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A. Tissue residue functions of the five tracer kinetic models 

 

Tracer transport within the capillary-tissue system can be modeled as a linear, time-invariant (stationary) system. 

All models considered in this study fall under this assumption. Each model represents a TRF, ܴሺݐሻ, which can be 

modeled by considering tracer kinetics for capillary-tissue exchange in simplified or the full two compartments: 

the plasma space and the interstitial space. 

 

The 2CX model assumes well-mixed (homogeneous) compartments so that CA concentration is a function of only 

time, not space. The TRF for the 2CX model is a bi-exponential function of the form: 
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where ݒ and ୍ݒ are the relative volumes of the plasma and interstitial spaces in the considered tissue region with 

volume ܸ , ܲܵ  is the CA-specific permeability surface area product (in mL/min), ܸ  (in mL) is the plasma 

volume, and ݑሺݐሻ is the unit step function that explains ܴሺݐሻ is valid only at ݐ  0. 

 

The AATH model describes a closed-form solution of the Johnson and Wilson tissue homogeneity model in the 

time domain by considering adiabatic (slow) changes of CA concentration in the interstitial compartment relative 

to that in the plasma compartment 1, whereby this model accounts for the concentration gradient of CA between 

the arterial and venous ends of the capillary, but CA concentration in the interstitial space is assumed to be well 

mixed. The TRF for the AATH model is given by: 
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where ܧ ൌ 1 െ ݁ିௌ ி⁄  is the first-pass extraction fraction from the plasma space to the interstitial space, and 

ܸ ⁄ܨ  (in min) is the capillary transit time. 



The DP model also describes the concentration gradient of CA along the axial length of a capillary tube like the 

AATH model, but unlike the AATH model, the interstitial compartment is modeled as a series of infinitesimal 

compartments that exchange CA only with nearby locations in the capillary bed. Thus, the CA concentrations in 

the plasma and interstitial compartments both depend on the position of the capillary tube. The TRF for the DP 

model is given by: 
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where ܫଵሺݐሻ denotes the modified Bessel function of the first kind. The integral term, including the modified 

Bessel function, cannot be solved into a fully analytic form. To simplify the formulation of the integral term in 

Equation A3, an alternative derivation can be considered by evaluating a Taylor series expansion 2. The ܴ,ୈሺݐሻ 

can be simplified as: 
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The ETK model assumes negligible capillary transit time in comparison to the data sampling interval, resulting in 

a situation where CA plasma concentration is equal to the AIF. The TRF for the ETK model is given by 
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where ߜሺݐሻ is the Dirac delta function that denotes the idealized impulse excitation of a unit mass source at t = 0. 

The TK model provides a further simplification of the two-compartment situation, whereby it is assumed that 

ݒ ≪  ሻ is ignored. The TRF for the TKݐሺܥ and thus the contribution of CA in the plasma compartment to ୍ݒ

model is given by 
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The symbols and definitions for kinetic parameters used in the current study are summarized in supplementary 

document 2. 



 

B. Modeling of the dual-input function 

 

Because the dual arterial inputs join in the capillary bed, they can be effectively replaced by a single net input 

function ܥ୧୬ሺݐሻ  with their mixed contributions, i.e., a weighted sum of the pulmonary and systemic AIFs: 

ሻݐ୧୬ሺܥ ൌ ሻݐሺܥߛ  ሺ1 െ ሻݐሺܥሻߛ . The dual-input functions can be further decomposed into ܥሺݐሻ ൌ

ሻݐ,ሺܥ  ሻݐሺܩ⨂ሻݐ,ሺܥ  and ܥሺݐሻ ൌ ሻݐ,ሺܥ  ሻݐሺܩ⨂ሻݐ,ሺܥ , respectively, where ܥ,ሺݐሻ ൌ

ܽ,ି݁ݐఓా,ౌఽ௧ݑሺݐሻ and ܥ,ሺݐሻ ൌ ܽ,ି݁ݐఓా,ఽ௧ݑሺݐሻ are the bolus function that describes the first-pass of the 

bolus of CA for the pulmonary and systemic arterial components, and ܩሺݐሻ ൌ ܽୋ,݁ିఓృ,ౌఽ௧ݑሺݐሻ  and ܩሺݐሻ ൌ

ܽୋ,݁ିఓృ,ఽ௧ݑሺݐሻ are the body transfer function (BTF) that models leakage into the whole-body interstitial space 

during the recirculation phase. Thus, ܥሺݐሻ  and ܥሺݐሻ  are modeled as a full-pass AIF that describes 

superposition of the bolus shape (first-pass) and its shape after modification by the BTF (recirculation). An AIF 

model that represents a sums-of-exponentials function can be adopted for modeling the dual-input arterial curves 

as follows 3: 
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scaling constants which govern the height and shape of the pulmonary AIF, and ܣ, ൌ ܽ, െ
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⁄ ,ߤ ,  and ߤୋ,  are those of the systemic AIF. By 

imposing the time lag of the first-pass bolus arrival to the pulmonary artery and the aorta (ݐୟ,ଵ and ݐୟ,ଵ), 

and the difference in onset times of the first-pass and the recirculation (ݐୟ,ଶ and ݐୟ,ଶ) on Equations (A1) 

and (A2), respectively, ܥሺݐሻ and ܥሺݐሻ  take the forms 
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where ܥሺݐሻ was expressed with its convolution components for providing abbreviated reference, while ܥሺݐሻ 

with its analytic solution. Note that the analytic solution of ܥሺݐሻ is of the same form as that of ܥሺݐሻ, though the 

scaling constants and the onset times should be distinguished between them. 

 

C. Analytic solutions of the five different models 

 

For convenience in expressing analytic solutions of ܥሺݐሻ  for each model, it was defined that ܥ,ሺݐሻ ൌ

ܳ൫ݐ െ ሻݐሺܥ⨂ୟ,൯ݐ ሺ1 െ ⁄ሻܪ , and ܥ,ሺݐሻ ൌ ܳ൫ݐ െ ሻݐሺܥ⨂ୟ,൯ݐ ሺ1 െ ⁄ሻܪ . Once the dual AIF is 

modeled as a continuous-time parametric functional form, a subsequent analytic solution of ܥሺݐሻ can be derived 

by incorporating the scaling constants and the onset times of the dual AIF into the convolution integral with the 

TRF for each tracer kinetic model. By assuming that tracer transport within the capillary-tissue system can be 

modeled as a linear time-invariant (stationary) system, the analytic form of ܥሺݐሻ can be given by 
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The analytic solutions of ܥ,ሺݐሻ for the five different tracer kinetic models are given explicitly in the continuous-

time domain by 
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where ܥ,,ሺݐሻ, ܥ,,ሺݐሻ, ܥ,,ଶେଡ଼ሺݐሻ, ܥ,,ୌሺݐሻ and ܥ,,ୈሺݐሻ are ܥ,ሺݐሻ for the TK, ETK, 2CX, AATH 

and DP models, respectively. It should be recognized that the analytic solution of ܥ,ሺݐሻ is of the same form as 

that of ܥ,ሺݐሻ because the AIF model is of the same form between them. 

 

D. Parameter calculation 

 

The number and type of curve-fitting parameters were the same among the five different models: ܨ ܸ⁄ ܵܲ ,ߛ , ܸ⁄ , 

ܨܤ ,ܨܤ ୟ,. Theݐ and ,୍ݒ ,ݒ ܨܤ , ୰ୟ୬ୱܭ and ,ܵܲ ,ܶܶܯ ,ܸܤ ,  can be computed according to: ܸܤ ൌ 100 ⋅

ౌ
ሺଵିுሻ

ൌ 100 ⋅
௩ౌ

ሺଵିுሻఘ
 (in mL/100 g), where ܪୗ is the hematocrit in small vessels (≅0.25) and ݉ ൌ ߩ ܸ is 

the mass of the tissue with density ߩ (1.04 g/cm3 in the case of soft tissue), ܨܤ ൌ ܸܤ ⋅
ி

ౌ
 (in mL/min/100 g), 

ܨܤ ൌ ܨܤߛ  (in mL/min/100 g), ܨܤ ൌ ሺ1 െ ܨܤሻߛ  (in mL/min/100 g), ܶܶܯ ൌ
ౌା
ி

ܶܶܯ)  ൌ

ி

 for the TK 

model), where ୍ܸ ൌ ୍ݒ ܸ  is the interstitial volume (in mL), ܲܵ ൌ ሺ1 െ ୗሻܪ ⋅ ܸܤ ⋅
ௌ

ౌ
 (in mL/min/100 g) and 

୰ୟ୬ୱܭ ൌ ܧ ⋅
ி


ൌ ܧ ⋅

ி

ౌ
⋅  . (in mL/min/mL)ݒ

 

E. Multimodel comparison 

 

The five different tracer kinetic models described above form a set of candidate models to quantify DCE data. The 

AIC and the associated Akaike weights, ݓ, rank different models on the basis of goodness-of-fit and number of 

parameters. The AIC provides an objective relative measure for the information lost when approximating real data 

with a model. For each voxel, the cAIC for small sample sizes is given by 

 



ܥܫܣܿ ൌ െ2logࣦ  ܭ2 ቀ
ே

ேିିଵ
ቁ, (17)

 

where logࣦ ൌ െ
ே

ଶ
ሾlnሺ2ߪߨොଶሻ  1ሿ is the maximized log likelihood with ܰ the sample size (i.e., the number of 

temporal data points) and ߪොଶ ൌ ܴܵܵ ܰ⁄  the normalized residual sum of squares 4. The number of the estimated 

model parameters (including ߪොଶ) is ܭ. It is advocated to use the cAIC when the ratio ܰ ⁄ܭ  is small (<40). Based 

on the cAIC values, for each voxel, the optimal model was chosen by selecting the cAICmin. To assess the relative 

likelihood of a model, the cAIC differences (∆) were calculated between models as 

 

∆ൌ ܥܫܣܿ െ ୫୧୬, (18)ܥܫܣܿ

 

with ܿܥܫܣ being the cAIC value of candidate model ݉. The model estimated to be the best has ∆ൌ 0. For each 

model out of the set of ܯ alternative models, the AW, ݓ, was calculated from ∆: 

 

ݓ ൌ
ୣ୶୮ሺି∆ ଶ⁄ ሻ

∑ ୣ୶୮ሺି∆ೝ ଶ⁄ ሻಾ
ೝసభ

. (19)

 

The value of ݓ represents the probability that a certain model is the best among ܯ models. 
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