
Supplementary Mathematical note 
 
 
Evaluation of the null hypothesis that crypt fission leads to the observed proportion of perfectly  
segregated bifurcating crypts 
 
We assumed that crypt fission is ‘symmetric’ such that both daughter crypts inherit exactly S/2 of 
the total number of stem cells S in the parent crypt. Then only crypts with exact half of the stem cells 
labelled can potentially divide to produce a perfectly segregated bifurcating crypt (type III 
bifurcation). The case of an odd number of stem cells is considered separately below. The probability 
of a crypt undergoing fission giving rise to perfectly segregated arms can be estimated as:  
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Where B is the number of possible bifurcation planes, which we assumed was simply equal to half of 
the number of stem cells (S/2), Nhalf is the number of crypts that have S/2 CCO- stem cells and Ntotal is 
the total number of counted crypts. Due to the difficulty in counting the number of crypts which 
have exactly half their stem cells labelled, Nhalf was estimated by multiplying the measured number 
of partially labelled crypts (Npartial) by the expected proportion of partially labelled crypts that have 
half of their cells labelled. The probability distribution of clone sizes within partially labelled crypts 
under the assumption of neutral genetic drift at long times1 is given by:  
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Hence, we can estimate Nhalf as: 
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allowing us to estimate p as: 
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Therefore, under the null hypothesis, the probability of 21 (Nseg) or more of the 309 bifurcating 
crypts (Nbifurcate) to be perfectly segregated is then given by the binomial distribution: 
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Probability of perfect segregation in a crypt with an odd number of stem cells 
 
Above, the probability of a crypt undergoing fission perfectly segregating all CCO- and CCO+ cells to 
each arm of the bifurcating crypt was discussed for the case of an even number of stem cells. 
Considering the case where the number of stem cells is odd is straightforward. Instead of each arm 
of the crypt receiving S/2 stem cells, one arm receives (S+1)/2 and the other (S-1)/2. The number of 
possible bifurcation planes is then S. In analogue to the even case, the probability of a crypt 
undergoing fission giving rise to perfectly segregated arms can be estimated as: 
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Substituting the distribution of partially labelled crypts as described above, we estimate ! to be the 
same as in the even case: 
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The rest of the calculation proceeds as previously. 
 
 
Crypt fission and fusion rate 
 
Crypt fission allows the expansion of patches of clonal tissue within the colon. Previous studies2, 3 
have attempted to infer the rate of crypt fission from the distribution of patch sizes, identifying 
clonal patches using neutral mutational markers (such as CCO deficiency, as used in this study). 
These studies assumed that clonal patches can only grow via crypt fission, however the existence of 
crypt fusion suggests that clonal patches can also shrink.  
 
We modelled the processes of crypt fission and fusion as a linear birth-death process. The rate at 
which a patch transitions from containing 8 labelled crypts to containing 8+ 1 labelled crypts is 
the fission rate per crypt, nEoppoqr, multiplied by the patch size 8. The death rate is more 
complicated to calculate. If a CCO- crypt fuses with a neighbouring CCO+, the patch size will decrease 
by 1 half of the time (e.g. for the 50% of cases where the CCO+ clone ‘wins’). If instead a CCO- crypt 
fuses with another CCO- crypt within the patch, the patch size will always decrease by 1. The rate at 
which a patch decreases in size depends on the size of the patch. For simplicity we shall consider the 
case where the crypts are organised into a regular structure with 4 nearest neighbours, in line with 
the observed average coordination in the colon. An isolated CCO- crypt has 4 unlabelled neighbours, 
so that loss will occur at rate 
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. In this manner, the rate at which larger patches shrink can be calculated relatively simply. 
However, 95% of the patches observed contained 4 or fewer crypts.  Therefore, to allow the 
application of an analytically-tractable linear birth-death model, we calculate an effective crypt loss 
rate by finding the weighted mean of the loss rate for patches of size 4 or less. For our data, we find 
an effective loss rate of 0.544	nEÅpoqr , hence we model the rate at which a patch of size 8 
transitions to a patch of size 8− 1 as 0.544	nEÅpoqr8. 
 
We know the rate at which crypts transition from wild type (CCO+) to fully fixed (CCO-) is ÇN+,+() 
where Ç is the rate at which clonally converted CCO- crypts are spontaneous formed per unit time 
and N+,+() is the total number of crypts assessed. We assume N+,+() is sufficiency large to remain 
approximately constant despite crypt labelling. Thus, the crypt ‘birth’ rate $ = nEoppoqr and ‘death’ 
rate is É ≈ 0.544	nEÅpoqr . The differential equations describing the patch size distribution are 
(where Km is the probability of seeing a patch of size m at time t): 
For 8 = 1:  
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8 ≥ 2: 
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This is a complicated equation to solve directly, but we can consider the case of a single birth-death 
process that starts at 8 = 1, for which solutions are known, and then integrate the resulting 
distribution over time to find the time dependent patch size distribution. For a single birth-death 
process, the differential equations are: 
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We define the simplifying functions: 
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If we have the initial condition !C(7 = 0) = éCe, then the solution is4: 
 
$ ≠ É ∧8 ≥ 0: 
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The integrated crypt size distribution can then be calculated as Üà(7) =
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the following equations: 
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$ = É ∧8 ≥ 1:  
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$ = É ∧8 = 0:  
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However, we can only measure surviving CCO- crypts. Hence, we must renormalize the crypt size 
distribution to that of the “persisting” patches, Üàì (7) = 	
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Prior to fitting the patch size distributions, we corrected our data for the possibility of spontaneous, 
independent CCO- mutations in adjacent crypts, leading to the misclassification of two individual 
clones as a patch of size 2. If we estimate the probability that a crypt becomes labelled, ! = Çî, as 
the number of labelled patches divided by the total number of crypts, we can estimate the number 
of patches of size 2 that are, in fact, separate clones as 2!k(1 − !)õN+,+() (where we are still 
assuming that the crypts are organized into a regular structure with 4 nearest neighbours). Similar 
corrections could be performed for patches of size 3 and above, however ! ≪ 1 so the number of 
misclassified size 3 patches was assumed to be negligible.  
 
To fit to the data, we performed a maximum likelihood estimate on a patient-by-patient basis 
(Supplementary Figure 2). The log-likelihood of observing Npatches patches, each of size mi, is: 
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The log-likelihood is purely a function of ç, and ç($, É) is a many-to-one function, hence we cannot 
separately determine nEoppoqr and nEÅpoqr  from our data. Instead, the fission rate was fixed to be 
equal to the fusion rate, as discussed in the main text. The log-likelihood was maximised numerically 
using the 'Nelder-Mead' method and the confidence intervals on each fit were estimated from the 
Fisher information matrix.  
 
 
The duration of crypt fission/fusion  
 
If we assume that the rate of crypt fission per crypt is constant over time, then the probability that a 
given crypt undergoes fission in a time-interval ∆7 is simply nEoppoqr∆7. Let the duration of crypt 
fission be î, then if we observe a crypt undergoing fission at a given time 7, that bifurcation must 
have begun later than 7 − î. Hence, the probability that a crypt is undergoing crypt fission at a given 
time is nEoppoqrî. Due to the inability to accurately evaluate Type I bifurcations as fission or fusion 
events, we must estimate the number of bifurcations arising from crypt fission as half the total 
number of bifurcations (A•oEÅ¶ßCå®). If we model the number of crypt-fission bifurcations as a 
binomial process with probability nEoppoqrî, then we can estimate the duration of crypt fission as 
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The spatial distribution of bifurcation events 
 
Visual examination of the positions of fission/fusion events in the sample (Supplementary Figure 4) 
indicated spatial clustering of events. To test this hypothesis, the positions of each bifurcation event 
within a sample were extracted, along with the region of the image (Ø) containing colon tissue. 
 
Ripley’s L function (a variance stabilised transformation of Ripley’s K function) is a descriptive 
statistical measure of spatial homogeneity. Comparing Ripley’s L function for a given spatial 
distribution of points to 999 (Apoà) Monte Carlo simulations of randomly distributed points allows 
the presence of clustering to be inferred. Ripley’s L function at a search radius, ;, is given by: 
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Where 5o∑ is the pairwise distance between the :åB and ∫åB points, ¥ is the mean density of points 
(estimated as ¥µ = r

ª
 ), ; is a search radius defining the scale of spatial interactions, ∂ is a Heaviside 

step function and ∏o∑  is an edge correction factor (∏o∑  is the fraction of the circumference of a circle 
of radius 5o∑ centred on the point  that lies within the sampling region. For a spatially homogeneous 
Poisson process ∞±(;) should approximately equal ;. To determine whether deviations from ; are 
due to spatial clustering or consistent with random noise, a set of 999 simulations containing / 
randomly scattered points within Ø were generated, and for each simulation Ripley’s L function 
(∞poà(;)) was calculated. For each simulation, the maximum difference between the simulation and 
the theoretical value of ∞, É = max(|∞poà(;) − ;|), was recorded. To construct a global simulation 
envelope of significance â = 0.01, the 10th largest É value was found. If any value of ∞±(;) has a 
larger deviation from ; than this critical value, then the spatial distribution is significantly different 
from a spatially homogeneous Poisson process.  
  
For a significance of 0.05, samples 4, 6, 7a, 7b, 8 and 10 exhibited evidence of spatial clustering 
(Supplementary Figure 4). This analysis is robust to our choice of â, for a stringent significance of 
â = 0.001, only sample 7b is no longer statistically significant. Note that all of these patients are 
FAP or AFAP, and each sample contained far larger numbers of bifurcations than the IBD or disease-
free samples. This analysis cannot distinguish between underlying spatial heterogeneity of the 
fission/fusion rates within the sample, or local interactions between fission/fusion events.  
 
 
References (Supplementary Mathematical note) 
 
1. Simons BD. Deep sequencing as a probe of normal stem cell fate and preneoplasia in human 

epidermis. Proc Natl Acad Sci U S A 2016;113:128-33. 
2. Baker AM, Cereser B, Melton S, et al. Quantification of crypt and stem cell evolution in the 

normal and neoplastic human colon. Cell Rep 2014;8:940-7. 
3. Nicholson AM, Olpe C, Hoyle A, et al. Fixation and Spread of Somatic Mutations in Adult 

Human Colonic Epithelium. Cell Stem Cell 2018;22:909-918 e8. 
4. Bailey NTJ. The Elements of Stochastic Processes with Applications to the Natural Sciences. 

Mathematics of Computation 1990;19:153. 
 

































Supplementary Figure Legends 
 
 
Supplementary Figure 1 
Three additional representative examples of ‘Type III’ bifurcation events, showing the upper part of 
the crypts, in which the bifurcating pair clearly share a significant proportion of epithelium (right 
column), and the base of the crypts, in which they are clearly separate (left column). Scale bars 
represent 50 micrometres. 
 
Supplementary Figure 2 
A. 3D reconstruction of a mucosal subvolume showing a ‘Type III’ bifurcation event. The fusing 
crypts (CCO proficient in brown and CCO deficient in blue) are shown as spacefilling volumes and the 
surrounding crypts are shown as transparent wireframes. The accompanying Supplementary Video 1 
shows the rotating subvolume. 
B. Three individual sections reveal the individual legs of the bifurcating crypts, the ‘saddle point’ 
where both crypts merge, and finally the level at which both crypts have merged into a single orifice. 
Dashed lines indicate the fusing crypts in serial sections and numbers correspond to the surrounding 
crypts indicated in panel A. Scale bars represent 100 micrometres. The accompanying 
Supplementary Video 2 shows raw images of the serial sections before processing.  
 
Supplementary Figure 3 
Graphs showing the distribution of CCO-deficient patch sizes (black dots) and the maximum 
likelihood estimation (red line) for each patient. 
 
Supplementary Figure 4 
Representative images of each tissue section used for analysis of spatial correlation. Green dots 
represent Type I bifurcations, pink dots represent Type II events and red dots represent Type III 
events. Insets are graphs showing Ripley’s L function for the data from that sample (blue line), the 
mean of 999 simulations (red dotted line) and a global simulation envelope of significance at α=0.01 
(grey envelope). 
 
 
 
 
 
Supplementary Video 1 
Rotating 3D reconstruction of a mucosal subvolume showing a ‘Type III’ bifurcation event. The fusing 
crypts (CCO proficient in brown and CCO deficient in blue) are shown as spacefilling volumes and the 
surrounding crypts are shown as transparent wireframes. 
 
Supplementary Video 2 
Raw images of the serial sections used to produce the 3D reconstruction in Supplementary Video 1.  
 
Supplementary Video 3 
Raw images of serial sections showing a further example of a ‘Type III’ bifurcation event. 



Supplementary Table 1 – Probability of perfect segregation by stem cell number 
 

 
Stem cell number 

(S) 
Probability of perfect 

segregation at bifurcation 
5 1.49 × 10-21 
6 3.96 × 10-25 
7 3.98 × 10-28 
8 1.05 × 10-30 
9 6.91 × 10-33 

10 5.52 × 10-35 
 


