1	HBV infection-induced liver cirrhosis development in dual-humanized mice with
2	human bone mesenchymal stem cell transplantation
3	
4	Supplemental Materials List
5	• Supplemental Materials and Methods
6	• Supplemental References
7	• Supplemental Figures and Legends
8	• Supplementary Tables
9	

1 • Supplemental Materials and Methods

Isolation, culture, phenotypic identification and multi-lineage differentiation of hBMSCs

4 The isolation, culture and identification of hBMSCs were performed using the standard procedures described in previous studies [1, 2]. Signed informed consent was obtained, 5 and the protocol was approved by the Clinical Research Ethics Committee of the First 6 7 Affiliated Hospital, Zhejiang University. BM mononuclear cells were isolated by BM 8 aspiration from the iliac crest of healthy male volunteers and purified by Ficoll-Paque 9 density-gradient centrifugation as previously described [3]. The purified mononuclear cells were allowed to attach in Dulbecco's modified Eagle's medium (DMEM, 10 11 #11995-073, Gibco) supplemented with 10% foetal bovine serum (FBS, #10270-106, 12 Gibco) overnight at 37°C in 5% CO₂. After two days of incubation, the floating cells 13 were washed out, and all the attached cells were maintained in the same culture medium. To collect a sufficient number of cells for transplantation, the freshly isolated 14 15 hBMSCs were passaged and cultured in DMEM with 5% FBS in vitro. The cultured 16 hBMSCs from passages 3-7 that showed typical stem cell characteristics were used 17 for transplantation. Cryopreserved hBMSCs from the same passages were also used in this study after thawing and culturing for one or two passages. hBMSCs were 18 19 subjected to phenotypic analyses based on hCD90, hCD29, hCD45 and hCD34 using 20 standard flow cytometry methods (FC500, Beckman Coulter, Fullerton, CA, USA) 21 prior to transplantation (Figure S1A).

22

To induce osteogenic differentiation, the hBMSCs were cultured in a commercially
available osteogenic differentiation medium (Cambrex, Walkersville, MD, USA). On
day 21, the alkaline phosphatase activity of the cultured cells was assessed as

previously described [4]. To induce adipogenic differentiation, the hBMSCs were
 cultured in a commercially available adipogenic differentiation medium purchased
 from Cambrex, and on day 21, the cells were stained with Oil red O. Hepatogenic
 differentiation was performed as previously described [5].

5

6 *qRT-PCR*

Total RNA from tissues or purified cells was extracted using TRIzol reagent
(Invitrogen, Carlsbad, CA, USA) according to the manufacturer's instructions and was
then used for cDNA synthesis with a SuperScript First-Strand Synthesis System
(Invitrogen, Carlsbad, CA, USA) as previously described [6]. Detailed primer
information is presented in *Table S3*.

12

13 Two-step collagenase perfusion for the isolation of total liver cells

Liver cells from hBMSC-FRGS mice were harvested using a standard collagenase 14 15 perfusion protocol [7]. Briefly, the liver was perfused with calcium- and 16 magnesium-free Earle's balanced salt solution (EBSS) supplemented with 0.5 mM 17 EGTA and 10 mM HEPES for five min. The solution was changed to EBSS supplemented with 0.1 mg/mL collagenase IV (Sigma-Aldrich, St Louis, MO, USA) 18 19 and 0.05 mg/mL DNase I (Sigma-Aldrich, St Louis, MO, USA) for 10 min. The liver 20 was gently minced in the second solution and filtered sequentially through 70- and 21 40-mm nylon mesh (BD Biosciences, San Jose, CA, USA). After centrifugation at 150 22 g for three min, the pellet contained the total population of liver cells, including 23 parenchymal and non-parenchymal cells. To harvest the parenchymal cells (mainly hepatocytes), the pellet was further centrifuged at 50 g for three min. The number and 24 25 viability of the resulting cells were assessed using the trypan blue exclusion test.

1

2 Identifying the chimerism of hBMSC-Heps in hBMSC-FRGS mice

To identify the chimerism of hBMSC-Heps, 3×10^7 liver cells, including parenchymal 3 4 and non-parenchymal cells, were isolated from the livers of FRGS mice after hBMSC transplantation through collagenase perfusion and centrifugation at 150 g for 3 min 5 [7]. To determine the ratio of HLA^+ cells in the total population of liver cells and the 6 proportions of hALB⁺, hNTCP⁺ and hCD45⁺ cells in HLA⁺ cells, at least 1x10⁵ total 7 8 liver cells (per mice) were analysed using standard flow cytometry methods using a 9 FACSAria III (BD Biosciences, San Jose, CA, USA) according to the instructions provided by the manufacturer. Different fluorescently labelled antibodies were used to 10 11 characterize the various hBMSC-derived human immune cell lineages (Table S2). The 12 fluorescent dye and protein antibody labelling kits were purchased from Expedeon, 13 and the assays were performed according to the instructions provided by the 14 manufacturer (Table S1). For the detection of intracellular markers, such as hALB, 15 fixation/permeabilization solution (#554714, BD Bioscience) was used. Dead cells were excluded using fixable viability dye (#L23101, eBioscience). To exclude 16 17 non-specific reactions, background signals and other interferences, a less than 0.5% positive rate in the FACS analysis was recognized as a negative result. The isolated 18 19 hBMSC-Heps and mouse livers were assessed by IHC, IF and qRT-PCR for human 20 hepatocyte-specific markers and genes. The serum hALB levels were measured by 21 ELISA. The chimeric rates of hBMSC-Heps were evaluated by the linear relationship between the percentages of hALB⁺/hNTCP⁺ cells in perfused liver cells and the serum 22 23 hALB levels.

24

25 Identification of the chimerism of hBMSC-derived immune cell lineages in

1 hBMSC-FRGS mice

2 To identify the chimerism of hBMSC-derived immune cell lineages, BM, lymph node, peripheral blood, spleen and liver cells were collected and analysed by FACS with 3 4 human leukocyte markers as previously described [8, 9, 10]. For further FACS analysis of multiple hBMSC-derived immune cell lineages, non-parenchymal cells (including 5 immune cell lineages and other cells) were separated from the parenchymal cells by 6 centrifugation at 50 g for 3 min to pellet the hepatocytes and leave most 7 8 non-parenchymal cells in suspension. FACS analysis of multiple immune cell lineages 9 was then performed using standard flow cytometry methods according to the instructions provided by the instrument's manufacturer. The gating scheme used in 10 11 this study, which was adapted from previous studies, was defined by a FACS 12 specialist with 10 years of experience according to the cell linages and antibodies [8, 13 11]. Different fluorescent labelled antibodies were used to characterize various hBMSC-derived human immune cell lineages (Tables S1-S2): hCD45⁺ for total human 14 15 immune cells, hCD45⁺hCD3⁺ for T cells, hCD45⁺hCD3⁺hCD4⁺ for helper T (T_H) cells, hCD45⁺hCD3⁺hCD8⁺ for cytotoxic T (Tc) cells, hCD45⁺hCD19⁺ for B cells, 16 hCD45⁺hCD3⁻hNKp46⁺ for NK cells, hCD45⁺hCD3⁻hCD14⁺ for monocytes, 17 hCD45⁺hCD3⁻hCD14⁺hCD68⁺CD86⁺ 18 for M1 macrophages, 19 hCD45⁺hCD3⁻hCD14⁺hCD68⁺CD163⁺ for M2 macrophages. hCD45⁺hCD3⁻ 20 hCD14⁻hCD11c⁺HLA-DR⁺ for myeloid DCs and hCD45⁺hCD3⁻hCD14⁻ hCD123⁺ 21 HLA-DR⁺ for plasmacytoid DCs.

22

Isolation and measurement of hBMSC-derived hCD45⁺ cells from peripheral blood,
spleen, liver, bone marrow, thymus and mesentery lymph nodes

25 Hepatic hCD45⁺ cells were directly measured by FACS analysis of the total

1 population of perfused liver cells. As previously described [6], heparinized blood was 2 treated twice with ammonium-chloride-potassium (ACK) lysis buffer to eliminate 3 RBCs. Bone marrow cells were harvested by flushing the diaphysis of femurs and 4 tibias from mice with PBS containing 1% BSA, 100 U/mL penicillin and 100 µg/mL streptomycin. The spleen, thymus and mesentery lymph nodes were gently ground 5 and sequentially filtered through 70- and 40-mm nylon mesh (BD Biosciences, San 6 Jose, CA, USA). Single-cell suspensions of the spleen and bone marrow were treated 7 with ACK lysis buffer, and the amount of hCD45⁺ cells in these single-cell 8 9 suspensions was assessed by FACS.

10

11 Harvest of infection source and establishment of HBV infection

For each genotype inoculation, 1×10^7 DNA copies of HBV dissolved in 200 µL of 12 saline were inoculated into one hBMSC-FRGS mouse with 40~60% chimerism of 13 hBMSC-Heps via intraperitoneal injection (1.5~2.5 mg/mL of the serum hALB 14 15 levels). These genotypes and amounts of virus have been commonly used [12]. 16 Uninfected hBMSC-FRGS mice with similar serum hALB levels were used as controls. 17 The HBV inocula used in this study were harvested from cell culture supernatants of stable HBV-replicating cell lines generated from HepG2 cells. These stable 18 19 HBV-replicating cell lines, named HepG2-pTSMP-1.3HBV-A, -B, -C and -D, were 20 generated using the 1.3-copy genome of the indicated HBV genotype donated by the 21 Sleeping Beauty transposon-based system [13]. In brief, the infectious inoculums 22 were prepared from freshly collected culture supernatants of the 23 HepG2-pTSMP-1.3HBV cell lines by precipitating the viral particles in the presence 24 of 6% PEG. The pellet was resuspended in PBS, dialyzed three times and finally 25 resuspended in PBS containing 25% FBS and stored at -80°C.

2 PHA and PMA/ionomycin stimulation in vitro

PHA and PMA/ionomycin stimulation *in vitro* was performed as previously described
[10, 14]. The hCD45⁺ leukocytes cells collected from hBMSC-FRGS mice were
briefly cultured with PHA (10 µg/mL) or PMA (10 µg/mL) and ionomycin (10 µg/mL)
for 24 h and used for measurements of intracellular human cytokines using various
ELISA kits. Detailed information for these human cytokine kits is presented in *Table*<u>S1</u>.

9

10 Detect isotype of HBV antigen specific antibodies

11 A captured-ELISA method was used to distinguish and measure the Ig isotype of 12 HBV antigen specific antibodies. Firstly, HBsAg or HBcAg (purchased from 13 AOKEBOTAI, Wuhan, China) protein was anchored on the bottom of 96-well plates. 14 Then, mice serum samples were diluted by ten times and incubated in the wells. After 15 that, HRP labelled anti-human IgG (#I5260, Sigma-Aldrich) or anti-human IgM 16 (#ab99737, Abcam) was used to measure the levels of hIgG and hIgM in HBsAb and 17 HBcAb.

18

19 *Cell fusion detection*

To detect the existence or absence of cell fusion between human-derived cells and the recipient mouse liver cells, liver tissues collected from hBMSC-FRGS mice were co-stained for human major histocompatibility complex (MHC) and mouse MHC antibodies through IF staining. FRGS mouse liver tissues were used as controls. The total liver cells collected from hBMSC-FRGS mice by collagenase perfusion were further analysed by FACS using human and murine MHC antibodies. hBMSCs, pig hepatocytes (#M00615, BioreclamationIVT) and FRGS mice liver cells were used as
 controls.

3

4 IF staining

5 The indicated cells cultured on slides were fixed with paraformaldehyde for 20 min, 6 treated with 0.1 Triton-X100 for 10 min, incubated with goat serum for 30 min and 7 incubated with antibodies. The nuclei were stained with DAPI. The slides were 8 washed three times with PBS between each of these steps. Photomicrographs were 9 obtained with an Axio Imager microscope (Zeiss, Jena, Germany) and a BX51 10 microscope (Olympus, Shinjuku, Japan). Detailed information regarding the 11 antibodies used for IF staining is presented in <u>Table S2</u>.

12

13 H&E, M&T, SR&FG, V.G. and IHC staining

14 To observe the rescue of mice from FHF by hBMSC transplantation, liver tissues 15 were collected on days 0, 3 and 7 after transplantation for H&E staining. For observations of hBMSC transdifferentiation, IHC was performed to detect the 16 17 expression of HLA and human hepatic-specific markers (hALB, hFAH, hNTCP, hCK18, hAAT) in liver tissue from hBMSC-FRGS mice. In a preliminary 18 19 tumourigenicity assay, H&E staining was performed to observe the liver, heart, spleen, 20 lung, kidney, colon, muscle/bone and brain tissues collected from hBMSC-FRGS 21 mice 60 weeks after hBMSC transplantation. For observations of the HBsAg and 22 HBcAg distribution, IHC assays were performed using liver tissue collected from 23 hBMSC-FRGS mice after HBV infection. To observe the recruitment of Kupffer cells near the HBsAg⁺ hepatocytes, uninfected controls and HBV-infected liver tissues 24 25 from hBMSC-FRGS mice were collected for frozen sectioning and double immune

staining for HBsAg and hCD68⁺. To observe the phenotype of chronic hepatitis, uninfected controls and HBV-infected hBMSC-FRGS mouse liver tissues were collected for H&E staining. To observe the progression of liver cirrhosis, uninfected controls and HBV-infected hBMSC-FRGS mouse liver tissues were collected from weeks 0 to 54 post-infection for M&T staining. To observe the typical phenotype of cirrhosis, serial sections were also analysed by SR&FG, V.G. staining and IHC staining for HLA.

8

9 Mouse tissues were fixed in 4% formaldehyde (pH 7.4) for at least 48 h to obtain 10 paraffin sections, and the sections $(4 \,\mu\text{m})$ were applied to poly-L-lysine-coated slides. 11 After the sections were dewaxed, rehydrated and washed, endogenous peroxidases 12 were inactivated with 3% H₂O₂ for 10 min at room temperature. The sections were 13 then incubated overnight with primary antibodies. The sections were subsequently washed three times with PBS and treated with reagents from an UltraSensitiveTM SP 14 15 Kit (Maixin Biotech, Fuzhou, China). After reaction with the DAB chromogen, the sections were rinsed with distilled water and counterstained with haematoxylin. 16 17 Brown staining indicated positive expression. H&E staining was performed as previously described [1, 2]. M&T, SR&FG and V.G. staining was performed 18 19 according to recommended protocols (Maixin Biotech, Fuzhou, China and Solarbio 20 LIFE SCIENCE, Beijing, China). Livers were frozen in OCT (Sakura Finetek Europe 21 B.V., Flemingweg, Netherlands) to obtain frozen sections, and 10-µm cryostat 22 sections were fixed in 4% paraformaldehyde for 15 min at 20°C (used throughout). 23 The sections were permeabilized in 0.1% Triton X-100 for 10 min and then were incubated in 0.3% H₂O₂ for 5 min, 10% goat serum for 20 min and antibodies. The 24 25 nuclei were stained with DAPI. The slides were washed three times with PBS between each of the steps. Photomicrographs were obtained with an Axio Imager
microscope (Zeiss, Jena, Germany) and a BX51 microscope (Olympus, Shinjuku,
Japan). Fields of the whole liver lobes were visualized using a scanning system
(NanoZoomer 2.0-RS, Hamamatsu Photonics, Hamamatsu, Japan) and NDP.scan 2.5
software as previously described [1]. Detailed information regarding the antibodies
used for the IF staining of frozen sections and the IHC staining of paraffin sections is
presented in *Table S2.*

8

9 Criteria of liver fibrosis and cirrhosis

10 Fibrosis is defined as the presence of excess collagen due to new fibre formation that 11 causes only minor clinical symptoms or disturbance of liver cell function. Cirrhosis is a 12 diffuse process characterized by fibrosis and the conversion of the normal liver 13 architecture into structurally abnormal nodules that affect the whole organ. Liver 14 cirrhosis is defined by its pathological features on microscopy: (a) presence of 15 parenchymal nodules, (b) differences in liver cell size and appearance, (c) 16 fragmentation of the biopsy specimen, (d) fibre formation, accumulation and septa; and 17 (e) altered architecture and vascular relationships.

18

19 Serological analysis

Biochemical markers of liver function in mouse serum were detected using various
reagents (Wantai, Beijing, China). Serum hALB, human hepatocellular carcinoma
(HCC) markers, HBV antigens and antibodies, human cytokines, hIgM, hIgG and
liver cirrhosis markers were measured using respective ELISA kits. The total HBV
DNA levels in the mouse serum samples were measured using a qRT-PCR assay with
Premix Ex TaqTM as described previously [15]. The primer sequences were 5'-GTT

-	
4	
3	CAT GGA-BHQ-1-3'. The materials and reagents are presented in <i>Table S1</i> .
2	AAC TC-3', and the probe sequence was 5'-Hex- CCT TGG GTG GCT TTG GGG
1	CAA GCC TCC AAG CTG TG-3' and 5'-TCA GAA GGC AAA AAA GAG AGT

5 FISH analysis for intracellular HBV DNA

For the analysis of intracellular HBV DNA, liver cells from uninfected controls and
HBV-infected hBMSC-FRGS mice were isolated, cultured *in vitro* for 24 h and then
co-stained for hALB by IF staining and for HBV DNA using molecular probes. HBV
DNA was coupled with a digoxin (Dig)-labelled HBV X-specific probe. The signal
was then amplified by a cascade reaction of a biotin-anti-Dig secondary antibody and
TRITC-labelled anti-biotin third antibody. Photomicrographs were obtained with an
Axio Imager microscope (Zeiss, Jena, Germany).

13

14 Detection of the percentage HBV-infected human cells

To detect the percentage of HBV-infected human cells, serial sections of HBV-infected hBMSC-FRGS mice at 0, 4, 8, 16, 32 and 56 w.p.i. were stained with hALB and HBsAg antibodies. At each time point, 10 pairs of images were randomly selected from the full set of scanned images and used to calculate the percentage of HBsAg⁺ or hALB⁺ cells. The results are representative of eight independent samples per time point.

21

22 Qualitative and quantitative analysis of intrahepatic HBV cccDNA levels

23 Liver cells from HBV-infected hBMSC-FRGS mice at 0 to 56 w.p.i. were collected by

collagenase perfusion to analyse the intrahepatic HBV cccDNA levels. For qualitative

analysis, HBV cccDNA was isolated using the "Hirt" method [16] and measured with

1	the southern blot technique. Southern blot detection was performed according to
2	previously described methods using DIG-labelled DNA fragments from the HBX gene
3	as a probe [12, 15]. For quantitative analysis, the HBV cccDNA levels were measured
4	by qRT-PCR as reported previously [17, 18, 19].

5

2 3

Shi D, Zhang J, Zhou Q, Xin J, Jiang J, Jiang L, *et al.* Quantitative evaluation of
human bone mesenchymal stem cells rescuing fulminant hepatic failure in pigs. Gut
2017;66:955-64.

7 2 Li J, Zhang L, Xin J, Jiang L, Li J, Zhang T, *et al.* Immediate intraportal
8 transplantation of human bone marrow mesenchymal stem cells prevents death from
9 fulminant hepatic failure in pigs. Hepatology 2012;56:1044-52.

10 3 Li J, Tao R, Wu W, Cao H, Xin J, Li J, *et al.* 3D PLGA scaffolds improve
11 differentiation and function of bone marrow mesenchymal stem cell-derived
12 hepatocytes. Stem cells and development 2010;19:1427-36.

4 Chamberlain J, Yamagami T, Colletti E, Theise ND, Desai J, Frias A, *et al.*Efficient generation of human hepatocytes by the intrahepatic delivery of clonal human
mesenchymal stem cells in fetal sheep. Hepatology 2007;46:1935-45.

16 5 Li J, Tao R, Wu W, Cao H, Xin J, Guo J, et al. Transcriptional profiling and

17 hepatogenic potential of acute hepatic failure-derived bone marrow mesenchymal stem

18 cells. Differentiation; research in biological diversity 2010;**80**:166-74.

19 6 Rongvaux A, Willinger T, Martinek J, Strowig T, Gearty SV, Teichmann LL, et al.

20 Development and function of human innate immune cells in a humanized mouse model.

21 Nature biotechnology 2014;**32**:364-72.

Azuma H, Paulk N, Ranade A, Dorrell C, Al-Dhalimy M, Ellis E, *et al.* Robust
expansion of human hepatocytes in Fah-/-/Rag2-/-/Il2rg-/- mice. Nature biotechnology
2007;25:903-10.

25 8 Strick-Marchand H, Dusseaux M, Darche S, Huntington ND, Legrand N,
26 Masse-Ranson G, *et al.* A novel mouse model for stable engraftment of a human 13/19

1 immune system and human hepatocytes. PloS one 2015;**10**:e0119820.

2 9 Dusseaux M, Masse-Ranson G, Darche S, Ahodantin J, Li Y, Fiquet O, *et al.* Viral
3 Load Affects the Immune Response to HBV in Mice With Humanized Immune System
4 and Liver. Gastroenterology 2017.

5 10 Billerbeck E, Mommersteeg MC, Shlomai A, Xiao JW, Andrus L, Bhatta A, *et al.*6 Humanized mice efficiently engrafted with fetal hepatoblasts and syngeneic immune
7 cells develop human monocytes and NK cells. Journal of hepatology 2016;65:334-43.

8 11 Dusseaux M, Masse-Ranson G, Darche S, Ahodantin J, Li Y, Fiquet O, *et al.* Viral
9 Load Affects the Immune Response to HBV in Mice With Humanized Immune System
10 and Liver. Gastroenterology 2017;153:1647-61 e9.

12 Yuan L, Liu X, Zhang L, Li X, Zhang Y, Wu K, *et al.* A Chimeric Humanized
Mouse Model by Engrafting the Human Induced Pluripotent Stem Cell-Derived
Hepatocyte-Like Cell for the Chronic Hepatitis B Virus Infection. Front Microbiol
2018;9:908.

13 Wu Y, Zhang TY, Fang LL, Chen ZX, Song LW, Cao JL, *et al.* Sleeping Beauty
transposon-based system for rapid generation of HBV-replicating stable cell lines.
Journal of virological methods 2016;234:96-100.

14 Bility MT, Cheng L, Zhang Z, Luan Y, Li F, Chi L, *et al.* Hepatitis B virus infection
and immunopathogenesis in a humanized mouse model: induction of human-specific
liver fibrosis and M2-like macrophages. PLoS Pathog 2014;10:e1004032.

21 15 Zhang TY, Yuan Q, Zhao JH, Zhang YL, Yuan LZ, Lan Y, *et al.* Prolonged
22 suppression of HBV in mice by a novel antibody that targets a unique epitope on
23 hepatitis B surface antigen. Gut 2016;65:658-71.

24 16 Hirt B. Selective extraction of polyoma DNA from infected mouse cell cultures.

25 Journal of molecular biology 1967;**26**:365-9.

1	17 Wong DK, Yuen MF, Yuan H, Sum SS, Hui CK, Hall J, et al. Quantitation of
2	covalently closed circular hepatitis B virus DNA in chronic hepatitis B patients.
3	Hepatology 2004; 40 :727-37.
4	18 Lutgehetmann M, Mancke LV, Volz T, Helbig M, Allweiss L, Bornscheuer T, et al.
5	Humanized chimeric uPA mouse model for the study of hepatitis B and D virus
6	interactions and preclinical drug evaluation. Hepatology 2012;55:685-94.
7	19 Singh M, Dicaire A, Wakil AE, Luscombe C, Sacks SL. Quantitation of hepatitis B
8	virus (HBV) covalently closed circular DNA (cccDNA) in the liver of HBV-infected
9	patients by LightCycler real-time PCR. Journal of virological methods

11

1 • Supplemental Figures and Legends

2 Figure S1. Phenotypes and multi-potential stem cell characteristics of hBMSCs. (A)

Flow cytometry analysis of hBMSCs and controls for stem cell-related markers, 3 4 including hCD90, hCD29, hCD45 and hCD34. Most hBMSCs were positive for hCD90 and hCD29 but negative for hCD45 and hCD34. (B) Morphology of 5 undifferentiated hBMSCs and hBMSCs that differentiated into hepatocyte-like cells, 6 adipocytes and osteocytes. Undifferentiated hBMSCs exhibited a fibroblast-like 7 8 morphology (bar=50 µm). Differentiated hepatocytes exhibited a polygonal 9 morphology with a low cytoplasm/nucleus ratio under phase-contrast microscopy (bar=100 µm). Differentiated osteocytes exhibited mineralization (bar=20 µm). 10 11 Differentiated adipocytes contained lipid droplets (bar=20 µm). (C) IF staining of 12 cluttered hBMSC-derived hepatocyte-like cells for the human-specific hepatic markers 13 hALB and hHNF-4A (bar=20 µm).

14

15 Figure S2. Flow cytometry configuration, cell markers, fluorescent dye and protein 16 antibody. (A) Violet (407 nm), yellow-green (561 nm), blue (488 nm) and red laser 17 (533 nm) settings were used for flow cytometry. Antibodies and indicated fluorescent dyes for the indicated cell markers used in total liver cell and immune cell lineage

19 analyses of hBMSC-FRGS mice are listed.

20

18

Figure S3. Cell fusion detection of human-derived hepatocytes and mouse 21 hepatocytes in the livers of hBMSC-FRGS mice. (A) IF staining of frozen sections of 22 23 FRGS and hBMSC-FRGS mouse liver tissues for the expression of human and mouse MHC. The nuclei were stained with DAPI. No cell fusion was observed between the 24 25 human MHC-positive cells (red) and the mouse MHC-positive cells (green) (bar=100

1 μm). Representative FACS contour plots of (**B**) pig hepatocytes, (**C**) hBMSCs, (**D**) 2 FRGS mouse liver cells and (E) hBMSC-FRGS mouse liver cells for the frequencies of 3 human MHC- or mouse MHC-positive cells. (B) The pig hepatocytes were negative for 4 both human and mouse MHC. (C) More than 99.5% of hBMSCs were positive for human MHC and negative for mouse MHC. (D) More than 99.5% of FRGS mouse liver 5 cells were positive for mouse MHC and negative for human MHC. (E) Some of the 6 7 hBMSC-FRGS mouse liver cells were positive for only human MHC, and the rest were 8 positive for only mouse MHC. No hBMSC-FRGS mouse liver cells were positive for 9 both human and mouse MHC. These results indicated that no cell fusion occurred 10 between hBMSC-derived liver cells and the recipient mouse hepatocytes.

11

12 Figure S4. Safety and long-term tumourigenicity assay of hBMSC-FRGS mice. (A) 13 Detection of human HCC markers, including hAFP, hGPC-3, hCA19-9 and hDCP, in serum of hBMSC-FRGS mice from weeks 0 to 60 after hBMSC transplantation (n=8). 14 15 (B) qRT-PCR results for the expression of human HCC-related genes, including hAFP, 16 hGOLM1, hCEA and hEGFR, in liver tissues collected from hBMSC-FRGS mice from 17 weeks 0 to 60 after hBMSC transplantation (n=8). (C) H&E staining of main organs, including the heart, liver, spleen, lung, kidney, colon, muscle & bone (hind leg) and 18 19 brain, collected from hBMSC-FRGS mice 60 weeks after hBMSC transplantation 20 (bar=200 µm).

21

Figure S5. Supplementary information of hBMSC-derived human immune cell chimerism in hBMSC-FRGS mice. Reconstitution and maintenance of (A)
hCD3⁻hCD14⁺hCD68⁺ macrophages and (B) hCD3⁻hCD14⁻HLA-DR⁺ dendritic cells
in the peripheral blood, spleen and livers of hBMSC-FRGS mice from week 3 to 60

- after transplantation, and proportions of these cells in the total population of hCD45⁺
 cells (10 different donors, n=3).
- 3

Figure S6. Supplementary information for HBV infection in hBMSC-FRGS mice.(A) Serum hALB, HBV DNA, (B) HBsAg and HBeAg levels in hBMSC-FRGS mice
without HBV infection (control group) from 0 to 56 w.p.i. (n=8/group).

7

Figure S7. Serological analysis of the hALB, HBV DNA, HBsAg and HBeAg levels in individual animals (genotypes A to D). The serum hALB levels (first line), HBV
DNA levels (second line), HBsAg levels (third line) and HBeAg levels (fourth line) in
individual animals infected with genotypes A to D from weeks 0 to 56 w.p.i. are shown

13

12

(n=8/group).

14 Figure S8. Follow-up of HBV-induced immune and inflammatory responses and 15 chronic hepatitis. (A) Plasma samples from uninfected controls and HBV-infected hBMSC-FRGS mice were analysed by ELISA for various human cytokines from week 16 17 0 to 48 post-infection (n=8/group). (**B**) qRT-PCR analysis for the expression of human cytokine genes in HLA⁺ liver cells collected from uninfected controls and 18 19 HBV-infected hBMSC-FRGS mice from weeks 0 to 48 post-infection (n=4/group). (C) 20 The serum hIgM and hIgG concentrations in individual animals from 0 to 48 w.p.i. 21 were measured by ELISA, respectively (n=8/group). (D) The serum HBsAb, HBeAb 22 and HBcAb concentrations in individual animals from 0 to 48 w.p.i. were measured by 23 ELISA (n=8/group). (E) Serum of HBV-infected hBMSC-FRGS mice and uninfected controls were collected at 24 w.p.i. and measured by captured-ELISA method for Ig 24 25 isotype of HBsAb and HBsAb (n=6/group). (F) Temporal changes in eight typical

- biochemical markers of liver function from weeks 0 to 48 post-infection (n=8/group)
 (*NS*, no significant difference; *U.D.*, undetectable; *a*, p<0.05; *b*, p<0.01; *c*, p<0.001).
- *Figure S9. Supplementary information for liver cirrhosis progression in hBMSC-FRGS mice.* Different fields of view obtained from M&T-stained liver tissues
 collected from uninfected controls and HBV-infected hBMSC-FRGS mice during the
 progression of HBV-induced liver cirrhosis (bar=500 μm).

8

FACS analysis for stem cell surface markers of hBMSCs and control

В

Undifferentiated hBMSCs

С

hALB DAPI

IF staining for hepatic markers of hBMSC-derived hepatocyte-like cells

hBMSC-derived adipocytes

hBMSC-derived osteocytes

Morphology and in vitro multi-potential stem cell characteristics of hBMSCs

Laser	Filters	Fluorescent dye	Total liver cell analysis	Immune cell lineages analysis
	780/60 735LP	BV786	hCD45	hCD45
	660/20 630LP	BV650	-	hCD123
	610/20 595LP	BV605	-	hNKp46
407nm	510/50 502LP	BV510	-	hCD163
	450/40	BV421	-	hCD68
	695/40 655LP	PerCP	hALB	hCD3
488nm	530/30 450LP	BB515	-	hCD11c
	488/10	-	-	-
	780/60 735LP	PE-Cy7	-	hCD19
	710/50 685LP	PE-Cy5.5	-	
	655/20 630LP	PE-Cy5	hNTCP	hCD86
561nm	610/20 600LP	PE-CF594	-	mCD45
	560/20 545LP	PE	-	HLA-DR
	780/60 755LP	APC-Cy7	HLA	hCD14
633nm	730/45 685LP	AF700	-	hCD4
	660/20	APC	-	hCD8

Supplementary Figure 4

Fold changes of HCC related genes expression in liver tissues collected from hBMSC-FRGS mice (n=8/group)

H&E staining of main organs collected from hBMSC-FRGS mice at 60 weeks after hBMSCs transplantation

С

⊺ 40 т 48

56 w.p.i.

т 32

24

0 8 16

hBMSC-FRGS mice infected with HBV genotype C

Α

Tab. S1 Reagents

Name	Company	Cat. No.	Speices specific test
Kits for HBV infection marker (antigens and antibodies) assays (HBsAg; HBeAg; HBsAb; HBeAb; <u>HBcAb</u>) Kits for detection of liver biochemical markers and liver cirrhosis markers (ALT; AST; TB; TBA; TC; TP; PT; BUN; GGT; HA)	Wantai, Beijing,China	(http://www.bjwtdr.c om/index.asp)	-
hALB ELISA Kit	Bethyl, Montgomery, TX, USA	#E88-129	Passed
Human IgM/human IgG	Jackson ImmunoResearch, West Grove, PA, USA	#109-035-043/008	Passed
UltraSensitiveTM SP Kit for IHC assay	Maixin Biotech, Fuzhou, China	#KIT-9730	-
Dimethyl sulfoxide (DMSO)		#D4540	-
Collagenase, Type I/IV, powder	Sigma-Aldrich, St Louis, MO, USA	#C0130-5G/#C5138- 5G	-
Biotin-11-dUTP	Fermentas (MBI), Hanover, MD, USA	#R0081	-
Ficoll-Paque TM PLUS	GE Healthcare, Fairfield, CT, USA	#17-1440-03	-
Proteinase K	TaKaRa, Kusatsu, Japan	#D9034	-
DIG Easy Hyb™ Granules	Roche, AG, Basel, Switzerland	#11796895001	-
Hepes Buffer Solution	Invitrogen, Carlsbad, CA, USA USA	#15630	-
M&T stain Kit	Maixin Biotech, Fuzhou, China	#MST-8004	-
V.G. stain Kit	Maixin Biotech, Fuzhou, China	#MST-8002	-
SR/FG stain Kit	Solarbio LIFE SCIENCE, Beijing, China	#G1470	-
EndoFree Plasmid Giga Kit	Qiagen, Hilden, Germany	#12391	-
Busulfan	Sigma-Aldrich, St Louis, MO, USA	#B2635-25G	-
Nitisinone (NTBC)	SOBI, Stockholm, Sweden	#1052201/1042275	-
DNase I (Amplification Grade)	Sigma-Aldrich, St Louis, MO, USA	#AMPD1	-
Williams' Medium E (1X) without Phenol Red		#A12176-01	-
DMEM, High Glucose, Pyruvate	GIBCO, Grand Island, NY, USA	#11995-073	-
Foetal Bovine Serum, Qualified, Australia Origin		#10099-141	-

TRIzol	Invitragen Corporation, Carlshad, CA	#15596-026	-
Trypsin ethylenediaminetetraacetic acid (Trypsin -		#25200 072	
EDTA)	USA	#23200-072	-
Human IL-17 Quantikine ELISA Kit		#D1700	Passed
Human IL-1ra Quantikine ELISA Kit		#DRA00B	Passed
Human IL-6 Quantikine ELISA Kit		#D6050	Passed
Human IL-8 Quantikine ELISA Kit		#D8000C	Passed
Human CXCL10/IP-10 Quantikine ELISA Kit		#DIP100	Passed
Human IL-2 Quantikine ELISA Kit		#D2050	Passed
Human IL-4 Quantikine ELISA Kit		#D4050	Passed
Human IL-5 Quantikine ELISA Kit	R&D Systems, Minneapolis, MN, USA	#D5000B	Passed
Human IL-10 Quantikine ELISA Kit		#D1000B	Passed
Human TNF-alpha Quantikine ELISA Kit		#DTA00C	Passed
Human IFN-alpha ELISA Kit		#41100-1	Passed
Human IFN-beta ELISA Kit		#41410-1	Passed
Human IFN-gamma Quantikine ELISA Kit		#DIF50	Passed
Human alpha-Fetoprotein (AFP) Quantikine ELISA			Desced
Kit		#DAI TOU	rasseu
Human IL-27 Quantikine ELISA Kit		#m1028587	Passed
Human IL-32 Quantikine ELISA Kit		#ml027388	Passed
Human IL-16 Quantikine ELISA Kit	Enzyma linkad Piatachnalagy	#ml028600	Passed
Human IL-23 Quantikine ELISA Kit	Shanghai, China	#m1027404	Passed
Human IL-13 Quantikine ELISA Kit	Shanghai, China	#ml027429	Passed
Human IL-1α Quantikine ELISA Kit		#m1027418	Passed
Human IL-1β Quantikine ELISA Kit		#ml027417	Passed
Human IL-17E (IL-25) Quantikine ELISA Kit	Boster Biotechnology, Wuhan, China	#EK0793	Passed
Human DCP ELISA Kit		#KA0432	Passed
Human CA19-9 ELISA Kit	Abnova, Taipei City, Taiwan, China	#KA0207	Passed
Human GPC3 ELISA Kit		#KA1175	Passed
Human IL-16 Quantikine ELISA Kit	Abcam, Cambridge, UK	#ab720	Passed

		https://www.expedeo n.com/products/imm	
Fluorescent dye: BV786, BV650, BV605, BV510,		unoreagents/lightnin	
BV421, PerCP, BB515, PE-Cy7, PE-Cy5.5, PE-Cy5,	Expedeon, Cambridge, UK	g-link-antibody-	-
PE-CF594, PE, APC-Cy7, AF700, APC		labeling-	
		kits/fluorescent-	
		dyes-and-proteins/	

Tab. S2 Antibodies

Antibodies	Company	Cat. No.	Speices specific test
Purified NA/LE Hamster Anti-Mouse CD95 Clone JO2	BD Biosciences, San Jose, CA	#554254	-
anti-human albumin		$\#5D2^1$	Passed
anti-HBsAg	House keeping	#83H12 ²	-
anti-HBcAg	DAKO, Chattanooga, TN, USA	#B058601	-
anti-HLA (human MHC)	eBioscience, San Diego, CA, USA	#12-9983-80/-41	Passed
anti-mouse MHC		#ab25333	Passed
anti-biotin antibody (Texas Red)		#ab6653	-
anti-biotin antibody (FITC)		#ab6650	-
anti-human CK18		#ab82254	Passed
anti-human AAT		#ab9399	Passed
anti-human FAH		#ab47381	Passed
anti-human AFP		#ab3969	Passed
anti-total CD45 (human+mouse)		#ab10558	-
anti-mouse CD45		#ab25386	Passed
anti-human CD45		#ab10559	Passed
anti-human CD68	Abcam, Cambridge, UK	#ab845	Passed
anti-human CD86		#ab53004	Passed
anti-human CD19		#ab134114	Passed
anti-human CD3		#ab828	Passed
anti-human CD4		#ab133616	Passed
anti-human CD8		#ab17147	Passed
anti-human CD123		#ab21562	Passed
anti-human CD163		#ab156769	Passed
anti-human Nkp46		#ab14823	Passed

anti-human CD11c		#ab52632	Passed
anti-HLA-DR		#ab92511	Passed
anti-human NTCP		#HPA042727	Passed
anti-rabbit IgG (whole molecule)-TRITC		#T6778	Passed
anti-mouse IgG (whole molecule)-TRITC		#T5393	Passed
anti-rabbit IgG (whole molecule)-FITC	Sigma Aldrich St.Louis MO USA	#F9887	Passed
anti-mouse IgG (whole molecule)-FITC	sigma-Aldrich, St Louis, MO, USA	#F9006	Passed
anti-human IgM (μ-chain specific)		#12386	Passed
anti-human IgG (Fab specific)		#15260	Passed
anti-human IgG (Fc specific)		#12136	Passed

Science Translational Medicine 2016; Vol. 8, 352
 Journal of Hepatology 2012; Vol. 57, 720-729

Tab. S3 Primers

Gene			Primer	Speices specific test
hALB		F	TTTATGCCCCGGAACTCCTTTT	Passed
		R	ACAGGCAGGCAGCTTTATCAG	Passed
	hAAT	F	GCCTATGATGAAGCGTTTAGGC	Passed
		R	TTCCAGTAATGGACAGTTTGGGT	Passed
	hHNF-4α	F	AACGGACAGATGTGTGAGTGG	Passed
		R	CAGGAGCTTATAGGGCTCAGAC	Passed
	hHNF-1α	F	GCCACCTGCTGCCATCCAA	Passed
		R	TGCAGCCCGTAGTTTAAAC	Passed
	hFAH	F	CCTACGGCGTCTTCTCGAC	Passed
		R	CTGCAAGAACACTCTCGCCT	Passed
	hNTCP	F	AAGGACAAGGTGCCCTATAAAGG	Passed
		R	ACGATCCCTATGGTGCAAGGA	Passed
	hCK18	F	TCGCAAATACTGTGGACAATGC	Passed
		R	GCAGTCGTGTGTGATATTGGTGTC	Passed
	hTransferrin	F	TGTCTACATAGCGGGCAAGTG	Passed
		R	GTTCCAGCCAGCGGTTCTG	Passed
	hCYP3A4	F	AAGTCGCCTCGAAGATACACAA	Passed
		R	AAGGAGAGAACACTGCTCGTG	Passed
Human hanatia spacific ganas	hCYP2B6	F	GCACTCCTCACAGGACTCTTG	Passed
Human nepatic-specific genes		R	CCCAGGTGTACCGTGAAGAC	Passed
	hCYP1A2	F	CTTCGCTACCTGCCTAACCC	Passed
		R	TGACTGTGTCAAATCCTGCTCC	Passed
	hASGPR1	F	ATGACCAAGGAGTATCAAGACCTT	Passed
		R	TGAAGTTGCTGAACGTCTCTCT	Passed
	hMRP2	F	CAGCCATAGAGCTGGCCCT	Passed
		R	GCAAAACCAGGAGCCATGTG	Passed
	hTAT	F	TAGCTTCTAGGGGTGCCTCA	Passed
		R	AGCCATTGTGGACAACATGA	Passed
	hTTR	F	GGCTCACAACAGATGAGAAA	Passed
		R	TGTGGTGGAGTAAGAGTAGG	Passed
	hCYP7A1	F	CAAGAACCTGTACATGAGGGA	Passed
		R	CACTTCTTCAGAGGCTGCTTT	Passed
	hHNF1β	F	CTACAACCAGCAGGGAAAC	Passed
		R	CCATCAGGTGAGAGGAGAT	Passed
	hCDH1	F	CAGGTCTCCTCTTGGCTCTG	Passed
		R	ACTTTGAATCGGGTGTCGAG	Passed
	hBSEP	F	TTGGCTGATGTTTGTGGGAAG	Passed
		R	CCAAAAATGAGTAGCACGCCT	Passed

	hIL-1ra	F	GCTCATTGCTGGGTACTTACAA	Passed
		R	CCAGACTTGGCACAAGACAGG	Passed
	hIL-6	F	ATGGATGCTTCCAATCTG	Passed
		R	CTGGCTTGTTCCTCACTAC	Passed
	hIL-8	F	TGCTAAAGAACTTAGATGTCAGTG	Passed
		R	TGGTCCACTCTCAATCACTCTCA	Passed
	hIL-10	F	AAAAGAAGGCATGCACAGCTCAG	Passed
		R	GTGGGTGCAGCTGTTCTCAGACT	Passed
	hIL-2	F	TGCAACTCCTGTCTTGCATT	Passed
		R	TCAGTTCTGTGGCCTTCTTG	Passed
	hIL-4	F	ACTGCACAGCAGTTCCACAG	Passed
		R	CTCTGGTTGGCTTCCTTCAC	Passed
	hIL-5	F	ACTCTGATGATAGCCAATGAGA	Passed
TT . 11		R	TCCAGTGTGCCTATTCCCTGA	Passed
Human cytokine genes	hIL-17A	F	TCAACCCGATTGTCCACCAT	Passed
		R	GAGTTTAGTCCGAAATGAGGCTG	Passed
	hIL-23	F	AGAAGCTCTGCACACTGGC	Passed
		R	CCACACTGGATATGGGGAAC	Passed
	hIL-32	F	GAAGGTCCTCTCTGATGACA	Passed
		R	AAGTAGAGGAGTGAGCTCTG	Passed
	hTNF-α	F	CAGCCTCTTCTCCTTCCTGAT	Passed
		R	GCCAGAGGGCTGATTAGAGA	Passed
	hIFN-α	F	CCCATTTCAACCAGTCTAGCAG	Passed
		R	TGTGGGTTTGAGGCAGATC	Passed
	hIFN-β	F	GACGCCGCATTGACCATCTA	Passed
		R	CCTTAGGATTTCCACTCTGACT	Passed
	hIFN-γ	F	TCGGTAACTGACTTGAATGTCCA	Passed
	· · · · ·	R	TCGCTTCCCTGTTTTAGCTGC	Passed
	hCOL1A1	F	GATGGACTCAACGGTCTCC	Passed
		R	CCTTGGGGTTCTTGCTGATG	Passed
	hTIMP-1	F	CTGTGTCCCACCCACC	Passed
Unmon filmenia annos		R	GAACTTGGCCCTGATGACGA	Passed
Human librosis genes	hMMP-2	F	ACCCAGATGTGGCCAACTAC	Passed
		R	TCATGATGTCTGCCTCTCCA	Passed
	hCOL1A2	F	GGCCCTCAAGGTTTCCAAGG	Passed
		R	CACCCTGTGGTCCAACAACTC	Passed
Control	hGAPDH	F	GGAGTCAACGGATTTGGTCGT	Passed
Control		R	CACTTGATTTTGGAGGGATCTCG	Passed

Human HCC marker genes	hGLOM1	F	TGGCCTGCATCATCGTCTTG	Passed
		R	CCCTGGAACTCGTTCTTCTTCA	Passed
	hEGFR	F	AGGCACGAGTAACAAGCTCAC	Passed
		R	ATGAGGACATAACCAGCCACC	Passed
	hHGF	F	GCTATCGGGGGTAAAGACCTACA	Passed
		R	CGTAGCGTACCTCTGGATTGC	Passed
	hAFP	F	CTTGCACACAAAAAGCCCACT	Passed
		R	GGGATGCCTTCTTGCTATCTCAT	Passed