑑)𝑑𝜇𝑑𝑑𝜌𝑑𝜀𝑑

+∞

−∞

. 

Since each Gaussian variable has zero mean value and retaining only lowest order terms, we have: 

E[(𝐿𝑑
∗ )2] = (

𝐴

2𝜋𝑅
)

2

(1 + 𝜎𝜇
2 + 3𝜎𝜌

2) + 𝜎𝜀
2. 

E[𝐿𝑑
∗ ] ≈ ∭ [

𝐴

2𝜋𝑅
(1 + 𝜇𝑑)(1 − 𝜌 + 𝜌2) + 𝜀𝑑] 𝑃(𝜇𝑑)𝑃(𝜌)𝑃(𝜀𝑑)𝑑𝜇𝑑𝑑𝜌𝑑𝜀𝑑

+∞

−∞

=
𝐴

2𝜋𝑅
(1 + 𝜎𝜌

2). 

CV𝐿𝑑
∗ =

𝜎𝐿𝑑
∗

E[𝐿𝑑
∗ ]

=
√𝐸[(𝐿𝑑

∗ )2] − (𝐸[𝐿𝑑
∗ ])2

E[𝐿𝑑
∗ ]

≈ [𝜎𝜇
2 + 𝜎𝜌

2 + (
2𝜋𝑅

𝐴
)

2

𝜎𝜀
2]

1/2

. 

The same procedure was applied to all the other geometrical quantities (area, volume, radius: see 

main text for their final expressions).  

 

We also investigated whether the CV of the division area is smaller than the CV of the division length 

(as one might expect for an area-based sizer). Because of the simpler algebra, we first calculated the 

difference between square of the two CVs: 

CV𝐴𝑑
∗

2 − CV𝐿𝑑
∗

2 ≈
𝜎𝜀

2

𝑅2
− 𝜎𝜌

2. 

We then studied the sign of their difference. The right hand-side of the equation describes the linear 

relationship of the difference between the two CVs as a function of 𝜎𝜀
2. The negative intercept −𝜎𝜌

2 

indicates that this difference can be negative if the error is sufficiently small. In particular, in order to 

have CV𝐴𝑑
∗ < CV𝐿𝑑

∗  (i.e. CV𝐴𝑑
∗

2 − CV𝐿𝑑
∗

2 < 0) we must have 𝜎𝜀 < 𝑅𝜎𝜌 ,i.e. the error must not be bigger 

than the natural absolute variability of the radius (see Fig. 2B in the main text). 

 

Slopes: We calculated the slopes for the plot of length at division (𝐿𝑑
∗ ) vs length at birth (𝐿𝑏

∗ ). The slope 

of the linear regression of a set of pairs (𝑥𝑖 , 𝑦𝑖), 𝑖 = 1, … , 𝑁 is  

slope(𝑦, 𝑥) =  
𝑁 ∑ 𝑥𝑖𝑦𝑖 − ∑ 𝑥𝑖 ∑ 𝑦𝑖

𝑁 ∑ 𝑥𝑖
2 − (∑ 𝑥𝑖)2

, 

which, for large N and for our quantities (𝐿𝑑
∗  and 𝐿𝑏

∗ ), can be rewritten as follows: 

slope(𝐿𝑑
∗ , 𝐿𝑏

∗ ) =
E[𝐿𝑏

∗ 𝐿𝑑
∗ ] − E[𝐿𝑏

∗ ]E[𝐿𝑑
∗ ]

E[(𝐿𝑏
∗ )2]−E[𝐿𝑏

∗ ]2 
=

cov(𝐿𝑑
∗ , 𝐿𝑏

∗ )

var(𝐿𝑏
∗ )

. 



This expression explains why for the error in size sensing (𝜎𝜇), despite stretching along both the x- and 

y-axes, it is only the x-axis stretch that affects the division-birth slope. The above expectation values 

can be calculated using the same procedure adopted for the calculation of the CVs described above. 

With this analytical procedure, we derived Eq. 2 of the main text. As a verification of the 

approximations used, we also ran numerical simulations. In particular, we implemented a 

computational model which, by using Eqs. S1 and S4 and by simulating n=1000 cells, reproduced the 

same values of the analytical expressions (see Fig. S4A). 

 

Equations for models based on length sensing and on volume sensing for size control: We report 

here the expressions of the initial quantities used to derive the CVs at division, and the division-birth 

slope, for the cases of length sensing and volume sensing, respectively (see above for the case of 

surface area sensing). 

Length sensing: 

𝐿𝑑
∗ = 𝐿(1 + 𝜇𝑑) + 𝜀𝑑 . 

𝐴𝑑
∗ = 2𝜋[𝑅(1 + 𝜌) + 𝜀𝑟][𝐿(1 + 𝜇𝑑) + 𝜀𝑑]. 

𝑉𝑑
∗ = 𝜋[𝑅(1 + 𝜌) + 𝜀𝑟]2[𝐿(1 + 𝜇𝑑) + 𝜀𝑑] −

2𝜋[𝑅(1 + 𝜌) + 𝜀𝑟]3

3
. 

CV𝐿𝑑
∗ ≈ [𝜎𝜇

2 +
𝜎𝜀

2

𝐿2
]

1
2

. 

CV𝐴𝑑
∗ ≈ [𝜎𝜇

2 + 𝜎𝜌
2 + (

1

𝑅2
+

1

𝐿2
) 𝜎𝜀

2]

1
2

. 

CV𝑉𝑑
∗ ≈

[9𝐿2𝜎𝜇
2 + 36(𝐿 − 𝑅)2𝜎𝜌

2 + 9 (1 +
4

𝑅2 (𝐿 − 𝑅)2) 𝜎𝜀
2]

1
2

3𝐿 − 2𝑅
 . 

slope(𝐿𝑑
∗ , 𝐿𝑏

∗ ) =  0, always. 

Volume sensing: 

𝐿𝑑
∗ =

𝑉(1 + 𝜇𝑑)

𝜋𝑅2(1 + 𝜌)2
+

2𝑅(1 + 𝜌)

3
+ 𝜀𝑑 . 

𝐴𝑑
∗ = 2𝜋[𝑅(1 + 𝜌) + 𝜀𝑟] [

𝑉(1 + 𝜇𝑑)

𝜋𝑅2(1 + 𝜌)2
+

2𝑅(1 + 𝜌)

3
+ 𝜀𝑑]. 

𝑉𝑑
∗ = 𝜋[𝑅(1 + 𝜌) + 𝜀𝑟]2 [

𝑉(1 + 𝜇𝑑)

𝜋𝑅2(1 + 𝜌)2
+

2𝑅(1 + 𝜌)

3
+ 𝜀𝑑] −

2𝜋[𝑅(1 + 𝜌) + 𝜀𝑟]3

3
. 

CV𝐿𝑑
∗ ≈

[9𝑉2𝜎𝜇
2 + 4(3𝑉 − 𝜋𝑅3)2𝜎𝜌

2 + 9𝜋2𝑅4𝜎𝜀
2]

1
2

3𝑉 + 2𝜋𝑅3
. 

CV𝐴𝑑
∗ ≈

[9𝑉2𝜎𝜇
2 + (3𝑉 − 4𝜋𝑅3)2𝜎𝜌

2 +
1

𝑅2 [(3𝑉 + 2𝜋𝑅3)2 + 9𝜋2𝑅6]𝜎𝜀
2]

1
2

3𝑉 + 2𝜋𝑅3
. 



CV𝑉𝑑
∗ ≈ [𝜎𝜇

2 + (
𝜋2𝑅4

𝑉2
+ (

2

𝑅
−

2𝜋𝑅2

3𝑉
)

2

) 𝜎𝜀
2]

1
2

. 

slope(𝐿𝑑
∗ , 𝐿𝑏

∗ ) ≈
2 [(

𝑉

𝜋𝑅2)
2 

+
2𝑅2

9
−

𝑉
𝜋𝑅

] 𝜎𝜌
2

(
𝑉

𝜋𝑅2 −
2𝑅
3

)
2

𝜎𝜌
2 +

 

(
𝑉

2𝜋𝑅2)
2

𝜎𝜇
2 + (

𝑉

2𝜋𝑅2 +
𝑅
3

)
2

𝜎𝛼
2 + 𝜎𝜀

2

. 

This last expression was used to calculate the slope for the cdr2Δ mutant (Fig. 4D) and for E. coli. In 

the former case, we used the same parameters values as for the wild-type, with a mean division length 

of 17 µm, whereas in the latter case we used parameters according to the data in the available 

literature [2]. In particular, we used the geometrical features of this bacterium (𝑅 = 0.55 µm, 𝑉 =

3.77 µm3) and we estimated the natural variability 𝜎𝜌 ≈ 3.5% from the value of the CV of the cell 

width in different growing media. To show the robustness of the result, we perturbed each noise up 

to ±2% and checked the distribution of the obtained slopes (Fig. S7B). 

 

Variability of the real radius in a subset of cells selected by the measured radius: In Fig. 3B of the 

main text, we showed how the division-birth length slope reduces when the natural variability of the 

cell radius is reduced. To enact this strategy, we selected a subset of cells that have reduced variability. 

In particular we chose cells whose measured radius fell in the range 𝑅 ± 𝑤 (i.e. mean value ± w). In 

order to use Eq. 2 to calculate the predicted value of the division-birth slope for this subset of cells, 

we first needed to know the natural variability of this subset, which depends also on the experimental 

measurement error. We already know that 

𝑅∗ = 𝑅(1 + 𝜌) + 𝜀, 

where R represents the average cell radius over the entire population. Suppose we have a cell with a 

given real radius 𝑅real . First, we want to know the probability that the measured radius of this cell (i.e. 

𝑅real + 𝜀) falls in 𝐼𝑤 = (𝑅 − 𝑤, 𝑅 + 𝑤). This question is the equivalent of asking the probability that 

𝜀 belongs to the interval (𝑅 − 𝑅real − 𝑤, 𝑅 − 𝑅real + 𝑤). Because 𝜌 and 𝜀 are independent random 

variables, we can just multiply this probability by the probability for a cell to have that real radius 

𝑅real , i.e. Prob[𝑅(1 + 𝜌) = 𝑅real ] = Prob[𝜌𝑅 = 𝑅real − 𝑅]. Therefore, the probability that a cell of 

radius 𝑅real  is selected: 

𝑝(𝑅real ) =
1

𝑁
Prob[𝜌𝑅 = 𝑅real − 𝑅]Prob[𝑅 − 𝑅real − 𝑤 < 𝜀 < 𝑅 − 𝑅real + 𝑤  ], 

where 𝑁 is the normalization factor. This expression gives the distribution of the radius of the cell we 

select in 𝐼𝑤. The CV of this distribution then gives us the required natural variability. 

 

For simplicity, we introduced 𝑍 = 𝑅real – 𝑅 and rewrote the probability of a cell with radius 𝑅real  to 

fall in 𝐼𝑤 as follows: 



𝑝(𝑍 = 𝑧) =
1

𝑁
Prob[𝜌𝑅 = 𝑧]Prob[−𝑤 < 𝜀 + 𝑧 < +𝑤  ]

=
1

𝑁

1

𝑅𝜎𝜌√2𝜋
𝑒

− 
𝑧2

2𝑅2𝜎𝜌
2 1

𝜎𝜀√2𝜋
∫ 𝑒

− 
(𝑞+𝑧)2

2𝜎𝜀
2 𝑑𝑞

𝑤

−𝑤

 

where the normalization factor is 𝑁 = erf (
𝑤

√2(𝑅2𝜎𝜌
2+𝜎𝜀

2)
). 

By construction Var[𝑅real ]=Var[𝑍], which is equal to E[𝑍2] because Z has zero mean value. This led 

to 

Var[𝑅real ] = 𝑅2𝜎𝜌
2 −

2𝑤𝑅4𝜎𝜌
4

𝑅2𝜎𝜌
2+𝜎𝜀

2

𝑒

−
𝑤2

2(𝑅2𝜎𝜌
2 +𝜎𝜀

2)

√2𝜋(𝑅2𝜎𝜌
2+𝜎𝜀

2)
erf (

𝑤

√2(𝑅2𝜎𝜌
2+𝜎𝜀

2)
)

−1

. 

 

The real natural variability is then the CV of 𝑅real, i.e.  

Nat. var. (𝑤) = 𝜎𝜌√1 −
2𝑅2𝜎𝜌

2

𝑅2𝜎𝜌
2+𝜎𝜀

2

𝑤

√2𝜋(𝑅2𝜎𝜌
2+𝜎𝜀

2)

𝑒

−
𝑤2

2(𝑅2𝜎𝜌
2 +𝜎𝜀

2)

erf(
𝑤

√2(𝑅2𝜎𝜌
2 +𝜎𝜀

2)

)

.    (S5) 

It is worth noticing that, because of the error, the accessible lower bound (in the limit 𝑤 → 0) of the 

natural variability is not zero, but rather Nat. var. (𝑤 = 0) = 𝜎𝜌√
𝜎𝜀

2

𝑅2𝜎𝜌
2+𝜎𝜀

2. Equation S5 gives the curve 

of Fig. S4B and was used to calculate the natural variability of the experimental data in Fig. 3B of the 

main text. 

 

EQUATIONS FOR THE PURE ADDER MODEL 

A similar approach was used also for adder control with incremental size ΔV defined by the volume. 

We report here only the equations for length at birth and length at division. Because several 

generations are needed to converge to the theoretical size, we implemented only the numerical 

version of the model. 

The simulation was run by starting with a length at birth equal to ΔV  𝜋𝑅2⁄  and iterating 50 cell cycles. 

Analyses were performed on the cell size at the last cell cycle. Superscript [n] denotes a quantity at 

the n-th cell cycle. 

𝐿𝑏
∗[𝑛]

=
𝐿𝑑

[𝑛−1]
(1 + 𝛼)

2
+

𝑅(1 + 𝜌)

3
+ 𝜀𝑏 . 

𝐿𝑑
∗[𝑛]

= 𝐿𝑏
[𝑛]

+
ΔV(1 + 𝜇𝑑)

𝜋𝑅2(1 + 𝜌)2
+ 𝜀𝑑 . 

From the numerical simulation of 3000 independent cells, we derived the value of the slope 𝐿𝑑
∗  vs 𝐿𝑏

∗ .  



SUPPORTING FIGURES 
 

 

               
 

Figure S1: Semi-automated segmentation algorithm. (A-C) Sequence of operations performed to 

segment the cell border (see Materials and Methods in the main text). (D) Examples of segmented 

cells.  
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Figure S2: Estimation of parameters. (A) Fitted distributions of the different geometrical quantities of 

cells at division for each resolution (Fig. 2A-B). Histogram bars: experimental data; dotted line: 

Gaussian distribution with variance obtained using the model equations. (B) RMSD between 

experimental data and fitting lines (as in Fig. 2B) as function of distance from optimal set of parameter 

values (measured as Euclidian distance in parameter space). An additive distance deviation of 0.5% to 

the parameters (for example by only changing 𝜎𝛼 from 3.2% to 3.7%) is sufficient to more than double 

the RMSD value, indicating good accuracy in the parameter fitting. 

 

 

 

 

 
 

Figure S3: Apparently imperfect sizer behaviour. Slope of plot in Fig. 1A might be due to the presence 

of two regimes, i.e. a sizer regime (slope close to 0) at low birth lengths and an adder regime (slope 

close to 1) at high birth lengths (as in pom1Δ, see Fig. 4B in main text and [3]). To exclude this 

possibility, we split the cells into low and high birth lengths according to a threshold and calculated 

the slopes in the two regimes. We varied the value of the threshold and analysed the distribution of 

the difference between “slope at high L*b” and “slope at low L*b” (bar plot). Since the mean value of 

this distribution, as indicated in the figure, is very close to zero, we conclude that the cells do not show 

two-regime behaviour.  
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Figure S4: Theoretical division-birth slopes for a pure area-based sizer control and effect of the noise 
sources. (A) Effect of experimental error (𝜎𝜀), radius variability (𝜎𝜌), sensing error (𝜎𝜇), asymmetry 

(𝜎𝛼) on the division-birth slopes. Lines: analytical equations for division-birth slope (L*d vs L*b), where 
subscript d refers to division and subscript b to birth, assuming underlying area-based size sensing. 
“+”: numerical simulation (n=1000 cells). Except for the x-axis values, all other parameters are as in 
Table S1. (B) Variability of the real radius for the subset of cells with measured radius 𝑅∗ in the range 
𝑅 ± 𝑤 (see Eq. S5). This analysis is used to derive the x-values in Fig. 3B. 
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Figure S5: Effect of sensing error 𝜎𝜇 on division-birth slope uncertainty and repeated pom1Δ 

experiment. (A) Estimation of the uncertainty of the division-birth slope as standard deviation from 

numerical simulations of n cells. To maintain the same error, a larger number of cells (n) must be 

imaged. (B) Size homeostasis plot for pom1Δ. Binned data, with mean value ± standard error, also 

shown (dark circles), together with best fit line. Slope of the second regime: +0.97±0.07. (FC2063, 

n=402). (C) Effect of the aspect ratio (𝑅2/𝐴) on the slope (L*d vs L*b) for an area-based sizer calculated 

using Eq. 2. Points are obtained by randomly changing R from 1.6 to 2.2 µm and A from 120 to 220 

µm2 independently. 
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Figure S6: Model with radius change during the cell cycle. (A) Experimental data from wild-type cells 

(FC15, n=256). Binned data, with mean value ± standard error, also shown (dark circles), together with 

best fit line with slope q=0.72 and intercept 0.54, which is in good agreement with our theoretical 

value of (1 − 𝑞)𝑅 = 0.55. (B) Comparison between experimental and predicted slope by using the 

model with radius changes. Data points show the mean value ± S.D. See also Fig. 4E.  

(C): Simulation of 5000 cells over 10 generations with area-based pure sizer control in fission yeast 

using model with radius change from birth to division. Dim lines represent simulated single-cell data 

for cells dividing shorter (pale blue) or longer (pale red) than the theoretical length (black line). Circles: 

mean length at division at each generation. Blue and red line: division length recovery for ideal sizer 

with no radius variability.  
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Figure S7: Paradoxes in size behaviour. (A) Effect of radius variability on the division-birth length slope 

in case of a pure adder mechanism based on volume control. Other parameters values: noise as for 

the other model predictions (𝜎𝜀 = 0.04 μm, 𝜎𝜇 = 6.5%, 𝜎𝛼 = 3.2%), cell size 𝑅 = 0.55 μm,  

𝑉 =  3.77 μm3 [2]. (B) Distribution of slopes when additively increasing/decreasing each standard 

deviation by up to 1% (or 2%) for all parameters of panel A, with fixed 𝜎𝜌 = 3.5%. 
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TABLE S1: Parameter values from fitting the CVs for each type of geometric size sensing (Fig. 2B and 3D-E).  

parameter 𝜎𝜌 𝜎𝜇 𝜎𝜀 (μm) at different resolutions 

Length sensing 1.7 % 6.8 % 

0.036 res.=1,  i.e. 0.0635 μm/pixel 

0.043 res.=0.5,  i.e. 0.127 μm/pixel 

0.059 res.=0.33,  i.e. 0.190 μm/pixel 

0.072 res.=0.25,  i.e. 0.254 μm/pixel 

Area sensing 2.7 % 6.5 % 

0.045 res.=1,  i.e. 0.0635 μm/pixel 

0.052 res.=0.5,  i.e. 0.127 μm/pixel 

0.067 res.=0.33,  i.e. 0.190 μm/pixel 

0.078 res.=0.25,  i.e. 0.254 μm/pixel 

Volume sensing 2.0 % 6.8% 

0.058 res.=1,  i.e. 0.0635 μm/pixel 

0.062 res.=0.5,  i.e. 0.127 μm/pixel 

0.075 res.=0.33,  i.e. 0.190 μm/pixel 

0.085 res.=0.25,  i.e. 0.254 μm/pixel 

 

 

TABLE S2: Strains used in this study. 

S. pombe strain SOURCE 

FC15: h- WT (972) Lab collection 

FC2947: h- rga2::ura4+ ade6- leu1-32 ura4-D18  Lab collection 

FC1901: h- rga4::ura4+ leu1-32 ura4-D18 Lab collection 

FC2063: h- pom1::natMX4 ade6- leu1-32 ura4-D18   Lab collection 

FC3161: h+ cdr2::kanMX leu1-32 Lab collection 

FC3218: h- cdr2-T166A rga2::ura4+ Lab collection 
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