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A. Tissue residue functions of the five tracer kinetic models

Tracer transport within the capillary-tissue system can be modeled as a linear, time-invariant (stationary) system.
All models considered in this study fall under this assumption. Each model represents a TRF, Ry (t), which can be
modeled by considering tracer kinetics for capillary-tissue exchange in simplified or the full two compartments:

the plasma space and the interstitial space.

The 2CX model assumes well-mixed (homogeneous) compartments so that CA concentration is a function of only

time, not space. The TRF for the 2CX model is a bi-exponential function of the form:
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where vp and v; are the relative volumes of the plasma and interstitial spaces in the considered tissue region with
volume Vg, PS is the CA-specific permeability surface area product (in mL/min), Vp (in mL) is the plasma

volume, and u(t) is the unit step function that explains Rt (t) is valid only at t > 0.

The AATH model describes a closed-form solution of the Johnson and Wilson tissue homogeneity model in the
time domain by considering adiabatic (slow) changes of CA concentration in the interstitial compartment relative
to that in the plasma compartment *, whereby this model accounts for the concentration gradient of CA between
the arterial and venous ends of the capillary, but CA concentration in the interstitial space is assumed to be well
mixed. The TRF for the AATH model is given by:
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where E = 1 — e PS/F s the first-pass extraction fraction from the plasma space to the interstitial space, and

Vp/F (in min) is the capillary transit time.



The DP model also describes the concentration gradient of CA along the axial length of a capillary tube like the
AATH model, but unlike the AATH model, the interstitial compartment is modeled as a series of infinitesimal
compartments that exchange CA only with nearby locations in the capillary bed. Thus, the CA concentrations in
the plasma and interstitial compartments both depend on the position of the capillary tube. The TRF for the DP

model is given by:
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where I, (t) denotes the modified Bessel function of the first kind. The integral term, including the modified

Bessel function, cannot be solved into a fully analytic form. To simplify the formulation of the integral term in
Equation A3, an alternative derivation can be considered by evaluating a Taylor series expansion 2. The Ry pp(t)

can be simplified as:

Rrpp() = u(t) - e F [1 + V—PP—SP—S(t - V—P)] u (t - V—P). 4)
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The ETK model assumes negligible capillary transit time in comparison to the data sampling interval, resulting in

a situation where CA plasma concentration is equal to the AIF. The TRF for the ETK model is given by
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where §(t) is the Dirac delta function that denotes the idealized impulse excitation of a unit mass source at t = 0.
The TK model provides a further simplification of the two-compartment situation, whereby it is assumed that
vp < vy and thus the contribution of CA in the plasma compartment to Ct(t) is ignored. The TRF for the TK

model is given by
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The symbols and definitions for kinetic parameters used in the current study are summarized in supplementary

document 2.



B. Modeling of the dual-input function

Because the dual arterial inputs join in the capillary bed, they can be effectively replaced by a single net input
function C;,(t) with their mixed contributions, i.e., a weighted sum of the pulmonary and systemic AlFs:
Cin(t) = yCpa(t) + (1 —y)Ca(t) . The dual-input functions can be further decomposed into Cpa(t) =
Cepa(t) + Cepa(t)®Gpa(t) and Cp(t) = Cpa(t) + Cpa(t)®GA(t) , respectively, where Cgpa(t) =
agpate MBPALy(t) and Cg A(t) = agate #BATu(t) are the bolus function that describes the first-pass of the
bolus of CA for the pulmonary and systemic arterial components, and Gpa (t) = agpae #ePAtu(t) and GA(t) =
agae Heaty(t) are the body transfer function (BTF) that models leakage into the whole-body interstitial space
during the recirculation phase. Thus, Cpa(t) and C,(t) are modeled as a full-pass AIF that describes
superposition of the bolus shape (first-pass) and its shape after modification by the BTF (recirculation). An AlF
model that represents a sums-of-exponentials function can be adopted for modeling the dual-input arterial curves

as follows 3:

Coa(t) = [Appate ™MBPAL + Ag pa (e HaPat — e=HBRPAT) [y (1), (7)
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where Agps = agpa — aB,PAaG,PA/(.uB,PA - .uG,PA)v Agpa = aB,PAaG,PA/(HB,PA - .uG,PA) » Up,pa and pgpp are

scaling constants which govern the height and shape of the pulmonary AIF, and Aga = aga —
2 .
aB‘AaG'A/(/J.B’A - .uG,A)! AG,A = aB,AaG‘A/(,uB,A - HG,A) » UB,A and UG A are those of the SyStemlC AlF. By
imposing the time lag of the first-pass bolus arrival to the pulmonary artery and the aorta (tyagpa1 and tyaga1),
and the difference in onset times of the first-pass and the recirculation (tagpa2 and traga2) ON Equations (Al)

and (A2), respectively, Cpa(t) and C,(t) take the forms
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where Cp, (t) was expressed with its convolution components for providing abbreviated reference, while C,(t)
with its analytic solution. Note that the analytic solution of Cp, (t) is of the same form as that of C, (t), though the

scaling constants and the onset times should be distinguished between them.

C. Analytic solutions of the five different models

For convenience in expressing analytic solutions of Cp(t) for each model, it was defined that Crpa(t) =

Qr(t — tragr)® Cpa(t)/(1 — Hyy), and Cra(t) = Qr(t — tragr)® Ca(t)/(1 — Hyy). Once the dual AIF is
modeled as a continuous-time parametric functional form, a subsequent analytic solution of Cr(t) can be derived
by incorporating the scaling constants and the onset times of the dual AIF into the convolution integral with the
TRF for each tracer kinetic model. By assuming that tracer transport within the capillary-tissue system can be

modeled as a linear time-invariant (stationary) system, the analytic form of C;(t) can be given by

F Rr(t)
V 1-Hpy

M{Coa(tar) + Coa(taz)RGA(D}],

Cr() = ¥Crpa(®) + (1 = Y)Cra() = ————=@[y{Crpal(tpa1) + Copaltpaz)R@Gpa()} + (1 —

(11)

F Rr(t)
Vr1-Hpy
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The analytic solutions of Ct  (t) for the five different tracer kinetic models are given explicitly in the continuous-

time domain by
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where Ctak(t), Craerk(t), Cra2cx(t), Craaatu(t) and Cr 4 pp(t) are Cp 4 (t) for the TK, ETK, 2CX, AATH
and DP models, respectively. It should be recognized that the analytic solution of Cy p, (t) is of the same form as

that of Cr 4 (t) because the AIF model is of the same form between them.
D. Parameter calculation

The number and type of curve-fitting parameters were the same among the five different models: F /Vp, v, PS/Vp,

Up, vy, and tyagr. The BF, BFpa, BFs, BV, MTT, PS, and KTrans can be computed according to: BV = 100 -

Vp vp
' _100-—2
(1-Hsy)m 00 (1-Hsv)pr

(in mL/100 g), where Hgy is the hematocrit in small vessels (=0.25) and m = ptVr is
the mass of the tissue with density p7 (1.04 g/cm® in the case of soft tissue), BF = BV - Vi (in mL/min/100 g),
P

Vp+Vi

BFps = yBF (in mL/min/100 @), BF, = (1 —y)BF (in mL/min/100 g), MTT = -

(MTT = % for the TK
model), where V; = v;Vy is the interstitial volume (in mL), PS = (1 — Hgy) - BV -? (in mL/min/100 g) and
P

kTans = . L = . L0 (in mL/min/mL).
Vr Vp

E. Multimodel comparison

The five different tracer kinetic models described above form a set of candidate models to quantify DCE data. The
AIC and the associated Akaike weights, w,,,, rank different models on the basis of goodness-of-fit and number of
parameters. The AIC provides an objective relative measure for the information lost when approximating real data

with a model. For each voxel, the cAIC for small sample sizes is given by



CAIC = —2logL + 2K (~——), (17)

N—-K-1

where logL = —%[ln(Zn&z) + 1] is the maximized log likelihood with N the sample size (i.e., the number of

temporal data points) and 42 = RSS/N the normalized residual sum of squares *. The number of the estimated
model parameters (including 62) is K. It is advocated to use the cAIC when the ratio N /K is small (<40). Based
on the cAIC values, for each voxel, the optimal model was chosen by selecting the cAICqin. To assess the relative

likelihood of a model, the cAIC differences (4,,,) were calculated between models as
A= cAICy, — cAICyin, (18)

with cAIC,, being the cAIC value of candidate model m. The model estimated to be the best has A,,,= 0. For each

model out of the set of M alternative models, the AW, w,,,, was calculated from A,;:

w,, = exp(—=Am/2)

- SM exp(—Ar/2) (19)

The value of w,, represents the probability that a certain model is the best among M models.
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